
Towards Characterizing Cloud Backend Workloads:
Insights from Google Compute Clusters

Submitted for blind review to Special Issue of SIGMETRICS Performance Evaluation Review on Industrial Research

Abstract

The advent of cloud computing promises highly available, effi-
cient, and flexible computing services for applications such as web
search, email, voice over IP, and web search alerts. Our experience
at Google is that realizing the promises of cloud computing requires
an extremely scalable backend consisting of many large compute
clusters that are shared by application tasks with diverse service
level requirements for throughput, latency, and jitter. These consid-
erations impact (a) capacity planning to determine which machine
resources must grow and by how much and (b) task scheduling to
achieve high machine utilization and to meet service level objec-
tives.

Both capacity planning and task scheduling require a good un-
derstanding of task resource consumption (e.g., CPU and memory
usage). This in turn demands simple and accurate approaches to
workload classification—determining how to form groups of tasks
(workloads) with similar resource demands. One approach to work-
load classification is to make each task its own workload. However,
this approach scales poorly since tens of thousands of tasks execute
daily on Google compute clusters. Another approach to workload
classification is to view all tasks as belonging to a single workload.
Unfortunately, applying such a coarse-grain workload classification
to the diversity of tasks running on Google compute clusters results
in large variances in predicted resource consumptions.

This paper describes an approach to workload classification and
its application to the Google Cloud Backend, arguably the largest
cloud backend on the planet. Our methodology for workload clas-
sification consists of: (1) identifying the workload dimensions; (2)
constructing task classes using an off-the-shelf algorithm such as
k-means; (3) determining the break points for qualitative coordi-
nates within the workload dimensions; and (4) merging adjacent
task classes to reduce the number of workloads. We use the forego-
ing, especially the notion of qualitative coordinates, to glean sev-
eral insights about the Google Cloud Backend: (a) the duration of
task executions is bimodal in that tasks either have a short dura-
tion or a long duration; (b) most tasks have short durations; and (c)
most resources are consumed by a few tasks with long duration that
have large demands for CPU and memory. We argue that (a)-(c) re-
sult from the Google Cloud Backend supporting a wide diversity of
computing services.

1. Introduction

Cloud Computing has the potential to provide highly reliable, effi-
cient, and flexible computing services. Examples of cloud services
or applications are web search, email, voice over IP, and web alerts.
Our experience at Google is that a key to successful cloud comput-
ing is providing an extremely scalable backend consisting of many
large compute clusters that are shared by application tasks with di-
verse service level requirements for throughput, latency, and jitter.
This paper describes a methodology for classifying workloads and
the application of this methodology to the Google Cloud Backend.

Google applications are structured as one or more job that run
on the Google Cloud backend consisting of many large compute
clusters. Jobs consist of one to thousands of tasks, each of which
executes on a single machine in a compute cluster. Tasks have var-
ied service level requirements in terms of throughput, latency, and
jitter; and tasks place varied demands on machine resources such as
CPU, memory, disk bandwidth, and network capacity. A compute

cluster contains thousands of machines, and typically executes tens
of thousands of tasks each day.

Our role at Google has been closely connected with scaling the
cloud backend, especially capacity planning and task scheduling.
Capacity planning determines which machine resources must grow
by how much to meet future application demands. Effective capac-
ity planning requires simple and accurate models of the resource
demands of Google tasks in order to forecast future resource de-
mands that are used to determine the number and configuration of
machines in a compute cluster. Scheduling refers to placing tasks
on machines to maximize machine utilizations and to meet service
level objectives. This can be viewed as multi-dimensional bin pack-
ing in which bin dimensions are determined by machine configura-
tions (e.g., number of cores, memory size). Here too, we need sim-
ple and accurate models of the resource demands of Google tasks to
construct a small number of “task resource shapes” in order to re-
duce the complexity of the bin packing problem. Certain aspects of
capacity planning and scheduling can benefit from models of task
arrival rates. Although such models are not a focus of this paper,
work such as [16] seems directly applicable.

In this paper, the Google Cloud Backend workload is a collec-
tion of tasks, each of which executes on a single machine in a com-
pute cluster. We use the term workload characterization to refer to
models of the machine resources consumed by tasks. The workload
models should be simple in that there are few parameters to esti-
mate, and the models should be accurate in that model predictions
of task resource consumption have little variability.

A first step in building workload models is task classification
in which tasks with similar resource consumption are grouped to-
gether. Each task class is referred to as a workload. One approach to
task classification is to create a separate class for each task. While
models based on such a fine-grain classification can be quite ac-
curate for frequently executed tasks with consistent resource de-
mands, the fine-grain approach suffers from complexity if there are
a large number of tasks, as is the case in the Google Cloud Backend.
An alternative is use a coarse-grain task classification where there
is a single task class and hence a single workload model to describe
the consumption of each resource. Unfortunately, the diversity of
Google tasks means that the predictions based on a coarse-grain
approach have large variances.

