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Abstract bigrams spanning the target word in Example (1). We gather

, , counts for each of these sequences, with each candidat in th
Web-scale data has been used in a diverse range  (4rget position. We first show how the counts can be used as
of language research. Most of this research has  featyres in a supervised classifier, with a count's contidiou

used web counts for only short, fixed spans of con-  yeighted by its context’s size and position. We also propose
text. We present a unified view of usingweb counts 5 hoye| unsupervised system that simply sums a subset of
for lexical disambiguation. Unlike previous ap- the (log) counts for each candidate. Surprisingly, thigesys
proaches, our supervised and unsupervised systems  5chieves most of the gains of the supervised approach withou
combine information from multiple and overlap- -~ equiring any training data. Our systems outperform tradi-
ping segments of context. On the tasks of preposi-  {ional web-scale approaches on the tasks of prepositiessel
tion selection and context-sensitive spelling correc-  ion context-sensitive spelling correction, and norerefitial

tion, the supervised system reduces disambiguation pronoun detection.
error by 20-24% over the current state-of-the-art.

2 Related Work
1 Introduction Yarowsky [1994 defines lexical disambiguation as a task

Many problems in Natural Language Processing (NLP) cafvhere a system must “disambiguate two or more semantically
be viewed as assigning labels to particular words in textdistinct word-forms which have been conflated into the same
given the word’s context. If the decision process requiredepresentation in some medium.” Lapata and Kelg0g
choosing a label from a predefined set of possible choicedlivide disambiguation problems into two groups: generatio
called acandidate sebr confusion setthe process is often and analysis. In generation, the confusable candidates are
referred to aslisambiguatio{Roth, 1998. Part-of-speech actual words, likeamongandbetween In analysis, we dis-
tagging, spelling correction, and word sense disambignati @mbiguate semantic labels, such as part-of-speech tags, re
are all lexical disambiguation processes. resenting abstract properties of surface words. o
One common disambiguation task is the identification of For generation tasks, a model of each candidate’s distribu-
word-choice errors in text. A language checker can flag affion in textis created. The models indicate which usage best
error if a confusable alternative better fits a given context gtscre]?shsi)oerlllt'ﬁ)g’c g?raelgltl'rc]{?ﬁszallg'%lg?r?ddsgm bi%léagtggggtas
. . u [ i i , -
(1) The system tried to decidfamong, betweenthe tWo  gjtion selectior{Chodorowet al, 2007; Felice and Pulman,
confusable words. 2007, and diacritic restoratiofiarowsky, 1994 The mod-
Most NLP systems resolve such ambiguity with the help of aels can be large-scale classifiers or standard N-gram lgggua
large corpus of text. The corpus indicates which candidate imodels (LMs). Trigram LMs have long been used for spelling
more frequent in similar contexts. The larger the corpus, th correction, an approach sometimes referred to as the Mays,
more accurate the disambiguatifBanko and Brill, 2001  Damerau, and Mercer modBVilcox-O’Hearnet al.,, 2004.
Since no corpus is as large as the world wide web, many syssamon et al[200§ use a Gigaword 5-gram LM for prepo-
tems incorporate web counts into their selection process. F sition selection. While web-scale LMs have proved useful
the above example, a typical web-based system would queffpr machine translatiofBrantset al., 2007, most web-scale
a search engine with the sequences “deaid®ngthe” and  disambiguation approaches compare specific sequencescount
“decidebetweerthe” and select the candidate that returns therather than full-sentence probabilities.
most page$Lapata and Keller, 20Q5Clearly, this approach In analysis problems such as part-of-speech tagging, it is
fails when more context is needed for disambiguation. not as obvious how a LM can be used to score the candidates,
We present a unified view of web-scale approaches to lexsince LMs do not contain the candidates themselves, only sur
ical disambiguation. Rather than using a single context seface words. However, large LMs can also benefit these appli-
guence, we use contexts of various lengths and positiongations, provided there are surface words that correlatie wi
There are five 5-grams, four 4-grams, three trigrams and twtohe semantic labels. Essentially, we devise some surregate



for each label, and determine the likelihood of these surro3.1 SUPERL M

gates occurring with the given context. For example, Mi-
halcea and Moldovafil999 perform sense disambiguation
by creating label surrogates from similar-word lists fockea
sense. To choose the sensebafsin the phrase “caught a
huge bass,” we might considimnor, alto, andpitchfor sense
one andsnappermackerelandtunafor sense two. The sense
whose group has the higher web-frequency courttanss
context is chosen. Similarly, Bergsma et [#009 identify
whether the English pronoutrefers to a preceding nouni(*
was hungry”) or is used as a grammatical placeholdirig"
important to...") by testing the frequency of other words in
place ofit in the context. Sincelfewas hungry” is attested
in the corpus butheis important to” is not, we conclude the
first instance is referential but the second is not.

