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Abstract

Bag-of-words document representations are often used in text, image and video
processing. While it is relatively easy to determine a suitable word dictionary for
text documents, there is no simple mapping from raw images orvideos to dictio-
nary terms. The classical approach builds a dictionary using vector quantization
over a large set of useful visual descriptors extracted froma training set, and uses a
nearest-neighbor algorithm to count the number of occurrences of each dictionary
word in documents to be encoded. More robust approaches havebeen proposed
recently that represent each visual descriptor as a sparse weighted combination of
dictionary words. While favoring a sparse representation atthe level of visual de-
scriptors, those methods however do not ensure that images have sparse represen-
tation. In this work, we use mixed-norm regularization to achieve sparsity at the
image level as well as a small overall dictionary. This approach can also be used to
encourage using the same dictionary words for all the imagesin a class, providing
a discriminative signal in the construction of image representations. Experimen-
tal results on a benchmark image classification dataset showthat when compact
image or dictionary representations are needed for computational efficiency, the
proposed approach yields better mean average precision in classification.

1 Introduction

Bag-of-words document representations are widely used in text, image, and video processing [14, 1].
Those representations abstract from spatial and temporal order to encode a document as a vector of
the numbers of occurrences in the document of descriptors from a suitable dictionary. For text
documents, the dictionary might consist of all the words or of all then-grams of a certain minimum
frequency in the document collection [1].

For images or videos, however, there is no simple mapping from the raw document to descriptor
counts. Instead, visual descriptors must be first extractedand then represented in terms of a care-
fully constructed dictionary. We will not discuss further here the intricate processes of identifying
useful visual descriptors, such as color, texture, angles,and shapes [14], and of measuring them at
appropriate document locations, such as on regular grids, on special interest points, or at multiple
scales [6].

For dictionary construction, the standard approach in computer vision is to use some unsupervised
vector quantization (VQ) technique, oftenk-means clustering [14], to create the dictionary. A new
image is then represented by a vector indexed by dictionary elements (codewords), which for el-
ementd counts the number of visual descriptors in the image whose closest codeword isd. VQ
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representations are maximally sparse per descriptor occurrence since they pick a single codeword
for each occurrence, but they may not be sparse for the image as a whole; furthermore, such repre-
sentations are not that robust with respect to descriptor variability.

Sparse representations have obvious computational benefits, by saving both processing time in han-
dling visual descriptors and space in storing encoded images. To alleviate the brittleness of VQ
representations, several studies proposed representation schemes where each visual descriptor is en-
coded as a weighted sum of dictionary elements, where the encoding optimizes a tradeoff between
reconstruction error and theℓ1 norm of the reconstruction weights [3, 5, 7, 8, 9, 16]. These tech-
niques promote sparsity in determining a small set of codewords from the dictionary that can be
used to efficiently represent each visual descriptor of eachimage [13].

However, those approaches consider each visual descriptorin the image as a separate coding prob-
lem and do not take into account the fact that descriptor coding is just an intermediate step in creating
a bag of codewords representation for the whole image. Thus,sparse coding of each visual descrip-
tor does not guarantee sparse coding of the whole image. Thismight prevent the use of such methods
in real large scale applications that are constrained by either time or space resources. In this study,
we propose and evaluate the mixed-norm regularizers [12, 10, 2] to take into account the structure
of bags of visual descriptors present in images. Using this approach, we can for example specify an
encoder that exploits the fact that once a codeword has been selected to help represent one of the
visual descriptors of an image, it may as well be used to represent other visual descriptors of the
same image without much additional regularization cost.

Furthermore, while images are represented as bags, the sameidea could be used forsets of images,
such as all the images from a given category. In this case, mixed regularization can be used to
specify that when a codeword has been selected to help represent one of the visual descriptors of an
image of a given category, it could as well be used to represent other visual descriptors of any image
of the same category at no additional regularization cost. This form of regularization thus promotes
the use of a small subset of codewords for each category that could be different from category to
category, thus including an indirect discriminative signal in code construction.