To balance the competing demands of model simplicity and
model accuracy, we employ a medium-grain approach to task clas-
sification. Our approach uses well-known techniques from statisti-
cal clustering to implement the following methodology: (a) identify
the workload dimensions; (b) construct task clusters using an off-
the-shelf algorithm such as k-means; (c) determine the break points
of qualitative coordinates within the workload dimensions; and (d)
merge adjacent task clusters to reduce the number of model parame-
ters. Applying our methodology to several Google compute clusters
yields eight workloads. We show that for the same compute clus-
ter on successive days, there is consistency in the characteristics of
each workload in terms of the number of tasks and the resources
consumed. On the other hand, the medium-grain characterization
identifies differences in workload characteristics between clusters
for which such differences are expected.

This paper makes two contributions. The first is a methodology
for task classification and its application to characterizing task re-
source demands in the Google Cloud Backend, arguably the largest
cloud backend on the planet. In particular, we make use of qualita-

tive coordinates to do task classification, a technique that provides
an intuitive way to make statements about workloads. The second
contribution is insight into workloads in the Google Cloud Back-
end that make use of our qualitative task classifications. Among
the insights are: (a) the duration of task executions is bimodal in
that tasks either have a short duration or a long duration; (b) most
tasks have short durations; and (c) most resources are consumed by
a few tasks with long duration that have large demands for CPU
and memory. We argue that (a)-(c) result from the Google Cloud
Backend supporting a wide diversity of computing services.

The rest of the paper is organized as follows. Section 2 uses the
coarse-grained task classification described above to characterize
resource consumption of the Google Cloud Backend. Section 3
presents our methodology for task classification, and Section 4
applies our methodology to Google compute clusters. Section 5
applies our results to capacity planning and scheduling. Section 6
discusses related work. Our conclusions are presented in Section 7.

2. Coarse-Grain Task Classification

This section characterizes the resource usage of Google tasks using
a coarse-grain task classification in which there is a single work-
load (task class). Our resource characterization model is simple—
for each resource, we compute the mean and standard deviation
of resource usage. The data we consider are obtained from clus-
ters with stable workloads that differ from one another in terms
of their applications mix. The quality of the characterization is as-
sessed based on two considerations: (1) the characterization should
show similar resource usage from day to day on the same compute
cluster; and (2) the characterization should evidence differences in
resource usage between compute clusters.

We begin by describing the data used in our study. The data
consist of records collected from five Google production compute
clusters over four days. A record reports on a task’s execution
over a five minute interval. There is an identifier for the task, the
containing job for the task, the machine on which the task executed,
and the completion status of the task (e.g., still running, completed
normally, failure). CPU usage is reported as the average number of
cores used by the task over the five minute interval; and memory
usage is the average gigabytes used over the five minute interval.

We use these data to define a multi-dimensional representation
of task resource usage or task shape. The dimensions are time
in seconds, CPU usage in cores, and memory usage in gigabytes.
(In general, there are many more dimensions such as disk capacity
and network bandwidth.) When the Google Task Scheduler places a
task on a machine, it must ensure that this multi-dimensional shape
is compatible with the shape of the other tasks on the machine
given the resource capacities of the machine. For example, on a
machine with 4GB of main memory, we cannot have two tasks that
simultaneously require 3GB of memory.

Although task shape has three dimensions (and many more if
other resources are considered), we often use metrics that combine
time with a resource dimension. For example, in the sequel we use
the metric core-hours. The core-hours consumed by a task is the
product of its duration and average core usage (divided by 12 since
records are for five minute intervals). We compute GB-hours in a
similar way.

Figure 1 shows the task mean core-hours resulting from the
coarse-grain workload characterization for the twenty compute-
cluster-days in our data. Observe that there is consistency in mean
core-hours from day to day on the same compute cluster. However,
there is little difference in mean core-hours between compute clus-
ters. Indeed, in almost all compute clusters, tasks consume approx-
imately 1 core-hour of CPU. Similarly, Figure 2 shows the mean
GB-Hours for the same data. Here too, we see consistency from
day to day on the same compute cluster. However, there is little dif-
ference between compute clusters in that mean GB-hours is about
3.0.

There is a further problem with the coarse-grain classification—
it results in excessive variability in mean core-hours and GB-hours
that makes it even more difficult to draw inferences about resource
usage. We quantify variability in terms of coefficient of variation
(CV), the ratio of the standard deviation to the mean (often ex-
pressed as a percent). One appeal of CV is that it is unitless. Our
guideline is that CV should be much less than 100%. Figure 3 plots
CV for mean core-hours, mean GB-hours, and other metrics. We
see that for the coarse-grain task classification, CVs are consistently
in excess of 100%,

3. Methodology for Constructing Task

Classifications

This section presents our methodology for constructing task clas-
sifications. The objective is to construct a small number of task
classes such that tasks within each class have similar resource us-
age. Typically, we decompose resource usage into average usage
and task duration. We use the term workload dimensions to refer
to the tuple consisting of task duration and resource usages.

