L arge-Scale Training of SVMswith Automata Kernels

Cyril Allauzent, Corinna Corte's and Mehryar Moh#!

1 Google Research, 76 Ninth Avenue, New York, NY 10011
2 Courant Institute of Mathematical Sciences, 251 MercezedtiNew York, NY 10012

Abstract. This paper presents a novel application of automata algosto ma-
chine learning. It introduces the first optimization saduatfor support vector ma-
chines used with sequence kernels that is purely based ayhtedi automata
and transducer algorithms, without requiring any specdlees. The algorithms
presented apply to a family of kernels covering all those mamly used in text
and speech processing or computational biology. We showttibae algorithms
have significantly better computational complexity thaemus ones and report
the results of large-scale experiments demonstratingraatia reduction of the
training time, typically by several orders of magnitude.

1 Introduction

Weighted automata and transducer algorithms have beersusedssfully in a variety
of natural language processing applications, includiregesp recognition, speech syn-
thesis, and machine translation [17]. More recently, thayehfound other important
applications in machine learning [5, 1]: they can be useckfind a family of sequence
kernels rational kernelg5], which covers all sequence kernels commonly used in ma-
chine learning applications in bioinformatics or text apéech processing.

Sequences kernels are similarity measures between sexgubiat are positive def-
inite symmetric, which implies that their value coincideighwan inner product in some
Hilbert space. Kernels are combined with effective leagralgorithms such as support
vector machines (SVMs) [6] to create powerful classifiaatiechniques, or with other
learning algorithms to design regression, ranking, clirsge or dimensionality reduc-
tion solutions [19]. These kernel methods are among the widgly used techniques
in machine learning.

Scaling these algorithms to large-scale problems remaimpatationally challeng-
ing however, both in time and space. One solution consistsiafj approximation tech-
nigues for the kernel matrix, e.g., [9, 2, 21, 13] or to usdyestopping for optimization
algorithms [20]. However, these approximations can of seuesult in some loss in ac-
curacy, which, depending on the size of the training datathedlifficulty of the task,
can be significant.

This paper presents general techniques for speeding up-$aaje SVM training
when used with an arbitrary rational kernel, without reisgrto such approximations.
We show that coordinate descent approaches similar to tingese by [10] for linear
kernels can be extended to SVMs combined with rational ketieedesign faster al-
gorithms with significantly better computational comptgxRemarkably, our solution

techniques are purely based on weighted automata and treersalgorithms and re-
quire no specific optimization solver. To the best of our klealge, they form the first
automata-based optimization algorithm of SVMs, probabby most widely used al-
gorithm in machine learning. Furthermore, we show expemialéy that our techniques
lead to a dramatic speed-up of training with sequence kerlrenost cases, we observe
an improvement by several orders of magnitude.

The remainder of the paper is structured as follows. We siiginta brief introduc-
tion to weighted transducers and rational kernels (Se@jomcluding definitions and
properties relevant to the following sections. Section@vjates a short introduction to
kernel methods such as SVMs and presents an overview of trdinate descent solu-
tion by [10] for linear SVMs. Section 4 shows how a similang@n can be derived in
the case of rational kernels. The analysis of the complexitythe implementation of
this technique are described and discussed in Section Bctios 6, we report the re-
sults of experiments with a large dataset and with sevepaltpf kernels demonstrating
the substantial reduction of training time using our teghes.

2 Preiminaries

This section introduces the essential concepts and defisitelated to weighted trans-
ducers and rational kernels. Generally, we adopt the diefiisiind terminology of [5].

Weighted transducerare finite-state transducers in which each transition esrri
some weight in addition to the input and output labels. Thighteset has the structure
of a semiring [12]. In this paper, we only consider weighteshsducers over theal
semiring(R, +, x,0,1). Figure 1(a) shows an example. A path from an initial state
to a final state is an accepting path. The input (resp. outpbé) of an accepting path
is obtained by concatenating together the input (resp.utpgymbols along the path
from the initial to the final state. Its weight is computed byltiplying the weights of its
constituent transitions and multiplying this product bg theight of the initial state of
the path (which equals one in our work) and by the weight ofitied state of the path.
The weight associated by a weighted transdli€¢o a pair of stringgx, y) € X* x X*
is denoted byU (x, y). For any transducdd we define the linear operatbras the sum
of the weights of all accepting paths Of.

