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ABSTRACT

Pronunciation information is available in large quantities on the Web,
in the form of IPA and ad-hoc transcriptions. We describe techniques
for extracting candidate pronunciations from Web pages and associ-
ating them with orthographic words, filtering out poorly extracted
pronunciations, normalizing IPA pronunciations to better conform
to a common transcription standard, and generating phonemic from
ad-hoc transcriptions. We show improvements on a letter-to-phoneme
task when using web-derived vs. Pronlex pronunciations.

Index Terms— Speech processing.

1. INTRODUCTION

Knowing how to pronounce a word is important for automatic speech
recognition and synthesis. Previous approaches have either employed
trained persons to manually generate pronunciations, or have used
letter-to-phoneme (L2P) rules, which were either hand-crafted or
machine-learned from a manually transcribed corpus [1, 2]. The first
approach is expensive, the second can be of variable quality, depend-
ing on the skill of the experts or size and quality of the transcribed
data. We investigate a novel strategy of mining the huge quantities of
pronunciation information on the Web.

We study two kinds of pronunciations commonly found on the
Web. The first is expressed in the International Phonetic Alphabet
(IPA), for example ‘Lorraine Albright /Ol braIt/’. IPA pronunciations
use special symbols, such as ‘O’, which can unambiguously denote
a particular English phoneme. However, there are no universally
accepted conventions for transcribing pronunciations in IPA, and the
use of IPA requires some skill. It is then not surprising that we find
considerable variation in IPA strings captured on the Web and there
is a need to normalize them to follow a common set of conventions.

The second, and more frequent, kind of pronunciations use an ad-
hoc transcription based on a simpler or less ambiguous spelling than
standard English orthography. For example, when we see ‘bruschetta
(pronounced broo-SKET-uh)’, the intended pronunciation is clarified.
Ad-hoc transcriptions follow the rules of English orthography and do
not require any specialized skills. However, they do not provide a
phonemic transcription. So we must predict it from a combination of
the standard orthography and ad-hoc transcription of a word.

Processing IPA and ad-hoc transcriptions proceeds in three major
phases. In the extraction phase (Sec. 2) we find a candidate pronun-
ciation and its corresponding orthographic form on a web page. In
the second phase, extraction validation (Sec. 3), we determine if an
orthography/pronunciation pair was correctly extracted. For example,
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most instances of ‘pronounced dead’ do not correspond pronuncia-
tions that we would like to keep. In the final normalization phase
(Sec. 4), we canonicalize irregularities in the IPA pronunciations and
map the ad-hoc pronunciations to their phonemic form.

2. PRONUNCIATION EXTRACTION

The extraction, validation and normalization steps used in this paper
require letter-to-phoneme, letter-to-letter, or phoneme-to-phoneme
models. Methods for constructing such models include those based on
decision trees [3], pronunciation-by-analogy [4], and hidden Markov
models [5]. We chose to use n-gram models over pairs [6].

Our pronunciations are extracted from Google’s web and news
page repositories. The pages are restricted to those that Google has
classified as in English and from non-EU countries. The extraction
of IPA and of ad-hoc pronunciations uses different techniques.

2.1. IPA Pronunciation Extraction

The Unicode representation of most English words in IPA requires
characters outside the ASCII range. For instance, only 3.8% to 8.6%
(depending on transcription conventions) of the words in the 100K
Pronlex dictionary1 have completely ASCII-representable IPA pro-
nunciations (e.g., ‘beet’ /bit/). Most of the non-ASCII characters
are drawn from the Unicode IPA extension range (0250–02AF), which
are easily identified on web pages. Our candidate IPA pronunciations
consist of web terms2 that are composed entirely of legal English
IPA characters, that have at least one non-ASCII character3, and that
are delimited by a pair of forward slashes (‘/. . ./’), back slashes
(‘\ . . .\’), or square brackets (‘[. . .]’).

Once these candidate IPA pronunciations are identified, the cor-
responding orthographic terms are next sought. To do so, an English
phoneme-to-letter (L2P) model, Pr[λ |π], is used to estimate the proba-
bility that an orthographic string λ corresponds to the given phonemic
string π .

L2P models are bootstrapped from a seed pronunciation lexicon
as follows. Each orthographic-phonemic training pair is first aligned,
e.g. (w, w) (i, i) (m, m) (b, b) (–, @) (l, l) (e, –) (d, d) (o, @) (n,
n). Alignments are derived by training a unigram model of (letter,
phoneme) pairs (including letter deletions and phoneme insertions)
using EM from a flat start and subsequently finding the most likely
sequence of pairs under the model. Each aligned (letter, phoneme)
pair is then treated as a single token for a Kneser-Ney n-gram model
[7]. Once built, the n-gram model is represented as a weighted
finite-state transducer (FST), mapping letters to phonemes, using
the OpenFst Library [8], which allows easy implementation of the
operations that follow. Note that this results in a joint model Pru[λ ,π].