Intuitively, tasks belong to the same workload if they have com-
parable magnitudes for each of their workload dimensions. We find
it useful to express this qualitatively. Typically, the qualitative co-
ordinates are small, medium, and large. Qualitative coordinates
provide a convenient way to distinguish between workloads. For
example, two workloads might both have small CPU and memory
usage, but one has small duration and the other has large duration.
Ideally, we want to minimize the number of coordinates in each di-
mension to avoid an explosion in the number of workloads. To see
this, suppose there are three workload dimensions and each dimen-
sion has three qualitative coordinates. Then, there are potentially
27 workloads. In practice, we want far fewer workloads, usually no
more than 8 to 10.

Our methodology for workload characterization must address
three challenges. First, tasks within a workload should have very
similar resource demands as quantified by their within class CV
for each workload dimension. Second, our methodology must pro-
vide a way to compute numeric breakpoints that define the bound-
aries between qualitative coordinates for each workload dimension.
Third, we want to minimize the number of workloads.

Figure 4 depicts the steps in our methodology for constructing
task classifications. The first step is to identify the workload dimen-
sions. For example, in our analysis of the Google Cloud Backend,
the workload dimensions are task duration, average core usage, and
average memory usage. In general, the choice of workload dimen-
sions depends on the application of the workload characterization
(e.g., what criteria are used for scheduling and how charge-back is
done for tasks running on shared infrastructure).

The second step in our methodology constructs preliminary
task classes that have fairly homogeneous resource usage. We do
this by using the workload dimensions as a feature vector and
applying an off-the-shelf clustering algorithm such as k-means. One
consideration here is ensuring that the workload dimensions have
similar scales to avoid biasing task classes.

The third step in our methodology determines the break points
for the qualitative coordinates of the workload dimensions. This
step is manual and requires some judgement. We have two consid-
erations. First, break points must be consistent across workloads.
For example, the qualitative coordinate small for duration must the
same break point (e.g., 2 hours) for all workloads. Second, the re-
sult should produce low within-class variability (as quantified by
CV) for each resource dimension.

The fourth and final step in our methodology merges classes
to form the final set of task classes; these classes define our work-
loads. This involves combining “adjacent” preliminary task classes.
Adjacency is based on the qualitative coordinates of the class. For
example, in the Google data, duration has qualitative coordinates
small and large; for cores and memory, the qualitative coordinates

0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

Mean-CoreHrs

(a) compute cluster A

0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

Mean-CoreHrs

(b) compute cluster B

0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

Mean-CoreHrs

(c) compute cluster C

0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

Mean-CoreHrs

(d) compute cluster D

0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

Mean-CoreHrs

(e) compute cluster E

Figure 1. Task Mean Core-Hours for five com-
pute clusters for four days

0

0.5

1

1.5

2

2.5

3

3.5

20-May 21-May 22-May 23-May

Mean-MemHrs

(a) compute cluster A

0

0.5

1

1.5

2

2.5

3

3.5

20-May 21-May 22-May 23-May

Mean-MemHrs

(b) compute cluster B

0

0.5

1

1.5

2

2.5

3

3.5

20-May 21-May 22-May 23-May

Mean-MemHrs

(c) compute cluster C

0

0.5

1

1.5

2

2.5

3

3.5

20-May 21-May 22-May 23-May

Mean-MemHrs

(d) compute cluster D

0

0.5

1

1.5

2

2.5

3

3.5

20-May 21-May 22-May 23-May

Mean-MemHrs

(e) compute cluster E

Figure 2. Task Mean GB-Hours for five com-
pute clusters for four days

0

100

200

300

400

500

600

700

800

2
0
-M

ay

2
1
-M

ay

2
2
-M

ay

2
3
-M

ay

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(a) compute cluster A

0

100

200

300

400

500

600

700

800

2
0
-M

ay

2
1
-M

ay

2
2
-M

ay

2
3
-M

ay

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(b) compute cluster B

0

100

200

300

400

500

600

700

800

2
0
-M

ay

2
1
-M

ay

2
2
-M

ay

2
3
-M

ay

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(c) compute cluster C

0

100

200

300

400

500

600

700

800

2
0
-M

ay

2
1
-M

ay

2
2
-M

ay

2
3
-M

ay

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(d) compute cluster D

0

100

200

300

400

500

600

700

800

2
0
-M

ay

2
1
-M

ay

2
2
-M

ay

2
3
-M

ay

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(e) compute cluster E

Figure 3. Coeff. of Variation in Cores, GBs,
Core-Hours and GB-Hours of five compute clus-
ters for four days

are small, medium, large. We use s to denote small, m to denote
medium, and l to denote large. Thus, the workload smm is adjacent
to sms and sml in the third dimension. Two preliminary classes are
merged if the CV of the merged classes does not differ much from
the CVs of each of the preliminary classes. Merged classes are de-
noted by the wild card “*”. For example, merging the classes sms,
smm and sml yields the class sm*.

4. Classification and Resource Characterization

for Google Tasks

This section applies the methodology in Figure 4 to several Google
compute clusters.