A weighted automatoA can be defined as a weighted transducer with identical
input and output labels. Discarding the input labels of agivid transducdd results
in a weighted automatoA, said to be theutput projection ofU, A = II5(U). The
automaton in Figure 1(b) is the output projection of the ¢rarcer in Figure 1(a).

The standard operations of sum product or concatenationmultiplication by a
real number and Kleene-closurare defined for weighted transducers [18]. Therse
of atransducelJ, denoted byU !, is obtained by swapping the input and output labels
of each transition. For all pairs of stringg, y), we haveU~!(x,y) = U(y, x). The
compositionof two weighted transduceld; and U, with matching output and input
alphabetsV, is a weighted transducer denoted®By o U, when the sum:

(U 0o Us)(x,y)= Z Ui (x,2z) x Us(z,y)
ze X+

(b) (©

Fig.1. (a) Example of weighted transduckr. (b) Example of weighted automatah. In this
example,A can be obtained frorty by projection on the output arld (aab, baa) = A (baa) =
3x1x4x2+3x2x3x2.(c)Bigram counting transducér, for X’ = {a, b}. Initial states are
represented by bold circles, final states by double ciratelstiae weights of transitions and final
states are indicated after the slash separator.

is well-defined and irR for all x,y [18]. It can be computed in tim&(|U,||Us|))
where|U| denotes the sum of the number of states and transitions afaducelU.

Given a non-empty seX’, a functionK: X x X — R is called a&kernel K is said to
bepositive definite symmetr{®DS) when the matrigk (x;, xj))1<l._’j<m is symmetric
and positive semi-definite (PSD) for any choicerofpoints in X. A kernel between
sequence&: X* x 3* — R is rational [5] if there exists a weighted transdudérsuch
that K coincides with the function defined By, that is K (x,y) = U(x,y) for all
x,y € X*. When there exists a weighted transdufesuch thafU can be decomposed
asU=ToT™!, then it was shown by [5] that is PDS. All the sequence kernels seen
in practice are precisely PDS rational kernels of this form.

A standard family of rational kernels isgram kernels, see e.qg. [15, 14]. Lgl(z)
be the number of occurrencesoin x. Then-gram kernelK,, of ordern is defined
as Ky (x,y) = 22|, x(2)ey (z). Ky, is a PDS rational kernel since it corresponds
to the weighted transducér,, o T,,! where the transducéF,, is defined such that
T, (x,2) =c,(z) for all x,z € X* with |z| =n. The transducel'; for X' = {a,b} is
shown in Figure 1(c).

3 Kernel Methods and SVM Optimization

Kernel methods are widely used in machine learning. Theg baen successfully used
in a variety of learning tasks including classification, ression, ranking, clustering,
and dimensionality reduction. This section gives a briefroiew of these methods, and
discusses in more detail one of the most popular kernelileguaigorithms, SVMs.

3.1 Overview of Kernel M ethods

Complex learning tasks are often tackled using a large nuofifeatures. Each point
of the input spac&X is mapped to a high-dimensional feature spAocéa a non-linear
mapping®. This may be to seek a linear separation in a higher-dimaak&pace,
which was not achievable in the original space, or to explthier regression, ranking,
clustering, or manifold properties that are easier to mitathat space. The dimension

of the feature spack can be very large. In document classification, the featumshne
the set of all trigrams. Thus, even for a vocabulary of §8t 000 words, the dimension
of Flis2x10'°,

The high dimensionality of" does not necessarily affect the generalization ability
of large-margin algorithms such as SVMs: remarkably, thedgerithms benefit from
theoretical guarantees for good generalization that diépaly on the number of train-
ing points and the separatiomargin, and not on the dimensionality of the feature space.
But the high dimensionality of' can directly impact the efficiency and even the prac-
ticality of such learning algorithms, as well as their usgtadiction. This is because
to determine their output hypothesis or for predictionsthkearning algorithms rely on
the computation of a large number of dot products in the fesgpace’.