Mixed regularization can be applied at two levels: for imageencoding, which can be expressed
as a convex optimization problem, and for dictionary learning, using an alternating minimization
procedure. Dictionary regularization promotes a small dictionary size directly, instead of indirectly
through the sparse encoding step.

The paper is organized as follows: Sec. 2 introduces the notation used in the rest of the paper, and
summarizes the technical approach. Sec. 3 describes and solves the convex optimization problem for
mixed-regularization encoding. Sec. 4 extends the technique to learn the dictionary by alternating
optimization. Finally, Sec. 5 presents experimental results on a well-known image database.

2 Problem Statement

We denote scalars with lower-case letters, vectors with bold lower-case letters such asv. We assume
that the instance space isR

n endowed with the standard inner product between two vectorsu and
v, u ·v =

∑n

j=1 ujvj . We also use the standardℓp norms‖ · ‖p overRn with p ∈ 1, 2,∞. We often
make use of the fact thatu · u = ‖u‖2, where as usual we omit the norm subscript forp = 2..

Our main goal is to encode effectively groups of instances interms of a set of dictionary codewords
D = {dj}

|D|
j=1. For example, if instances are image patches, each group maybe the set of patches in

a particular image, and each codeword may represent some kind of average patch. Them’th group
is denotedGm whereGm = {xm,i}

|Gm|
i=1 where eachxm,i ∈ R

n is an instance. When discussing
operations on a single group, we useG for the group in discussion and denote byxi its i’th instance.

GivenD andG, our first subgoal, encoding, is to minimize a tradeoff between the reconstruction
error for G in terms ofD, and a suitable mixed norm for the matrix of reconstruction weights
that express eachxi as a positive linear combination ofdj ∈ D. The tradeoff between accurate
reconstruction or compact encoding is governed through a regularization parameterλ.

Our second subgoal, learning, is to estimate a good dictionary D given a set of training groups
{Gm}

n

m=1. We achieve these goals by alternating between (i) fixing thedictionary to find recon-
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struction weights that minimize the sum of encoding objectives for all groups, and (ii) fixing the
reconstruction weights for all groups to find the dictionarythat minimizes a tradeoff between the
sum of group encoding objectives and the mixed norm of the dictionary.

3 Group Coding

To encode jointly all the instances in a groupG with dictionaryD, we solve the following convex
optimization problem:

A⋆ = arg minA Q(A,G,D)

where Q(A,G,D) = 1
2

∑

i∈G

∥
∥
∥xi −

∑|D|
j=1 αi

jdj

∥
∥
∥

2

+ λ
∑|D|

j=1 ‖αj‖p

and αi
j ≥ 0 ∀i, j .

(1)

The reconstruction matrixA = {αj}
|D|
j=1 consists of non-negative vectorsαj = (α1

j , . . . , α
|G|
j )

specifying the contribution ofdj to each instance. The second term of the objective weighs the
mixedℓ1/ℓp norm ofA, which measures reconstruction complexity, with the regularization param-
eterλ that balances reconstruction quality (the first term) and reconstruction complexity.

The problem of Eq. (1) can be solved by coordinate descent. Leaving all indices intact except for
index r, omitting fixed arguments of the objective, and denoting byc1 andc2 terms which do not
depend onαr, we obtain the following reduced objective:

Q(αr) =
1

2

∑

i∈G

∥
∥
∥
∥
∥
∥

xi −
∑

j 6=r

αi
jdj − αi

rdr

∥
∥
∥
∥
∥
∥

2

+ λ ‖αr‖p + c1

=
∑

i∈G




∑

j 6=r

αi
jα

i
r(dj · dr)−αi

r(xi · dr)+
1

2
(αi

r)
2‖dr‖
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+λ ‖αr‖p+c2 . (2)

We next show how to find the optimumαr for p = 1 andp = 2. Let Q̃ be just the reconstruction
term of the objective. Its partial derivatives with respectto eachαi

r are

∂

∂αi
r

Q̃ =
∑

j 6=r

αi
j(dj · dr) − xi · dr + αi

r‖dr‖
2 . (3)

Let us make the following abbreviation for a given indexr,

µi = xi · dr −
∑

j 6=r

αi
j(dj · dr) . (4)