4.1 Task Classification

The first step in our methodology for task classification is to identify
the workload dimensions. We have data for task usage of CPU,
memory, disk, and network. However, in the compute clusters that
we study, only CPU and memory are constrained resources. So, our

workload dimensions are task duration in seconds, CPU usage in
cores, and memory usage in gigabytes.

The second step of our methodology constructs preliminary
task classes. Our intent is to use off-the-shelf statistical clustering
techniques such as k-means [15]. However, doing so creates a
challenge because of differences in scale of the three workload
dimensions. Duration ranges from 300 to 86,400 seconds; CPU
usage ranges from 0 to 4 cores; and memory usage varies from 0
to 8 gigabytes. These differences in scaling can result in clusters
that are largely determined by task duration. We address this issue
by re-scaling the workload dimensions so that data values have the
same range. For our data, we use the range 0 to 4. CPU usage is
already in this range. For duration, we subtract 2 from the natural
logarithm of the duration value; the result lies between 0 and 4. For
memory usage, we divide by 2.

To apply k-means, we must specify the number of preliminary
task classes. One heuristic is to consider three qualitative coordi-
nates for each workload dimension. With three workload dimen-
sions, this results in 27 preliminary task classes. This seems exces-

Step 2: Reduce the number
 workload coordinates

Step 1: Identify the workload
 dimensions

Step 3: Determine coordinate
 break points to form
 candidate clusters

Step 4: Merge candidate
 clusters

Figure 4. Methodology for constructing task classifications.

Preliminary Class Duration(Hours) CPU (cores) Memory (GBs)

1 Small 0.0833 Small 0.08 Small 0.48

2 Small 0.0834 Small 0.19 Medium 0.67

3 Small 0.0956 Small 0.18 Large 1.89

4 Small 0.0888 Medium 0.34 Small 0.38

5 Small 0.4466 Medium 0.47 Medium 0.81

6 Small 0.4166 Medium 0.38 Large 1.04

7 Small 0.4366 Large 1.23 Small 0.44

8 Small 0.8655 Large 0.98 Medium 0.91

9 Small 0.4165 Large 1.39 Large 1.54

10 Large 18.34 Small 0.12 Small 0.48

11 Large 19.34 Small 0.16 Medium 0.85

12 Large 22.23 Small 0.16 Large 1.66

13 Large 22.83 Medium 0.38 Small 0.38

14 Large 19.34 Medium 0.28 Medium 0.77

15 Large 16.89 Medium 0.41 Large 1.76

16 Large 17.57 Large 1.89 Small 0.48

17 Large 22.23 Large 2.34 Medium 0.97

18 Large 20.81 Large 2.22 Large 2.09

Table 1. Clustering results with 18 task classes

sive. In the course of our analysis of task durations, we observed
that that task duration is bimodal; that is, tasks are either short run-
ning or very long running. Hence, we only consider the qualitative
coordinates small and large for the duration dimension. Doing so
reduces the number of preliminary task classes from 27 to 18.

We applied k-means to the re-scaled data to calculate 18 task
classes for each compute cluster. The results were manually ad-
justed so that the CV within each task class is less than 100%, and
no task class has a very small number of points. Table 1 displays
the preliminary task classes for one compute cluster.

Step 3 determines the break point for the qualitative coordinates.
Our starting point is Table 1. We have annotated the cells of the
table with qualitative values. For duration, there are just two qual-
itative coordinates, as expected by the bimodal distribution of du-
ration. For CPU and memory usage, the qualitative coordinates are
as small, medium and large. As shown in Table 2, the values of the
qualitative coordinates for a workload dimension are chosen so as
to cover the range of observed values of the workload dimension.

Step 4 reduces the total number of task classes by merging
adjacent classes if the CV of the merged task class is much less
than 100%. Table 3 displays the results. For example, final class 3
slm in Table 3 is constructed by merging preliminary task classes 7
and 8 in Table 1 along the memory dimension. Similarly, final task
class 8 is formed by merging preliminary task classes 15 and 18
along the CPU dimension.

4.2 Assessments

Although we construct task classes using data from a single com-
pute cluster and a single day, it turns out that the same task classes
provide a good fit for the data for the other 19 compute-cluster-
days. Figure 5 displays the mean core-hours for five compute clus-

0.0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(a) compute cluster A

0.0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(b) compute cluster B

0.0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(c) compute cluster C

0.0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(d) compute cluster D

0.0

0.3

0.6

0.9

1.2

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(e) compute cluster E

Figure 5. Fraction contribu-
tion of 8 task classes to Mean
Core-Hours for five compute
clusters for four days

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(a) compute cluster A

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(b) compute cluster B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(c) compute cluster C

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(d) compute cluster D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

20-May 21-May 22-May 23-May

sss sm* slm sll lss lsl llm lll

(e) compute cluster E

Figure 6. Fraction contribu-
tion of 8 clusters to Mean GB-
Hours for five compute clusters
for four days

Qualitative Duration CPU Memory

Coordinate (Hours) (cores) (GBs)

Small/Small 0 -2 0 - 0.2 0 - 0.5

Medium 0.2 - 0.5 0.5 - 1

Large/Large 2-24 0.5 - 4 > 1

Table 2. Breakpoints for Small, Medium and Large for duration,
cpu and memory

ters across four days using the workloads defined in Table 3. The
height of each bar is the same as in Figure 1, but the bars are shaded
to indicate the fraction of mean core-hours that is attributed to each
task class.