A solution to this problem is the so-call&drnel methodThis consists of defining a
functionK: X x X — R called akerne| such that the value it associates to two examples
x andy in input spaceX (x,y), coincides with the dot product of their imag®$x)
and®(y) in feature spacek is often viewed as a similarity measure:

vx,y € X, K(x,y)= <I>(X)T<I>(y). Q)

A crucial advantage oK is efficiency: there is no need anymore to define and exglicitl
computed (x), ®(y), and®(x) " ®(y). Another benefit ofK” is flexibility: K can be
arbitrarily chosen so long as the existencedofs guaranteed, a condition that holds
when K verifies Mercer’s condition. This condition is importantgoarantee the con-
vergence of training for algorithms such as SVMs. In therditccase, it is equivalent
to K being PDS.

One of the most widely used two-group classification algponiis SVMs [6]. The
version of SVMs without offsets is defined via the followingwex optimization prob-
lem for a training sample of. pointsx; € X with labelsy; € {1, —1}:

1, S T .
min —w* + C i St yw ®(x;)>1-& Vie[l,m],
g W' + Y6 sty B0 216 vie Ll

where the vectow defines a hyperplane in the feature sp&cis, them-dimensional
vector of slack variables, and € R, is a trade-off parameter. The problem is typ-
ically solved by introducing Lagrange multipliees € R™ for the set of constraints.
The standard dual optimization for SVMs can be written ascit@vex optimization
problem:

min Fla) = %aTQa ~1'a st 0<a<C,

(a7

wherea € R™ is the vector of dual variables and the PSD maiis defined in terms
of the kernel matrixK: Qij = ylyjKU = yiij(Xi)T‘I’(Xj), 1,] € [1, m] EXpressed
with the dual variables, the solution vectercan be written asv =" o,y ®(x;).

3.2 Coordinate Descent Solution for SYM Optimization

A straightforward way to solve the convex dual SVM problentasise a coordinate
descent method and to update only one coordinatat each iteration, see [10]. The

SVMCOORDINATEDESCENT((X:)ic[1,m])
1 a+0

2 while « not optimaldo

3 forie[l,m]do

4 g < yix; w — 1 anda; < min(max(a; — QL”, 0),0)
5 w < w+ (o) — a;)x; anday < o

6 returnw

Fig. 2. Coordinate descent solution for SVM.
optimal step sizg* corresponding to the update @f is obtained by solving
1
min - S(e+ Be;) Qo+ Be;) — 1T (a+ Pe;) st 0< a+ Be; <C,

wheree; is anm-dimensional unit vector. Ignoring constant terms, tharojaiation
problem can be written as

1
mﬁin 562Qii +Be] (Qa—1) st 0<w+B<C.

If Qi =®(x;) ®(x;) =0, then®(x;) =0 andQ; = e, Q = 0. Hence the objective
function reduces te-3, and the optimal step size 8 = C—q;, resulting in the update:
a; < 0. OtherwiseQ,; # 0 and the objective function is a second-degree polynomial in

B. Letfy= —Q;;‘;’l, then the optimal step size and update is given by

/807 if 70‘i§/80§0*0‘i; QTQ*I
8" =< —q;, if By < —ay, and «; + min<max<aiT,0>,C).
C — «a;, otherwise "

When the matrixXQ is too large to store in memory aif@;; # 0, the vectorQ; must be
computed at each update @f. If the cost of the computation of each enky; is in
O(N) whereN is the dimension of the feature space, compu€ngs in theO(mN),
and hence the cost of each update i®im.NN).