It is clear that ifµi ≤ 0 then the optimum forαi
r is zero. In the derivation below we therefore

employµ+
i = [µi]+ where[z]+ = max{0, z}. Next we derive the optimal solution for each of the

norms we consider starting withp = 1. Forp = 1 the objective function is separable and we get the
following sub-gradient condition for optimality,

0 ∈ −µ+
i + αi

r‖dr‖
2 + λ

∂

∂αi
r

|αi
r|

︸ ︷︷ ︸

∈[0,1]

⇒ αi
r ∈

µ+
i − [0, λ]

‖dr‖2
. (5)

Sinceαr
i ≥ 0 the above subgradient condition for optimality implies that αr

i = 0 whenµ+
i ≤ λ and

otherwiseαr
i = (µ+

i − λ)/‖dr‖
2.

The objective function is not separable whenp = 2. In this case we need to examine the entire
set of values{µ+

i }. We denote byµ+ the vector whosei’th value isµ+
i . Assume for now that the

optimal solution has a non-zero norm,‖αr‖2 > 0. In this case, the gradient ofQ(αr) with an ℓ2
regularization term is

‖dr‖
2αr − µ+ + λ

αr

‖αr‖
.
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At the optimum this vector must be zero, so after rearrangingterms we obtain

αr =

(

‖dr‖
2 +

λ

‖αr‖

)−1

µ+ . (6)

Therefore, the vectorαr is in the same direction asµ+ which means that we can simply write
αr = sµ+ wheres is a non-negative scalar. We thus can rewrite Eq. (6) solely as a function of the
scaling parameters

sµ+ =

(

‖dr‖
2 +

λ

s‖µ+‖

)−1

µ+ ,

which implies that

s =
1

‖dr‖2

(

1 −
λ

‖µ+‖

)

. (7)

We now revisit the assumption that the norm of the optimal solution is greater than zero. Sinces
cannot be negative the above expression also provides the condition for obtaining a zero vector for
αr. Namely, the term1 − λ/‖µ+‖ must be positive, thus, we get thatαr = 0 if ‖µ+‖ ≤ λ and
otherwiseαr = sµ+ wheres is defined in Eq. (7).

Once the optimal group reconstruction matrixA is found, we compress the matrix into a single
vector. This vector is of fixed dimension and does not depend on the number of instances that
constitute the group. To do so we simply take thep-norm of eachαj , thus yielding a|D| dimensional
vector. Since we use mixed-norms which are sparsity promoting, in particular theℓ1/ℓ2 mixed-norm,
the resulting vector is likely to be sparse, as we show experimentally in Section 6.

Since visual descriptors and dictionary elements are only accessed through inner products in the
above method, it could be easily generalized to work with Mercer kernels instead.

4 Dictionary Learning

Now that we know how to achieve optimal reconstruction for a given dictionary, we examine how to
learn a good dictionary, that is, a dictionary that balancesbetween reconstruction error, reconstruc-
tion complexity, overall complexity relative to the given training set. In particular, we seek a learning
method that facilitates both induction of new dictionary words and the removal of dictionary words
with low predictive power. To achieve this goal, we will apply ℓ1/ℓ2 regularization controlled by a
new hyperparameterγ, to dictionary words. For this approach to work, we assume that instances
have been mean-subtracted so that the zero vector0 is the (uninformative) mean of the data and
regularization towards0 is equivalent to removing words that do not contribute much to compact
representation of groups.

Let G = {G1, . . . ,Gn} be a set of groups andA = {A1, . . . ,An} the corresponding reconstruction
coefficients relative to dictionaryD. Then, the following objective meets the above requirements:

Q(A,D) =

n∑

m=1

Q(Am,Gm,D) + γ

|D|
∑

k=1

‖dk‖p s.t.αi
m,j ≥ 0 ∀i, j,m , (8)

where the single group objectiveQ(Am,Gm,D) is as in Eq. (1).