1CALLHOME American English Lexicon, LDC97L20.
2By terms we mean tokens exclusive of punctuation and HTML markup.
3This, unfortunately, excludes pronunciations in SAMPA, ARPABet, etc.
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Type Pattern Count
paren \(pronounced (as |like )?([ˆ)]+)\) 3415K
quote pronounced (as |like )?"([ˆ"]+)" 835K

comma , pronounced (as |like )?([ˆ,]+), 267K

Table 1. Ad-hoc pronunciation extraction patterns and counts.

For pronunciation extraction, a unigram letter-phoneme model
Pru[λ ,π] is trained on the Pronlex dictionary using the method de-
scribed above. We use n = 1 both to ensure wide generalization
and to make it likely that the subsequent results do not depend
greatly on the bootstrap English dictionary. With this model in hand,
we extract that contiguous sequence of terms λ , among the twenty
terms preceding each candidate pronunciation π , which maximizes
Pr[λ |π] = Pru[λ ,π]/Σλ Pru[λ ,π]. We found 2.53M candidate ortho-
graphic and phonemic string pairs (309K unique pairs) in this way.
These are then passed to extraction validation in Sec. 3.

2.2. Ad-hoc Pronunciation Extraction

Ad-hoc pronunciations are identified by matches to the regu-
lar expressions indicated in Table 1. To find the correspond-
ing conventionally-spelled terms, we use an English letter-to-
letter (L2L) model Pr[λ2|λ1] to estimate the probability that the
conventionally-spelled string λ2 corresponds to a given ad-hoc
pronunciation string λ1. Assuming that λ1 and λ2 are inde-
pendent given their true underlying phonemic pronunciation π ,
Pr[λ2 |λ1] = ∑π Pr[λ2 |π] Pr[π |λ1] (implemented by weighted FST
composition). The unigram model Pru[λ ,π] of Sec. 2.1 is used
to derive the estimates Pr[λ2|π] = Pru[λ2,π]/Σλ Pru[λ ,π] and
Pr[π|λ1] = Pru[λ1,π]/Σπ Pru[λ1,π].

We then extract that contiguous sequence of terms λ2, among
the eight terms preceding each candidate pronunciation λ1, which
maximizes Pr[λ2|λ1]. We found 4.52M candidate orthographic and
“pronunciation” pairs (568K unique pairs) with pair counts for specific
patterns indicated in Table 1. These pairs are then passed to extraction
validation described in the next section.

3. PRONUNCIATION EXTRACTION VALIDATION

Once extraction has taken place, a validation step is applied to check
whether the items extracted are correct in the sense that they find
each orthographic term and the corresponding pronunciation pro-
vided word-for-word. We manually labeled 667 randomly selected
(orthography, IPA pronunciation) pairs and 1000 (orthography, ad-hoc
pronunciation) pairs for correctness of extraction. We used this data to
build and test classifiers for winnowing the extracted pronuniciations.

Sixteen features of the IPA pronunciations and 57 features of the
ad-hoc pronunciations are computed for this data. Features shared
among both types of pronunciations include the string length of
the extracted orthography and pronunciation, the distance between
them, the presence of certain substrings (e.g. spaces, function words,
non-alphabetic characters), and the log probabilities assigned by
the L2P/L2L alignment models used during extraction. In the IPA
case, the extracted IPA pronunciation is aligned with a predicted
pronunciation – predicted from the extracted orthography by a 5-gram
model trained on Pronlex – and per-phoneme alignment features are
computed. These include the fraction of mismatched consonants and
vowels, since we noticed that vowel mismatches are common in good
extractions but consonant mismatches are highly indicative of bad
extractions. In the ad-hoc case, additional features include letter-
to-letter log probabilities of unigram, bigram and trigram letter-pair

Fig. 1. Precision vs. recall in pronunciation extraction validation.

models, counts of insertions and deletions in the best alignment, and
capitalization styles, which often signal bad extractions.

SVM classifiers were constructed separately for the IPA and
ad-hoc pronunciation data using these features. Five-fold cross val-
idation on the 667/1000 labeled examples was used to produce the
precision-recall curves in Fig. 1, parameterized by the SVM-margin.
In particular, the IPA extraction classifier has a precision of 96.2%
when the recall was 88.2%, while the ad-hoc classifier has a precision
of 98.1% when the recall was 87.5% (indicated by dots in Fig. 1).

To summarize, our extraction consists of a simple first-pass ex-
traction step, suitable for efficiently analyzing a large number of web
pages, followed by a more comprehensive validation step that has
high precision with good recall. Given this high recall and the fact
that most extraction errors, in our error analysis of a subsample, have
no correct alternatives on the given page, we feel confident about this
two-step approach.