The choice of the coordinate; to update is based on the gradient. The gradient of
the objective function i& F(a) = Qa—1. At a cost inO(mN) it can be updated via

VF(a) + VF(a) + A(a;)Q;.

Hsieh et al. [10] observed that when the kernel is lin€gia can be expressed in
terms ofw, the SVM weight vector solutiorny =3 7" y;a;x;:

m
Q:azzyiyj(x;rxj)aj:yix;rw-
=

If the weight vectow is maintained throughout the iterations, then the cost offatfate
is only inO(N) in this case. The weight vecter can be updated via

W — W + A(ai)yixi.

SVMRATIONAL KERNELS((®})ic(1,m])

1 a+0
while e not optimaldo
for i € [1,m] do

2

3

4 g + D(®; 0o W’) — 1 anda + min(max(c; 0),C)
5

6

_ g
Qii’
W'+ W' + (af — ;) ®] anda; + o
return W’

Fig. 3. Coordinate descent solution for rational kernels.

Maintaining the gradienV F(«) is however still costly. Theith component of the
gradient can be expressed as follows:

[VF()]; = Qo —1]; = > _yiy;x] xj00 — 1 =w' (y;%;) - 1.

=1
The update for the main term of compongrf the gradient is thus given by:
w'x; W x; + (Aw) " x;.

Each of these updates can be don@iiV). The full update for the gradient can hence
be done inO(mN). Several heuristics can be used to eliminate the cost oftaiain
ing the gradient. For instance, one can choose a randoim update at each iteration
[10] or sequentially update the;s. Hsieh et al. [10] also showed that it is possible to
use the chunking method of [11] in conjunction with such eios. Using the results
from [16], [10] showed that the resulting coordinate des@dgorithm, SVMQOR-
DINATEDESCENT (Figure 2) converges to the optimal solution with a lineafaster
convergence rate.

4 Coordinate Descent Solution for Rational Kernels

This section shows that, remarkably, coordinate descehintgques similar to those
described in the previous section can be used in the cast@fabkernels.

For rational kernels, the input “vectorg; are sequences, or distributions over se-
quences, and the expressipIl’,; y;a;x; can be interpreted as a weighted regular ex-
pression. For any € [1,m], let X, be a simple weighted automaton representng
and letW denote a weighted automaton representing ", y;a;x;. Let U be the
weighted transducer associated to the rational kefknhdUsing the linearity ofD and
distributivity properties just presented, we can now write

Q;rOé = ZyiyjK(xi;Xj>aj = Zyiyj D(Xl OUOXj)O[j (2)
Jj=1 j=1

=D(¥X;0UoY y;a;X;) =D(yX; 0 UoW).

Jj=1

SinceU is a constant, in view of the complexity of composition, thpressiory; X; o
UoW can be computed in tim@(|X;||W]). Wheny;X;0UoW is acyclic, which

i x| |Qus a/2 b1 all o al-2

1[[ababa[+1] 8 ow o 1

il & PoEe
(b) (©))

@ (d

Fig. 4. (a) Example dataset. (b-d) The autom@tacorresponding to the dataset of (a) when using
a bigram kernel. The give®; andQ;;'s assume the use of a bigram kernel.

Fig. 5. Evolution of W’ through the first iteration of SVMRrioNAL KERNELSON the dataset
from Figure 4.

is the case for example ® admits no inputk-cycle, thenD(y;X; o Uo W) can be
computed in linear time in the size 9fX;0UoW using a shortest-distance algorithm,
or forward-backward algorithm. For all of the rational kelsithat we are aware dfj
admits no inpuk-cycle and this property holds. Thus, in that case, if we tad&na
weighted automatoRV representingv, Q. « can be computed i (| X;||W|). This
complexity does not depend on and the explicit computation of. kernel values
K(x;,%;), j € [1,m], is avoided. The update rule f&V consists of augmenting the
weight of sequence; in the weighted automaton b («;)y;:

This update can be done very efficientlyW is deterministic, in particular if it is
represented as a deterministic trie.