Bergsma et a[2009 also use learning to weight the counts
of different context sizes and positions. Their technique w
motivated and evaluated only for (binary) non-referergrat
noun detection; we present a multi-class classification-alg
rithm for general lexical disambiguation problems, and-eva

uate it on both generation and analysis tasks. We also sho

that a simple unsupervised system is competitive with supe
vised approaches requiring thousands of training examples

3 Disambiguation with N-gram Counts

For a word in textwg, we wish to assign a labe};, from a
fixed set of candidates; = {y1,y2...,yy|}. Assume that
our target wordwg occurs in a sequence of context tokens:
W:{’U}_4, w-3,wW-2,wW-1,Wo, W1, W2, W3, ’U}4}. The key to

I

We use supervised learning to train a classifterto map a
target word and its contextto a lab&l; W — Y. Examples
are represented by featureB(W). The learning algorithm
uses training examples to choose a set of weights,for
each label, such that the weighted sum of the true label's fea
tures is higher than for other candidates. At test time, the
highest-scoring label is chosen:

h(W) = argmax A¥ - (W)
yey

1)

We use features for the logarithm of each of thgF'| dif-
ferent counts. The weight on a count depends on the class
(label), the filler, the context position and its size, foogat

of 14| F||Y| count-weight parameters. For generation tasks,
the classifier tends to learn positive weight on featuresrerhe
y=f, with higher absolute weights on the most predictive po-
sitions and lengths. If a pattern spans outside the current
sentence (whewy is close to the start or end), we use zero
for the corresponding feature value, but fire an indicatar fe
Hire to flag that the pattern crosses a boundane call this
approach S8PERLM because it iSUPER/ised, and because,
like an interpolated language model (LM), it mixes N-gram
statistics of different orders to produce an overall scane f
each filled context sequence.

SupPeERLM'’s features differ from previous lexical disam-
biguation feature sets. In previous systems, attributeeva
features flag the presence or absence of a particular word,
part-of-speech, or N-gram in the vicinity of the targRoth,

improved web-scale models is that they make use of a vari199§. Hundreds of thousands of features are used, and prun-

ety of context segments, of different sizes and positidre, t
span the target worslg. We follow Bergsma et al[2004

in calling these segmentntext patterns The words that
replace the target word are calledttern fillers Let the set
of pattern fillers be denoted by = {f1, f2, ..., fir|}. Re-
call that for generation tasks, the filler set will usually be
identical to the set of labels (e.g., for word selection sask
F=Y={among,betweey). For analysis tasks, we must use

ing and scaling are key issufGarlsonet al,, 2001. Perfor-
mance scales logarithmically with the number of examples,
even up to one billion training exampl¢Banko and Birill,
2001]. In contrast, BPERLM’s features are all aggregate
counts of events in an external (web) corpus, not specific at-
tributes of the current example. It has orl|F'||Y'| param-
eters, for the weights assigned to the different counts. Muc
less training data is needed to achieve peak performance.

other fillers, chosen as surrogates for one of the seman-

tic labels (e.g. for WSD obass Y={Sensel, Sense2},
F={tenor,alto,pitch,snapper,mackerel,tuna

Each length-N context pattern, with a filler in placevag,
is an N-gram, for which we can retrieve a count. We re-

32 SumLM

We create an unsupervised version affERLM. We pro-
duce a score for eadhler by summing the (unweighted) log-
counts of all context patterns using that filler. For gerierat

trieve counts from the web-scale Google Web 5-gram Cortasks, the filler with the highest score is taken as the laivel.

pus, which includes N-grams of length one to flvEor each

refer to this approach in our experiments asv@d M. It can

target wordwy, there are five 5-gram context patterns thatbe shown that SvLM is similar to a Naive Bayes classifier,
may span it. For Example (1) in Section 1, we can extract théyut without counts for the class prior.

following 5-gram patterns:
system tried to decideo
tried to decidewo the
to decidew, the two
decidew, the two confusable
wo the two confusable words
Similarly, there are four 4-gram patterns, three 3-gram pat
terns and two 2-gram patterns spanning the target. V¥ith
fillers, there arel4|F| filled patterns with relevant N-gram
counts. HereF'={among, between}, so 28 counts are used.