4. PRONUNCIATION NORMALIZATION

Up to this point, we have extracted millions of candidate IPA and
ad-hoc pronunciations from the Web with high precision. We refer to
the collection of extracted and validated data as the Web-IPA lexicon
and the ad-hoc lexicon. The Web-IPA lexicon is based on extractions
from websites that use idiosyncratic conventions (see below), while
the ad-hoc pronunciations are still in an orthographic form. In both
cases, they need to be normalized to a standard phonemic form to be
useful for many applications.

Our training and test data are based on a subset of words in
the web-derived data whose orthographies also occur in Pronlex. By
using only the set of words that appear in both the lexica, we eliminate
any overall sampling bias in either of the lexica, and focus solely
on the pronunciations. We use a 97K word subset of the Web-IPA
lexicon for these experiments, which has 30K words in common with
Pronlex, with an average of 1.07 pronunciations per word in Pronlex,
and 1.87 pronunciations per word in Web-IPA. In the next subsection,
we also consider smaller subsets of this dataset that were derived by a
similar methodology. The training data for ad-hoc normalization was
augmented by words whose pronunciations could be assembled from
hyphenated portions of the ad-hoc transcription (e.g. if the ad-hoc
transcription of ‘Circe’ is ‘Sir-see’, we look up the Pronlex phonemic
transcriptions of ‘sir’ and ‘see’).

Some of our test sets, further described below, are drawn at
random from the 30K Pronlex∩Web-IPA lexicon. For others, we
set aside rare words as test data, chosen by low counts in the HUB4
Broadcast News corpora. We are interested in rare words because they
are less likely to occur in existing lexica. Handling these otherwise
out-of-vocabulary (OOV) words is important in many applications.

We evaluate pronunciations by aligning a predicted phoneme
string with a reference and computing the phoneme error rate (PhER)
– analogous to word error rate in automatic speech recognition – as
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Fig. 2. Cross-validation results by website.

the number of insertions, deletions, and substitutions divided by the
number of phonemes in the reference (times 100%). In cases of
multiple predicted4 or reference pronunciations, the pair with the
lowest PhER is chosen.

4.1. IPA Pronunciation Normalization

We first compare the quality of the Web-IPA lexicon with Pronlex, by
performing 5-fold cross-validation experiments on their orthographic
intersection described above. For each cross-validation run, two L2P
models are trained on the same 24K subset of the intersection – one
using the Pronlex pronunciations, and the other using the Web-IPA
pronunciations. Each of the models is then used to generate candidate
pronunciations for the same 6K subset left out of the training. The two
sets of generated candidate pronunciations are then scored against the
test pronunciations from both lexica, giving us four PhER numbers.
The overall PhER for these four cases are shown in Table 2.

�������Test
Train

Pronlex Web-IPA

Pronlex 6.35 17.10

Web-IPA 14.33 12.98

Table 2. Phoneme error rates (in %) for 5-fold cross validation on
the intersection between Pronlex and Web-IPA pronunciations.

At a first glance the PhER numbers presented in Table 2 may sug-
gest that the Web-IPA data is inherently of lower quality. But a very
different picture emerges when one breaks down these PhER num-
bers by individual websites. We repeated the above cross-validation
experiments, but instead using the entire Web-IPA data, the ortho-
graphic intersection was done using data collected from individual
websites. Fig. 2 shows the same four PhER numbers for 7 of the 10
websites with the most extracted pronunciations. We notice that for
several websites, L2P models trained using the web pronunciations
are almost as good at predicting the website pronunciations (red bars)
as a model trained on Pronlex is at predicting Pronlex pronunciations
(dark blue bars). However, in all cases, models trained on web data
are poor predictors of Pronlex data, and vice versa.

4Only one best-guess pronunciation is produced for each extracted token.
Multiple predicted pronunciations for an orthographic form result only if it
was extracted with multiple distinct IPA (or ad-hoc) pronunciations.

Fig. 3. Effect of pronunciation normalization – L2P models trained
using normalized data are better at predicting ref. pronunciations.

These experiments demonstrate that websites vary in the qual-
ity of pronunciations available from them. Moreover, the websites
list different pronunciations than what one would obtain from Pron-
lex. The differences can be caused both by improper use of IPA
symbols, as well as other site-specific conventions. For instance,
‘graduate’ is pronounced as either /gôædZuIt/ or /gôædZueIt/ in Pron-
lex, but appears as /gôadjUeIt/, /gôædjUIt/, /gôædju@t/, /gôædjuIt/,
and /gôædZU@t/ among the ten most frequent websites.