When the weighted transdudércan be decomposed@®T !, as for all sequence
kernels seen in practice, we can further improve the fornhefupdates. Lefl,(U)
denote the weighted automaton obtained fddniby projection over the output labels
as described in Section 2. Then

Q a=D (yX;0oToT 'oW) =D((yiX;0T)o (WoT)})
=D (I13(y;X; o T) o [I,(W o T)) = D(®, o W'), (3)

where®’ = II5(y;X;0T) andW' = II,(W o T). ®,, i € [1,m] can be precomputed
and instead oW, we can equivalently maintaiw’, with the following update rule:

W'« W' + A(a;) . (4)

@ (b)

Fig. 6. The automatap; o W’ during the first iteration of SVMRTIONAL KERNELSON the data
ifeblgure#st iteration of SVMRTIONAL KERNELSON the dataset given Figure 4. The last line
gives the values oft and W' at the end of the iteration.

i e | W | ®oW' | D(®;oW) | «
1 (0,0,0) Fig. 5(a) | Fig. 6(a) 0 1
2 (£,0,0) | Fig.5(b) | Fig. 6(b) 3 =
3 +,35,0) | Fig.5(c) | Fig. 6(c) -2 2

(
(8,21, 147) | Fig. 5(d)

7247 144

The gradienV (F)(a)=Qa — 1 can be expressed as follows
V(F)(@)]; =[QTa—-1];=Qja—-1=D(®; o W) - 1.
The update rule for the main ter(®’ o W’) can be written as
D(®) 0 W') ¢+ D(®); 0 W’) + D(®; 0 AW).

Using (3) to compute the gradient and (4) to upd#¥é, we can generalize Al-
gorithm SVMGOORDINATEDESCENT of Figure 2 and obtain Algorithm SVMR-
TIONALKERNELS of Figure 3. It follows from [16] that this algorithm convexg at
least linearly towards a global optimal solution. Moreqgyke heuristics used by [10]
and mentioned in the previous section can also be appliedtbempirically improve
the convergence rate of the algorithm. Table 1 shows theitingttion of SVMRa-
TIONALKERNELSON the dataset given by Figure 4 when using a bigram kernel.

5 Implementation and Analysis

A key factor in analyzing the complexity of SVM&RRIONAL KERNELSIs the choice of
the data structure used to repres@t In order to simplify the analysis, we assume that
the®’s, and thudV’, are acyclic. This assumption holds for all rational kesneded in
practice, however, it is not a requirement for the corresdref SVMRATIONAL KER-
NELS. Given an acyclic weighted automatdn we denote by(A) the maximal length
of an accepting path iA and byn(A) the number of accepting pathsn

A straightforward choice follows directly from the defimiti of W/. W' is rep-
resented as a non-deterministic weighted automa¥h,= Zzl a; ®%, with a sin-
gle initial state andn outgoinge-transitions, where the weight of thh transition
is o; and its destination state the initial state®f. The size of this choice oW’ is

Table 2. Time complexity of each gradient computation and of eacratgpdfW’ and the space
complexity required for representiny’ given for each type of representationdf’.

Representation oW’ Time complexity Space complexity
(gradient) (update) | (for storingW’)

naive (W) O(@ >, [®) O(1) | O(m)

trie (W) O(n(®)U(®3)) O(n(®7))| O(Wi)

minimal automaton'W,,)|| O(|®;oW7,|) open O(IW1,.])

[W/|=m + Y7 |®}|. The benefit of this representation is that the update asing
(4) can be performed in constant time since it requires myodifonly the weight of
one of thee-transitions out of the initial state. However, the comlenf computing
the gradient using (3) is i0(|®|[W'|) =O(|®}| 3_; |®]]).