Our first observation is that the contribution of the task classes
to mean core-hours is consistent from day to day for the same
compute cluster. For example, in compute cluster A, task class
lll accounts for approximately 0.3 to 0.4 cores for all A cluster-
days. Our second observation is that there are significant differences
between compute clusters as to the contribution of task classes. For

Final Class Duration(Hours) CPU (cores) Memory (GBs)

1: sss Small Small Small

2: sm* Small Med all

3: slm Small Large Small+Med

4: sll Small Large Large

5: lss Large Small Small

6: lsl Large Small Large

7: llm Large Med+Large Small+Med

8: lll Large Med+Large Large

Table 3. Final task classes (workloads)

example, in compute cluster D, task class lll consistently accounts
for 0.7 cores of mean core-hours. Thus, even though mean core-
hours is approximately the same in compute clusters A and D, there
are substantial difference in the contributions of the task classes to
mean core-hours.

The foregoing observations apply to mean GB-hours as well.
Figure 6 displays the contribution of task classes to mean GB-
hours for five compute clusters. As with core-hours, we see that
the contributions by task class (shaded bars) to mean GB-hours
are quite similar from day to day within the same compute cluster.
Further, there are dramatic differences between compute clusters in
the contribution to mean core-hours by task class. For example, task
class lll consistently accounts for 2.5 core-hours in compute cluster
A, but lll accounts for less than 1 GB-hour in compute cluster E.

Figure 7 provides a different visualization of the data in Fig-
ure 5 and Figure 6. Each plot has as its horizontal axis the 8 final
task classes, with bars grouped by day. In this way, we can more
readily tell if there is day to day consistency. The columns of the
figure are for different metrics. Column 1 is the percentage of tasks
by class within the cluster-day; column 2 is the average core-hours;
and column 3 is the average GB-hours. The rows represent different
compute clusters. Although there is an occasional exception to day
to day consistency within the same compute cluster, we generally
see that bar groups are very similar. However, as we look down a
plot column for the same categorical coordinate, we see consider-
able difference. Consider the first column, and compare compute
clusters C and D for sss. In cluster C, sss consistently accounts for
10% of the task executions, but in cluster D, sss consistently ac-
counts for over 45% of the task executions.

Figure 8 plots CV for the task classes in Table 3. We see that CV
is always less than 100%, and is consistently less than 50%. This is
a significant reduction from the large CVs in the coarse-grain task
classification presented in Section 2.

There is a subtlety in the foregoing comparison of CVs. Specif-
ically, mean core-hours for a cluster-day is the sum of mean core-
hours for the eight task classes. Given this relationship, is it fair to
compare the CV of the sum of metrics with the CVs of the individ-
ual metrics?

To answer this question, we construct a simple analysis. We
denote the individual metrics by x1, · · · , xn, and the sum by y =

x1 + · · · + xn. To simplify matters, we assume that the x’s are
identically distributed random variables with mean µ and variance
σ

2. Further, since task classes contain a large number of tasks, it is
reasonable to assume that the xi are independent. The CV of each

xi is σ

µ
. But the CV of y is

√

nσ

nµ
, which is 1

√

n
of the CV of the x’s.

Applying this insight to our data, n = 8 and so we expect the CV
of the sum to be about 30% of the CVs of the task class metrics.
Instead, the CVs of mean core-hours for the cluster-day is at least
twice as large as the CV of mean core-hours for task classes. This
analysis applies to mean GB-hours as well, and yields a similar
result.

We also assess the task classification in terms of the consistency
of the class resource usages in compute cluster. Figure 9(a) plots
mean core-hours by task class for each task-cluster-day studied with
error bars for one standard deviation. Although task class lll has
substantial variability, the mean values of the other task classes are

grouped close to the center of the error bars. We observe a similar
behavior for GB-hours in Figure 9(b).

4.3 Insights from Task Classification

The task classification constructed using the methodology in Fig-
ure 4 provides interesting insights into tasks running in the Google
Cloud Backend. From the preliminary task classes in Table 1, we
see that task durations are bimodal, either somewhat less than 30
minutes or larger than 18 hours. Such behavior results from the
characteristics of application tasks running on the Google Back-
end Cloud. There are two types of long-running tasks. The first are
user-facing. These tasks run continuously so as to respond quickly
to user requests. A second type of long-running tasks are compute-
intensive, such as processing web logs. Tasks handling end-user in-
teractions are likely lss during periods of low user request rates, and
lll during periods of high user request rates.