1Available from the LDC as LDC2006T13.

3.3 TRIGRAM

Previous web-scale approaches are also unsupervised. Most
use one context pattern for each filler: the trigram with the
filler in the middle: {w_1, f, w1 }. |F| counts are needed for
each example, and the filler with the most counts is taken as

20Other features are possible. For generation tasks, we etstd

include synonyms of the labels as fillers. Features coulnltzdscre-
ated for counts of patterns processed in some way (e.g. donye
one or more context tokens to wildcards, POS-tags, lowse;atc.),
provided the same processing can be done to the N-gram corpus



the label[Lapata and Keller, 2005; Liu and Curran, 2006; preposition in edited text is assumed to be correct, automat
Felice and Pulman, 2097 Using only one count for each ically providing an example of that preposition’s class. We
label is usually all that is feasible when the counts are-gathextract examples from the New York Times (NYT) section of
ered using an Internet search engine, which limits the numthe Gigaword corpu$. We take the first 1 million preposi-
ber of queries that can be retrieved. With limited contemti a tions in NYT as a training set, 10K from the middle as a de-
somewhat arbitrary search engine page counts, performaneelopment set and 10K from the end as a final unseen test set.
is limited. Web-based systems are regarded as “baseline$¥e tokenize the corpus and identify prepositions by string-
compared to standard approachieapata and Keller, 2005 match. Our system uses no parsing or part-of-speech tagging
or, worse, as scientifically unsoufidilgarriff, 2007]. Rather  to extract the examples or create the features.

than using search engines, higher accuracy and reliabdity . ) ]

be obtained using a large corpus of automatically downldade4.2  Context-sensitive Spelling Correction

web documentfLiu and Curran, 2006 We evaluate the tri- We also evaluate on the classic generation problem of
gram pattern approach, with counts from the Google 5-grangontext-sensitive spelling correction. For every occoce

corpus, and refer to it asRIGRAM in our experiments. of a word in a pre-defined confusion set (likamong, be-
tweernt), we select the most likely word from the set. The im-
34 RATIOLM portance of using large volumes of data has previously been

Carlson et al[2004 proposed an unsupervised method fornoted[Banko and Brill, 2001; Liu and Curran, 20p6Im-
spelling correction that also uses counts for various patte pressive levels of accuracy have been achieved on the stan-
fillers from the Google 5-gram Corpus. For every context pat-dard confusion sets, for example, 100% on disambiguating
tern spanning the target word, the algorithm calculatesahe both {affect, effect and{weather, whethgrby Golding and

tio between the highest and second-highest filler counts. ThRoth[1999. We thus restricted our experiments to the five
position with the highest ratio is taken as the “most diserim confusion sets (of twenty-one in total) where the reportad p
inating,” and the filler with the higher count in this positio formance inN[Golding and Roth, 1999s below 90% (an av-

is chosen as the label. The algorithm starts with 5-grams andrage of 87%){among, between {amount, numbér, {cite,
backs off to lower orders if no 5-gram counts are availablesight, sit¢, {peace, piecg and{raise, ris€. We again cre-
This position-weighting\(iz. feature-weighting) technique ate labeled data automatically from the NYT portion of Giga-
is similar to the decision-list weighting iivarowsky, 1994.  word. For each confusion set, we extract 100K examples for
We refer to this approach asARIOLM in our experiments. training, 10K for development, and 10K for a final test set.

4 Applications 4.3 Non-referential Pronoun Detection

While all disambiguation problems can be tackled in a com-We can cast Bergsma et d2009 S approach to non-
ferential pronoun detection as an instance bPSRLM.

mon framework, most approaches are developed for a specif['?

task. Like RotH1994, we take a unified view of disambigua- hey use fillers = {the pronourit, the pronounhey, other

tion, and apply our systems to preposition selection, el Pronouns, theUNK) token, and all other tokensl))}. The
correction, and non-referential pronoun detection. classifier learns the relation between the filler counts &ed t

two labels ¥'={Ref, NonRef}). Relatively higher counts
4.1 Preposition Selection for theit-filler generally indicate a non-referential instance.