RepresentingV’ as a deterministic weighted trie can lead to a simple updste u
ing (4). A weighted trieis a rooted tree where each edge is labeled and each node
is weighted. During composition, each accepting pati®[nis matched with a dis-
tinct node inW’. Thus,n(®/) paths ofW’ are explored during composition. Since the
length of each of these paths is at migdt;), this leads to a complexity i@ (n(®})I(P}))
for computing®,ocW’ and thus for computing the gradient using (3). Since eacépcc
ing path in®’ corresponds to a distinct nodeW’, the weights of at most(®’) nodes
of W’ need to be updated. Thus, the complexity of an upda¥@6fs O (n(®)).

The drawback of a trie representation is that it does notigeo&ll of the sparsity
benefits of a fully automata-based approach. A more spdivéeat approach consists
of representingV’ as a minimal deterministic weighted automaton which canube s
stantially smaller, exponentially smaller in some caswe the corresponding trie.

The complexity of computing the gradient using (3) is the®ifi®; o W'|) which
is significantly less than th@ (n(®/)I(®))) complexity of the trie representation. Per-
forming the update oW’ using (4) can be more costly though. With the straightfodvar
approach of using the general union, weighted determinizaind minimization algo-
rithms [5], the complexity depends on the sizeWT. The cost of an update can thus
sometimes become large. However, it is perhaps possiblesigrmore efficient algo-
rithms for augmenting a weighted automaton with a singiegwor even a set of strings
represented by a deterministic automaton, while presgm&ierminism and minimal-
ity. The approach just described forms a strong motivatartlie study and analysis
of such non-trivial and probably sophisticated automagarhms since it could lead
to even more efficient updates W’ and overall speed-up of the SVMs training with
rational kernels. We leave the study of this open questidhéduture. We note, how-
ever, that that analysis could benefit from existing algoni in the unweighted case.
Indeed, in the unweighted case, a number of efficient alyosthave been designed for
incrementally adding a string to a minimal deterministitcaoaton while keeping the
result minimal and deterministic [7, 3], and the complexifyeach addition of a string
using these algorithms is only linear in the length of thngtadded.

Table 2 summarizes the time and space requirements forgaebtrepresentation
for W’. In the case of an-gram kernel of ordek, [(®)) is a constank, n(®,) is the
number of distinck-grams occurring ix;, n(W7}) (= n(W7,)) the number of distinct
k-grams occurring in the dataset, dMI';| the number of distinct-grams of order less
than or equal t& in the dataset.

Table 3. Time for training an SVM classifier using an SMO-like algbrit and SVMR-
TIONALKERNELSUsing a trie representation faV', and size ofW’ (number of transitions)

when representindV’ as a deterministic weighted trie and a minimal determinigtéighted

automaton. pataset Kernel SMO-like New Algo. trie min. aut.

Reuters 4-gram 2m 18s 25s 66,331 34,785
(subset) 5-gram 3m 56s 30s 154,460 63,643
6-gram 6m 16s 41s 283,856 103,459

7-gram 9m24s 1mOls 452,881 157,390
10-gram 25m22s 1m53s 1,151,217 413,878
gappy 3-gram 10m 40s 1m23s 103,353 66,650
gappy 4-gram 58m 08s 7m42s 1,213,281 411,939
Reuters 4-gram 618m 43s 16m 30s 242,570 106,640
(full) 5-gram >2000m 23m17s 787,514 237,783
6-gram >2000m 31m 22s 1,852,634 441,242
7-gram >2000m 37m 23s 3,570,741 727,743

6 Experiments

We used the Reuters-21578 dataset, a large data set camvEnieur analysis and
commonly used in experimental analyses of string kerneds:(/ / ww. davi ddl ew s. cont
resour ces/). We refer byfull datasetto the12,902 news stories part of the ModeApte
split. Since our goal is only to test speed (and not accuraey)train on training and
test sets combined. We also considered a subset of thattatasisting of 466 news
stories. We experimented both withgram kernels and gappygram kernels with dif-
ferentn-gram orders. We trained binary SVM classification for étog) class using the
following two algorithms: (a) the SMO-like algorithm of [&hplemented using LIB-
SVM [4] and modified to handle the on-demand computation tbmal kernels; and
(b) SVMRATIONAL KERNELSimplemented using a trie representationV&f. Table 3
reports the training time observed using a dual-core 2.2 8B Opteron workstation
with 16GB of RAM, excluding the pre-processing step whichsists of computing’,
for each data point and that is common to both algorithms.stionate the benefits of
representingV’ as a minimal automaton, we applied the weighted minimizedigo-
rithm to the tries output by SVMRrIoNAL KERNELS (after shifting the weights to the
non-negative domain) and observed the resulting reduttisize. The results reported
in Table 3 show that representify’’ by a minimal deterministic automaton can lead
to very significant savings in space and a substantial rexfuof the training time with
respect to the trie representation using an incrementaiadaf strings tow’.