From Figure 7, we see that tasks with short duration dominate
the task population. These tasks reflect the way the Google Cloud
parallelizes backend work (often using map reduce). There are
several types of short-running tasks. sss tasks are short, highly
parallel operations such as index lookups and searches. sml tasks
are short memory-intensive operations such as map reduce workers
computing an inverted index. And, slm tasks are short cpu-intensive
operations such as map reduce workers computing aggregations of
log data.

Last, observe that a small number of long running tasks consume
most of the CPU and memory. This is apparent from columns
2 (core-hours) and 3 (GB-hours) of Figure 7 by summing the
contributions of task classes whose first qualitative coordinate is
l (i.e., large duration). There are two kinds of tasks that account for
this resource consumption. The first are computationally intensive,
user-facing services such as work done by a map reduce master
in processing web search results. The second kind of long-running
task relate to log-processing operations, such as analysis of click
throughs.

5. Applications

This section describes applications of task classification to capacity
planning and task scheduling.

Capacity planning selects machine, network, and other re-
sources with the objective of minimizing cost subject to the con-
straint that application tasks meet their service level objectives over
a planning horizon. Typically, capacity planning is done iteratively
using the following steps: (1) forecast application growth over a
planning horizon (e.g., six months); (2) propose machine config-
urations; (3) model or simulate application throughputs, resource
utilizations and task latencies for the forecast workload on the pro-
posed machine configurations. The task classifications developed in
this paper provide a way for Google to forecast application growth
by trending changes in task resource consumption by task class.

A second application of our task classifications is to task
scheduling. As noted previously, task scheduling can be viewed
as multi-dimensional bin packing over time. Doing a good job of
bin packing requires knowing the shape of the tasks running on
machines (so that we know how much space remains) and knowing
the shape of the task to be scheduled. We can use runtime statistics
of tasks on machines to determine which task class they belong to.
For example, consider a task that has run for more than two hours,
has average core usage of 0.4, and average memory usage of 0.2
GB. This task is likely lss. We can estimate the membership of a
newly arrived task based on the (prior) distribution of task clus-
ter memberships. Note that since most tasks have a short duration,
inefficiencies are short lived if there is an incorrect classification
of a newly arrived class. If it turns out that a long running task is
assigned to an overloaded machine, we can stop and restart the task
elsewhere. Although the stop and restart strategy introduces some

0

5

10

15

20

25

30

35

40

45

50

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

2

4

6

8

10

12

14

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

10

20

30

40

50

60

70

80

90

100

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

Compute Cluster A task distribution Compute Cluster A core-hours usage Compute Cluster A GB-hours usage

0

10

20

30

40

50

60

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

2

4

6

8

10

12

14

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

10

20

30

40

50

60

70

80

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

Compute Cluster B task distribution Compute Cluster B core-hours usage Compute Cluster B GB-hours usage

0

5

10

15

20

25

30

35

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

5

10

15

20

25

30

35

40

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

10

20

30

40

50

60

70

80

90

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

Compute Cluster C task distribution Compute Cluster C core-hours usage Compute Cluster C GB-hours usage

0

5

10

15

20

25

30

35

40

45

50

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

5

10

15

20

25

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

20

40

60

80

100

120

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

Compute Cluster D task distribution Compute Cluster D core-hours usage Compute Cluster D GB-hours usage

0

5

10

15

20

25

30

35

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

2

4

6

8

10

12

14

16

18

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

0

20

40

60

80

100

120

sss sm* slm sll lss lsl llm lll

20-May 21-May 22-May 23-May

Compute Cluster E task distribution Compute Cluster E core-hours usage Compute Cluster E GB-hours usage

Figure 7. Percentage distribution of each class and their corresponding resource utilization for five compute clusters from 20 May - 23 May

inefficiencies, this happens rarely since there are few long-running
tasks.

6. Related Work

There is a long history of contributions to workload characteri-
zation. For example, [2] uses statistical clustering to characterize
workloads in IBM’s Multiple Virtual Storage (MVS) Operating
System. [11] describes the characterization of network traffic in 3-
tier data centers; [7, 17, 3] model web server workloads; [23] ad-
dress workloads of distributed file systems; and [5, 6, 12] describe
large scientific workloads in compute clusters. The novel aspect of
our work are the insights we provide into workloads for a large
cloud backend with a diverse set of applications. These insights are
facilitated by our use of clustering and the notion of qualitative co-
ordinates. We note that others have questioned the efficacy of em-
ploying clustering in workload characterization [14, 4]. However,

clustering is an important part of our methodology for task classifi-
cation, although we do not rely entirely on automated approaches.