. L - We extend their work by applying our full set of web-scale
Choosing the correct preposition is one of the most d'ﬁ'CU|.tmodeIs. For SMLM, we decideNonRe if the difference

task_s for a sec_qnd-langua_ge 'ea”_‘ef 1o master, an(_j EIFOrS Petween the BMLM scores forit andtheyis above a thresh-
volving prepositions constitute a significant proportidres |, ., TRIGRAM, we threshold the ratio betwedacounts

rors made by Ieamers of Engli{;ﬁhodorowe; f'"l" 2007. . andtheycounts. For RTIOLM, we compare the frequencies
Several automatic approaches to preposition selectios hav,

i of it andall, and decideVon Ref if the count ofit is higher.
recently been developdéelice and Pulman, 2007; Gamon : o
et al, 2004. We follow the experiments of Chodorow et The thresholds and comparisons are optimized on the dev set.

. o We preprocessed the N-gram corpus exactly as described
al.[2007, who train a classifier to choose the correct prepo-, [Bergsmaet al, 2008, and used the same portion of
tsmon an:ong_S(jf_ca{\dldatsSn [C(:jhodct)ro;/vet al, iOtOZ, fea- ¢ It-Bankevaluation dati.We take the first half of each of the
ure veclors indicate words and part-ol-speech tags near I.Eubsets for training, the next quarter for development aed t

preposition, similar to .the features used in most dlsamgu final quarter for testing, creating an aggregate set with0107
tion systems, and _u_nllke the aggregate counts we use in OLElraining 533 development and 534 test examples.
supervised preposition-selection N-gram model (Sectidh 3 '

For preposition selection, like all generation disambigua 4.4 Evaluation M ethodology

tion tasks, labeled data is essentially free to create. Eac\lhe evaluate usingccuracy the percentage of correctly-

*Chodorow et al. do notidentify the 34 prepositions they We. ~ Se€lected labels. As a baselineA), we state the accuracy
use the 34 from the SemEval-07 preposition sense-disamitiigu ~ Of always choosing the most-frequent class. For spellimg co
task[Litkowski and Hargraves, 2007 about, across, above, after, rection, we average accuracies across the five confusien set
against, along, among, around, as, at, before, behind, &bnde- -
side, between, by, down, during, for, from, in, inside, ,ititee, of, “Available from the LDC as LDC2003T05
off, on, onto, over, round, through, to, towards, with 5Available at www.cs.ualberta.ca/"bergsma/ltBank/
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SUPERLM uses a linear-kernel multiclass SVM (the effi-

cient SVMnulticlass jnstance of SVMTu<t [Tsochantaridis

etal, 2004). It slightly outperformed one-versus-all SVMs  ig e 2: Preposition selection over high-confidence stsbse
in preliminary experiments. We tune the SVM’s regular!za-with and without language constraints (-FR,-DE)

tion on the development sets. We apply add-one smoothing to

the counts used inBuLM and SUPERLM, while we add 39 he only previous web-scale approach applied to prepaositio

to the counts in RTIOLM, following the approach of Carl-  sejection[Felice and Pulman, 2007All differences are sta-
son et al[2009 (40 is the count cut-off used in the Google tistically significant (McNemar's test,00.01).

Corpus). For all unsupervised systems, we choose the most The order of N-grams used in th&/8LM system strongly

frequent class if no counts are available. FeV&M, we  atfacts performance. Using only trigrams achieves 66.8% ac
use the development sets to decide which orders of N-gramg,racy, while using only 5-grams achieves just 57.8% (Ta-
to combine, finding orders 3-5 optimal for preposition selec e 1)§ Summing counts from 3-5 results in the best perfor-
tion, 2-5 optimal for spelling correction, and 4-5 optimatf  1,5nce on the development and test sets.
non-referential pronoun detection. Develppment expeme e compare our use of the Google Corpus to extracting
also showed RTIOLM works better starting from 4-grams, 346 counts from a search engine, via the Google API. Since
not the 5-grams originally used [Carlsonet al, 2004. the number of queries allowed to the API is restricted, we
test on only the first 1000 test examples. Using the Google
5 Results Corpus, RIGRAM achieves 61.1%, dropping to 58.5% with
5.1 Preposition Selection search engine page counts. Although this is a small Qiﬁer-
ence, the real issue is the restricted number of queries al-
lowed. For each example,u®LM would need 14 counts
for each of the 34 fillers instead of just one. For training
WSuPERLM, which has 1 million training examples, we need
* counts for 267 millionuniqueN-grams. Using the Google
API with a 1000-query-per-day quota, it would take over 732
years to collect all the counts for training. This is cleanfyy
Fome web-scale systems use such limited context.
Y We also follow Carlson et al[2001] and Chodorow et
al.[2007 in extracting a subset of decisions where our system