7 Conclusion

We presented novel techniques for large-scale trainingM$Swhen used with se-

quence kernels. We gave a detailed description of our d@lgosi and discussed differ-
ent implementation choices, and presented an analysig oétulting complexity. Our

empirical results with large-scale data sets demonstrateatic reductions of the train-
ing time. Our software will be made publicly available thghuan open-source project.
Remarkably, our training algorithm for SVMs is entirely bdson weighted automata
algorithms and requires no specific solver.

References

w N

~N o U A

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. C. Allauzen, M. Mohri, and A. Talwalkar. Sequence kerrietredicting protein essential-
ity. In ICML 2008 2008.

. F. R. Bach and M. I. Jordan. Kernel independent componsiysis.JMLR 3:1-48, 2002.

. R. C. Carrosco and M. L. Forcada. Incremental constmdaitd maintenance of minimal

finite-state automataComputational Linguistic28(2):207-216, 2002.

C.-C. Chang and C.-J. Lil.IBSVM: a library for support vector machine®001.

. C. Cortes, P. Haffner, and M. Mohri. Rational Kernels: dityeand AlgorithmsJMLR, 2004.

. C. Cortes and V. Vapnik. Support-Vector Network&achine Learning20(3), 1995.

. J. Daciuk, S. Mihov, B. W. Watson, and R. Watson. Incremleconstruction of minimal
acyclic finite state automat&omputational Linguistic26(1):3-16, 2000.

. R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set seleatiging second order information
for training SVM. JMLR, 6:1889-1918, 2005.

. S. Fine and K. Scheinberg. Efficient SVM training using-d@mk kernel representations.

Journal of Machine Learning Researc1243-264, 2002.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, an@®dararajan. A dual coordinate

descent method for large-scale linear SVMIGML, pages 408—-415, 2008.

T. Joachims. Making large-scale SVM learning practitalAdvances in Kernel Methods:

Support Vector Learningrhe MIT Press, 1998.

Werner Kuich and Arto Saloma&emirings, Automata, LanguageNumber 5 in EATCS

Monographs on Theoretical Computer Science. Springer, YW, 1986.

S. Kumar, M. Mohri, and A. Talwalkar. On sampling-baspdraximate spectral decompo-

sition. InICML, 2009.

C. S. Leslie, E. Eskin, and W. S. Noble. The Spectrum Ke#&tring Kernel for SVM

Protein Classification. IRacific Symposium on Biocomputjmages 566-575, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristiarang C. Watkins. Text classification

using string kernelsIMLR, 2, 2002.

Z. Q. Luo and P. Tseng. On the convergence of the cooalitegcent method for convex

differentiable minimizationJ. of Optim. Theor. and Appl72(1):7-35, 1992.

Mehryar Mohri. Weighted automata algorithms Handbook of Weighted Automatzages

213-254. Springer, 2009.

A. Salomaa and M. Soittol&Automata-Theoretic Aspects of Formal Power Sergwinger,

1978.

John Shawe-Taylor and Nello Cristianiiernel Methods for Pattern Analysi€ambridge

Univ. Press, 2004.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector rimesh Fast SVM training on

very large data setdMLR, 6:363-392, 2005.

C. K. I. Williams and M. Seeger. Using the Nystrom methodpeed up kernel machines.

In NIPS pages 682—-688, 2000.