In our application we setp = 2 as the norm penalty of the dictionary words. For fixedA, the ob-
jective above is convex inD. Moreover, the same coordinate descent technique described above for
finding the optimum reconstruction weights can be used againhere after simple algebraic manipu-
lations. Define the following auxiliary variables:

vr =
∑

m

∑

i

αi
m,rxm,i and νj,k =

∑

m

∑

i

αi
m,jα

i
m,k . (9)

Then, we can expressdr compactly as follows. As before, assume that‖dr‖ > 0. Calculating the
gradient with respect to eachdr and equating it to zero, we obtain

∑

m

∑

i∈Gm




∑

j 6=r

αi
m,jα

i
m,rdj + (αi

m,r)
2dr − αi

m,rxm,i



 + γ
dr

‖dr‖
= 0 .
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Swapping the sums overm andi with the sum overj, using the auxiliary variables, and noting that
dj does not depend neither onm nor oni, we obtain

∑

j 6=r

νj,rdj + νr,rdr − vr + γ
dr

‖dr‖
= 0 . (10)

Similarly to the way we solved forαr, we now define the vectorur = vr −
∑

j 6=r νj,rdj to get the
following iterate fordr:

dr = ν−1
r,r

[

1 −
γ

‖ur‖

]

+

ur , (11)

where, as above, we incorporated the casedr = 0, by applying the operator[·]+ to the term
1 − γ/‖ur‖. The form of the solution implies that we can eliminatedr, as it becomes0, when-
ever the norm of the residual vectorur is smaller thanγ. Thus, the dictionary learning procedure
naturally facilitates the ability to remove dictionary words whose predictive power falls below the
regularization parameter.

5 Experimental Setting

We compare our approach to image coding with previous sparsecoding methods by measuring their
impact on classification performance on the PASCAL VOC (Visual Object Classes) 2007 dataset [4].
The VOC datasets contain images from 20 classes, including people, animals (bird), vehicles (aero-
plane), and indoor objects (chair), and are considered natural, difficult images for classification.
There are around 2500 training images, 2500 validation images and 5000 test images in total.

For each coding technique under consideration, we explore arange of values for the hyperparameters
λ and γ. In the past, many features have been used for VOC classification, with bag-of-words
histograms of local descriptors like SIFT [6] being most popular. In our experiments, we extract
local descriptors based on a regular grid for each image. Thegrid points are located at every seventh
pixel horizontally and vertically, which produces an average of 3234 descriptors per image. We
used a custom local descriptor that collects Gabor wavelet responses at different orientations, spatial
scales, and spatial offsets from the interest point. Four orientations (0◦, 45◦, 90◦, 135◦) and 27
(scale, offset) combinations are used, for a total of 108 components. The 27 (scale, offset) pairs were
chosen by optimizing a previous image recognition task, unrelated to this paper, using a genetic
algorithm. Tolaet al. [15] independently described a descriptor that similarly uses responses at
different orientations, scales, and offsets (see their Figure 2). Overall, this descriptor is generally
comparable to SIFT and results in similar performance.

To build an image feature vector from the descriptors, we thus investigate the following methods:

1. Build a bag-of-words histogram over hierarchicalk-means codewords by looking up each
descriptor in a hierarchicalk-means tree [11]. We use branching factors of 6 to 13 and a
depth of 3 for a total of between 216 and 2197 codewords. When used with multiple feature
types, this method results in very good classification performance on the VOC task.

2. Jointly train a dictionary and encode each descriptor using anℓ1 sparse coding approach
with γ = 0, which was studied previously [5, 7, 9].

3. Jointly train a dictionary and encode sets of descriptorswhere each set corresponds to a
single image, usingℓ1/ℓ2 group sparse coding, varying bothγ andλ.

4. Jointly train a dictionary and encode sets of descriptorswhere each set corresponds to all
descriptors or all images of a single class, usingℓ1/ℓ2 sparse coding, varying bothγ andλ.
Then, useℓ1/ℓ2 sparse coding to encode the descriptors in individual images and obtain a
singleα vector per image.

As explained before, we normalized all descriptors to have zero mean so that regularizing dictionary
words towards the zero vector implies dictionary sparsity.