In light of these numbers, the accuracy of the N-gram o< hi . : ;
. . . gher confidence. We only propose a label if the ratio be-
models are especially impressiveuERLM reaches 75.4% 4 0an‘the highest and second-highest score from our classi-

accuracy, equal to the human agreement (but on dlffererﬁer is above a certain threshold, and then vary this threshol

data). Performance continually improves with more train- . .
ing examples, but only by 0.25% from 300K to 1M exam-to produce accuracy at different coverage levels (Figure 2)

ples (Figure 1). 8MLM (73.7%) significantly outperforms 5Coverage is the main issue affecting the 5-gram model: only
RATIOLM (69.7%), and nearly matches the performance 0f70.1% of the test examples had a 5-gram countafuy of the 34
SUPERLM.TRIGRAM performs worst (58.8%), but note it is fillers (93.4% for 4-grams, 99.7% for 3-grams)

Coverage (%)

Preposition selection is a difficult task with a low baseline
choosing the most-common prepositiasf)(in our test set
achieves 20.9%. Training on 7 million examples, Chodoro
et al. [2007 achieved 69% on the full 34-way selection
Tetreault and ChodoroW}200d obtained a human upper
bound by removing prepositions from text and asking anno
tators to fill in the blank with the best preposition (using th
current sentence as context). Two annotators achieved on
75% agreement with each other and with the original text.
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when deciding on 70% of examples, and above 95% accu-
racy when deciding on half the examples. ThrRIGRAM 70
performance rises more slowly as coverage drops, reaching oo/ fmrrmms s

80% accuracy when deciding on only 57% of examples. 65

Many of SUPERLM’s errors involve choosing between 60 ot e |
prepositions that are unlikely to be confused in practicg, e 100 o 1000
with/without Chodorow et al[2007 wrote post-processor Number of training examples

rules to prohibit corrections in the case of antonyms. Note . . ) .
that the errors made by an English learner also depend on  Figure 4: Non-referential detection learning curve
their native language. A French speaker looking to trans-
lateau-dessus dkas one option in some dictionariedove  to the trigram (page count) results reported[irmpata and
A German speaker looking to translaiber has, along with ~ Keller, 2003. SuPERLM again achieves the highest perfor-
above many more options. When making corrections, wemance (95.7%), and it reaches this performance using many
could combine BPERLM (a sourcemodel) with the likeli-  fewer training examples than with preposition selectiohisT
hood of each confusion depending on the writer’s native lanis because the number of parameters grows with the number
guage (&hannemodel). This model could be trained on text of fillers timesthe number of labels, and there are 34 prepo-
written by second-language learners. In the absence of suditions but only two-to-three confusable spellings.
data, we only allow our system to make corrections in English SUPERLM achieves a 24% relative reduction in error over
if the proposed replacement shares a foreign-languags-tranRATIOLM (94.4%), which was the previous state-of-the-
lation in a particular Freelang online bilingual dictiogar art [Carlsonet al, 200§. SuMLM (94.8%) also improves