At first glance, it may seem that workloads in the cloud backend
are very similar to large scientific workloads, hereafter referred to
as high performance computing (HPC) workloads. There is well-
developed body of work that models HPC workloads [6, 9, 10, 13,
20, 21]. However, HPC researchers do not report many of the work-
load characteristics discussed in this paper. For example, we report
task durations that have a strong bimodal characteristic. Although
HPC researchers report a large concentration of small jobs, such
jobs are thought to be the result of mistakes in configuration and
other errors [8]. In contrast, short duration tasks are an important
part of the workload of the Google Cloud Backend as a result of
the way work is parallelized. Further, there is a substantial differ-
ence in HPC long-running work compared to that in the Google
Cloud Backend. HPC long-running work typically has characteris-
tics of “batch jobs” that are compute and/or data intensive. While

0

10

20

30

40

50

ss
s

sm
*

sl
m sl
l

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(a) Compute Cluster a, May 20 (b) Compute Cluster a, May 21 (c) Compute Cluster a, May 22 (d) Compute Cluster a, May 23

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(a) Compute Cluster b, May 20 (b) Compute Cluster b, May 21 (c) Compute Cluster b, May 22 (d) Compute Cluster b, May 23

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

(a) Compute Cluster c, May 20 (b) Compute Cluster c, May 21 (c) Compute Cluster c, May 22 (d) Compute Cluster c, May 23

0

10

20

30

40

50

60

70

ss
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

60

70

ss
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

60

70

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
r
c
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

60

70

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
r
c
e
n
t

Cores GB Core-Hours GB-Hours

(a) Compute Cluster d, May 20 (b) Compute Cluster d, May 21 (c) Compute Cluster d, May 22 (d) Compute Cluster d, May 23

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
rc
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
r
c
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
r
c
e
n
t

Cores GB Core-Hours GB-Hours

0

10

20

30

40

50

s
s
s

s
m
*

s
lm s
ll

ls
s

ls
l

ll
m ll
l

P
e
r
c
e
n
t

Cores GB Core-Hours GB-Hours

(a) Compute Cluster e, May 20 (b) Compute Cluster e, May 21 (c) Compute Cluster e, May 22 (d) Compute Cluster e, May 23

Figure 8. Coefficient of Variation by Task Class

compute and data-intensive work runs in the Google Cloud Back-
end, there are also long-running tasks that are user-facing whose
resource demands are quite variable.

Finally, HPC workloads and the Google Cloud Backend differ
in terms of the workload dimensions and relevant aspects of hard-
ware configurations. For example, in HPC there is considerable in-
vestigation into the relationship between requested time and exe-
cution time, a fertile ground for optimization [22] and debate [18].
In cloud computing, services such as web search and email do not
have a requested time or deadline. Moreover, in cloud backends,
the use of admission control and capacity planning ensure that jobs
have enough resource to run with little wait. Such considerations
are foreign to HPC installations. Still another area of difference is
the importance of inter-task communication and therefore the band-
width of the inter-connect between computers. We observe that for
some HPC applications there is a small ratio of computation-to-
communication, and thus there is a requirement for specialized in-
terconnects [19, 1]. Such considerations are relatively unimportant
in the Google Cloud Backend.

7. Conclusions

This paper develops a methodology for task classification, and ap-
plies the methodology to the Google Cloud Backend. Our method-
ology for workload classification consists of: (1) identifying the
workload dimensions; (2) constructing task classes using an off-the-
shelf algorithm such as k-means; (3) determining the break points
for qualitative coordinates within the workload dimensions; and (4)
merging adjacent task classes to reduce the number of workloads.
We use the foregoing, especially the notion of qualitative coordi-
nates, to glean several insights about the Google Cloud Backend:
(a) the duration of task executions is bimodal in that tasks either
have a short duration or a long duration; (b) most tasks have short
durations; and (c) most resources are consumed by a few tasks with
long duration that have large demands for CPU and memory. We ar-
gue that (a)-(c) result from the Google Cloud Backend supporting
a wide diversity of computing services.

Our future work will address characterization of the task arrival
process, and will extend our task classification to consider job
constraints (e.g., co-locating two tasks in the same machine).

0.4

0.6

0.8

1

1.2

1.4

M
e
a
n

e-20

e-21

e-22

e-23

a-20

a-21

a-22

a-23

b-20

b-21

b-22

b-23

-0.2

0

0.2

0.4

sss sm* slm sll lss lsl llm lll

b-23

c-20

c-21

c-22

c-23

d-20

d-21

d-22

d-23

3

4

5

6

7

8

M
e
a
n

e-20

e-21

e-22

e-23

a-20

a-21

a-22

a-23

b-20

b-21

b-22

b-23

-1

0

1

2

sss sm* slm sll lss lsl llm lll

b-23

c-20

c-21

c-22

c-23

d-20

d-21

d-22

d-23

(a) Core Means (b) Memory Means

Figure 9. Consistency of class means wrt cpu and memory across compute-cluster-days.

References

[1] Y. Aridor, T. Domany, O. Goldshmidt, E. Shmueli, J. Moreira,
and L. Stockmeier. Multi-toroidal interconnects: Using additional
communication links to improve utilization of parallel computers.
In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors,
Job Scheduling Strategies for Parallel Processing, pages 144–159.
Springer Verlag, 2004. Lect. Notes Comput. Sci. vol. 3277.