In all cases, the initial dictionary used during training was obtained from the same hierarchicalk-
means tree, with a branching factor of 10 and depth 4 rather than 3 as used in the baseline method.
This scheme yielded an initial dictionary of size 7873.
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Figure 1: Mean Average Precision on the 2007 PASCAL VOC database as a function of the size of
the dictionary obtained by bothℓ1 andℓ1/ℓ2 regularization approaches when varyingλ or γ. We
show results where descriptors are grouped either by image or by class. The baseline system using
hierarchicalk-means is also shown.

To evaluate the impact of different coding methods on an important end-to-end task, image classi-
fication, we selected the VOC 2007 training set for classifiertraining, the VOC 2007 validation set
for hyperparameter selection, and the VOC 2007 test set for for evaluation. After the datasets are
encoded with each of the methods being evaluated, a one-versus-all linear SVM is trained on the
encoded training set for each of the 20 classes, and the best SVM hyperparameterC is chosen on
the validation set. Class average precisions on the encodedtest set are then averaged across the 20
classes to produce the mean average precision shown in our graphs.

6 Results and Discussion

In Figure 1 we compare the mean average precisions of the competing approaches as encoding
hyperparameters are varied to control the overall dictionary size. For theℓ1 approach, achieving
different dictionary size was obtained by tuningλ while settingγ = 0. For theℓ1/ℓ2 approach,
since it was not possible to compare all possible combinations of λ andγ, we first fixedγ to be
zero, so that it could be comparable to the standardℓ1 approach with the same setting. Then we
fixed λ to a value which proved to yield good results and variedγ. As it can be seen in Figure 1,
when the dictionary is allowed to be very large, the pureℓ1 approach yields the best performance.
On the other hand, when the size of the dictionary matters, then all the approaches based onℓ1/ℓ2
regularization performed better than theℓ1 counterpart. Even hierarchicalk-means performed better
than the pureℓ1 in that case. The version ofℓ1/ℓ2 in which we allowedγ to vary provided the best
tradeoff between dictionary size and classification performance when descriptors were grouped per
image, which was to be expected asγ directly promotes sparse dictionaries. More interestingly,
when grouping descriptors per class instead of per image, weget even better performance for small
dictionary sizes by varyingλ.

In Figure 2 we compare the mean average precisions ofℓ1 andℓ1/ℓ2 regularization as average image
size varies. When image size is constrained, which is often the case is large-scale applications, all
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Figure 2: Mean Average Precision on the 2007 PASCAL VOC database as a function of the average
size of each image as encoded using the trained dictionary obtained by bothℓ1 andℓ1/ℓ2 regular-
ization approaches when varyingλ andγ. We show results where descriptors are grouped either by
image or by class. The baseline system using hierarchicalk-means is also shown.
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Figure 3: Comparison of the dictionary words used to reconstruct the same image. A pureℓ1 coding
was used on the left, while a mixedℓ1/ℓ2 encoding was used on the right plot. Each row represents
the number of times each dictionary word was used in the reconstruction of the image.

the ℓ1/ℓ2 regularization choices yield better performance thanℓ1 regularization. Once againℓ1
regularization performed even worse than hierarchicalk-means for small image sizes

Figure 3 compares the usage of dictionary words to encode thesame image, either usingℓ1 (on the
left) or ℓ1/ℓ2 (on the right) regularization. Each graph shows the number of times a dictionary word
(a row in the plot) was used in the reconstruction of the image. Clearly, ℓ1 regularization yields
an overall sparser representation in terms of total number of dictionary coefficients that are used.
However, almost all of the resulting dictionary vectors arenon-zero and used at least once in the
coding process. As expected, withℓ1/ℓ2 regularization, a dictionary word is either always used or
never used yielding a much more compact representation in terms of the total number of dictionary
words that are used.
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Overall, mixed-norm regularization yields better performance when the problem to solve includes
resource constraints, either time (a smaller dictionary yields faster image encoding) or space (one
can store or convey more images when they take less space). They might thus be a good fit when
a tradeoff between pure performance and resources is needed, as is often the case for large-scale
applications or online settings.

Finally, grouping descriptors per class instead of per image during dictionary learning promotes the
use of the same dictionary words for all images of the same class, hence yielding some form of weak
discrimination which appears to help under space or time constraints.
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