To simulate the use of this module, we randomly flip 20%0n RATIOLM, although results are generally similar on the
of our test-set prepositions to confusable ones, and then aglifferent confusion sets. Ofraise,risg, SUPERLM’S super-
ply our classifier with the aforementioned confusabilitpga vised weighting of the counts by position and size does not
confidence) constraints. We experimented with French animprove over SMLM (Table 2). On all the other sets the
German lexicons (Figure 2). These constraints strongly benperformance is higher; for example, damong,between
efit both the SPERLM and the TRIGRAM systems, with the accuracy improves by 2.3%. On this set, counts for fillers
French constraints{F R) helping slightly more than Ger- near the beginning of the context pattern are more impartant
man (~DE) for higher coverage levels. There are fewer as the object of the preposition is crucial for distinguighi
confusable prepositions in the French lexicon compared téhese two classeslfetweerthetwo” but “amongthethree”).
German. As a baseline, if we assign our labels randonSUPERLM can exploit the relative importance of the different
scores, adding the French and German constraints results positions and thereby achieve higher performance.
20% and 14% accuracy, respectively (comparegituncon- ) .
strained). At 50% coverage, both constraine8RLM sys-  2-3 Non-referential Pronoun Detection
tems achieve close to 98% accuracy, a level that could peovidFor non-referential pronoun detectiona8e (always choos-
very reliable feedback in second-language learning soéwa ing referential) achieves 59.4%, whileuBERLM reaches

. . . 82.4%. Bergsma et a[200d report state-of-the-art accu-

5.2 Context-sensitive Spelling Correction racy of 85.7%, over a baseline of 68.3%; thus in our data
Figure 3 provides the spelling correction learning curve,SUPERLM achieves a higher but similar relative reduction
while Table 2 gives results on the five confusion sets (Secef error over BASE. RATIOLM, with no tuned thresh-
tion 4.2). Choosing the most frequent label averages 66.9%lds, performs worst (67.4%), whileRIGRAM (74.3%) and
on this task (BSE). TRIGRAM scores 88.4%, comparable SUMLM (79.8%) achieve reasonable performance by com-



paring scores foit andthey (Section 4.3). All differences [Carlsonetal, 2004 Andrew Carlson, Tom M. Mitchell,

are statistically significant (McNemar's tesk:p.05), except and lan Fette. Data analysis project: Leveraging massive

between SPERLM and SUMLM. textual corpora using n-gram statistics. Technial Report
As this is our only task for which substantial effort was CMU-ML-08-107, 2008.

_needed to c_reate training data, we are particularly intedes [Chodorowet al, 2007 Martin Chodorow, Joel R. Tetreault,
in the learning rate of GPERLM (Figure 4). After 1070 and Na-Rae Han. Detection of grammatical errors involv-

examples, it does not yet show signs pf plateauing. Here, ing prepositions. IMCL-SIGSEM Workshop on Preposi-
SuUPERLM uses double the number of fillers (hence double tions pages 25-30, 2007.

the parameters) that were used in spelling correction, an[i ) .

spelling performance did not level-off until after 10K mai  LFelice and Pulman, 2007Rachele  De  Felice  and

ing examples. Thus labeling an order of magnitude more data Stéphen G. Pulman.  Automatically acquiring mod-

will likely also yield further improvements in SPERLM. els of preposition use. [ACL-SIGSEM Workshop on
However, note these efforts would have to be repeated in Prepositionspages 45-50, 2007.

every new language and domain to whicaF&RLM is ap-  [Gamonet al, 200§ Michael Gamon, Jianfeng Gao, Chris

plied. On the other hand,u81LM performs almost as well Brockett, Alexandre Klementiev, William B. Dolan,

as UPERLM and requires no supervision. Furthermore, er-  Dmitriy Belenko, and Lucy Vanderwende. Using contex-

ror analysis by Bergsma et $2009 indicates further gains in tual speller techniques and language modeling for ESL er-

accuracy could come most easily by jointly optimizing detec  ror correction. InIJCNLP, 2008.

tion_ \_/vith pronoun re_solution. @vLM wo_uld be a more com- [Golding and Roth, 1999Andrew R. Golding and Dan
petitive and convenient system for rapid developmentof sys' Rroth. A Winnow-based approach to context-sensitive

tems that operate jointly over different languages andstext spelling correctionMachine Learning34(1-3):107—130,
1999.

6 Conclusion o _ [Kilgarriff, 2007] Adam Kilgarriff. Googleology is bad sci-
We presented a unified view of using web-scale N-gram mod-  ence.Computational Linguistics33(1):147-151, 2007.
els for lexical disambiguation. State-of-the-artresbysour 1| 5na45 and Keller, 20d5Mirella Lapata and Frank Keller.
supervised and unsupervised systems demonstrate that it is Web-based models for natural language processh@M

not only important to use the largest corpus, but to get maxi- : N
mum information from this corpus. Using the Google 5-gram ;g_anzso%cgons on Speech and Language Procesilg:1
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