[2] H. P. Artis. Capacity planning for mvs computer systems. SIGMET-

RICS Perform. Eval. Rev., 8(4):45–62, 1980.
[3] P. Barford and M. Crovella. Generating representative web workloads

for network and server performance evaluation. SIGMETRICS

Perform. Eval. Rev., 26(1):151–160, 1998.
[4] M. Calzarossa and D. Ferrari. A sensitivity study of the clustering

approach to workload modeling (extended abstract). In SIGMETRICS

’85: Proceedings of the 1985 ACM SIGMETRICS conference on

Measurement and modeling of computer systems, pages 38–39, New
York, NY, USA, 1985. ACM.

[5] M. Calzarossa and G. Serazzi. Workload characterization: A survey.
Proc. IEEE, 81(8):1136–1150, Aug 1993.

[6] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby. Benchmarks and
standards for the evaluation of parallel job schedulers. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies for

Parallel Processing, pages 67–90. Springer-Verlag, 1999. Lect. Notes
Comput. Sci. vol. 1659.

[7] L. Cherkasova and P. Phaal. Session-based admission control: A
mechanism for peak load management of commercial web sites.
IEEE Transactions on Computers, 51(6):669–685, 2002.

[8] W. Cirne and F. Berman. A comprehensive model of the supercom-
puter workload. In 4th Workshop on Workload Characterization,
pages 140–148, Dec 2001.

[9] M. E. Crovella. Performance evaluation with heavy tailed distribu-
tions. In D. G. Feitelson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, pages 1–10. Springer Verlag, 2001.
Lect. Notes Comput. Sci. vol. 2221.

[10] A. B. Downey and D. G. Feitelson. The elusive goal of workload
characterization. Performance Evaluation Rev., 26(4):14–29, Mar
1999.

[11] D. Ersoz, M. S. Yousif, and C. R. Das. Characterizing network
traffic in a cluster-based, multi-tier data center. In ICDCS ’07:

Proceedings of the 27th International Conference on Distributed

Computing Systems, page 59, Washington, DC, USA, 2007. IEEE
Computer Society.

[12] D. G. Feitelson. Metric and workload effects on computer systems

evaluation. Computer, 36(9):18–25, Sep 2003.
[13] D. G. Feitelson and B. Nitzberg. Job characteristics of a production

parallel scientific workload on the NASA Ames iPSC/860. In D. G.
Feitelson and L. Rudolph, editors, Job Scheduling Strategies for

Parallel Processing, pages 337–360. Springer-Verlag, 1995. Lect.
Notes Comput. Sci. vol. 949.

[14] D. Ferrari. On the foundations of artificial workload design. In
SIGMETRICS ’84: Proceedings of the 1984 ACM SIGMETRICS

conference on Measurement and modeling of computer systems,
pages 8–14, New York, NY, USA, 1984. ACM.

[15] J. A. Hartigan. Probability and Mathematical Statistics. John Wiley,
1975.

[16] J. L. Hellerstein, F. Zhang, and P. Shahabuddin. A statistical approach
to predictive detection. Computer Networks, 35(1):77–95, 2001.

[17] E. Hernández-Orallo and J. Vila-Carbó. Web server performance anal-
ysis using histogram workload models. Comput. Netw., 53(15):2727–
2739, 2009.

[18] C. B. Lee, Y. schwartzman, J. Hardy, and A. Snavely. Are user runtime
estimates inherently inaccurate? In D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel

Processing, pages 253–263. Springer-Verlag, 2004. Lect. Notes
Comput. Sci. vol. 3277.

[19] F. Petrini, E. Frachtenberg, A. Hoisie, and S. Coll. Performance
evaluation of the Quadrics interconnection network. Cluster Comput.,
6(2):1125–142, Apr 2003.

[20] B. Song, C. Ernemann, and R. Yahyapour. Parallel computer workload
modeling with Markov chains. In D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn, editors, Job Scheduling Strategies for Parallel

Processing, pages 47–62. Springer Verlag, 2004. Lect. Notes Comput.
Sci. vol. 3277.

[21] D. Talby, D. G. Feitelson, and A. Raveh. A co-plot analysis of logs
and models of parallel workloads. ACM Trans. Modeling & Comput.

Simulation, 12(3), Jul 2007.
[22] D. Tsafrir and D. G. Feitelson. The dynamics of backfilling: solving

the mystery of why increased inaccuracy may help. In IEEE Intl.

Symp. Workload Characterization (IISWC), pages 131–141, Oct 2006.
[23] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long,

and T. T. Mclarty. File system workload analysis for large scale
scientific computing applications. In In Proceedings of the 21st IEEE

/ 12th NASA Goddard Conference on Mass Storage Systems and

Technologies, pages 139–152, 2004.

	1 Introduction
	2 Coarse-Grain Task Classification
	3 Methodology for Constructing Task Classifications
	4 Classification and Resource Characterization for Google Tasks
	4.1 Task Classification
	4.2 Assessments
	4.3 Insights from Task Classification

	5 Applications
	6 Related Work
	7 Conclusions