Site-specific normalization The considerable variability of
pronunciations across websites strongly motivates the need for a site-
specific normalization of the pronunciations to a more site-neutral
target form. Here we use Pronlex as our target. As before, we
find the orthographic intersection of the lexicon obtained from a
website and Pronlex. If multiple pronunciations are present, then
the two with the smallest phoneme edit distance are selected. Using
these pronunciation pairs we train a phoneme-to-phoneme (P2P)
transduction model, which takes a pronunciation obtained from the
website and converts it to a Pronlex-like form.

The model for the P2P normalizing transducer is identical to the
L2P models described earlier, the only difference being that the P2P
models are trained on aligned (phoneme, phoneme) pairs, instead
of (letter, phoneme) pairs. For the cross-validation experiments, the
normalizing transducer is trained on the pronunciation pairs collected
from the two training lexica, and is then used to normalize the pro-
nunciations in the training lexicon obtained from the website. An
L2P model trained on the normalized pronunciations is then used to
generate candidate pronunciations for the test set words, which are
scored against their Pronlex references.

The P2P transducers are trained using varying n-gram orders, and
the results are presented in Fig. 3. As one can clearly see, normal-
ization helps to improve the quality of the pronunciations obtained
from the web. Notice in particular that the normalized pronunciations
generated by a 5-gram model (light tan bars) have a PhER that’s
comparable to the pronunciations predicted by a model trained on
Pronlex (dark blue bars). Based on this, we conclude that L2P models
trained on normalized Web-IPA pronunciations are as good as models
trained on comparable amounts of Pronlex.

Performance on rare words To test performance on rare words,
we remove from Pronlex any word with a frequency of less than 2
in the Broadcast News (BN) corpus. Among these rare words, the
ones that are found in the extracted Web-IPA lexicon form our test set
(about 3.8K words). Moreover, while creating a hand-built lexicon, it

4291



Fig. 4. Performance on rare words – normalized web pronunciations
help a lot on rare words.

is natural to annotate the most frequent words. To replicate this we
subdivide the Pronlex words, with BN frequency of at least 2, into 5
subsets based on decreasing frequency – the first one contains 20% of
the most frequent words, the second one 40%, third with 60%, fourth
80%, and the fifth 100%.

For each of the subsets of Pronlex, we generate candidate pro-
nunciations for the words in our rare-word test set using each of the
following three methods: (1) An L2P model is trained on the subset
of Pronlex, and then used to generate pronunciations for the rare
words. (2) Pronunciations from the 10 most frequent websites are
normalized using only the subset of Pronlex, and are then pooled
together. Rare words are then looked up in this lexicon. (3) The
normalized Web-IPA and the Pronlex subset are combined together
and used to train another L2P model, which is then used to generate
the pronunciations.

Fig. 4 shows the PhER on the rare words using each of the three
methods described above, for varying amounts of Pronlex data used.
The normalized Web-IPA data clearly produces better pronunciations
for rare words. Of particular interest is the fact that the Web-IPA,
when normalized using only 20% of the hand-crafted Pronlex dictio-
nary (roughly 10K most frequent words), already produces pronunci-
ations that are as good as those generated by an L2P model trained
on the whole of Pronlex.

4.2. Ad-hoc Pronunciation Normalization

For ad-hoc normalization our task is to predict phonemic transcrip-
tions from the extracted ad-hoc transcriptions, which are in ortho-
graphic form, but presumably reveal the intended pronunciation of
a word more easily than the standard orthography. We investigated
four ways of predicting phonemes from the extracted (orthography,
ad-hoc transcription) pairs: (1) Apply a letter-to-phoneme model
to the standard orthography (a competitive baseline). (2) Apply a
letter-to-phoneme model to the ad-hoc transcription. (3) Model the
phonemes as the latent source in a noisy channel model with indepen-
dent channels for the orthography and ad-hoc transcription. (4) Train
a language model on aligned (orthography, ad-hoc, phoneme) triples
and apply it to the orthography and ad-hoc transcription.

We evaluate the predicted phoneme strings on a test set with 256
words that are associated with extracted ad-hoc and phonemic pronun-
ciations manually transcribed to correspond both to the orthographic
and ad-hoc forms. This yielded a total of 1181 phonemes.

For (1) we trained a 5-gram L2P model on a subset of Pronlex
from which the test vocabulary was removed, achieving 29.5% PhER.
Next (2) we trained a 5-gram L2P model on the 43K word training
dictionary described earlier. This ignores the orthography and predicts
phonemes directly from ad-hoc transcription, giving 20.5% PhER.

By contrast, the remaining two models use both the orthography
and ad-hoc transcription to predict the phonemes. Model (3) is the
noisy channel model Pr[λ1,λ2,π] = Pr[λ1 |π]Pr[λ2 |π]Pr[π] which
generates a latent pronunciation π and, conditional on π , generates
the orthography λ1 and ad-hoc transcription λ2 independently. It can
be implemented straightforwardly in terms of the joint and conditional
transducer models discussed in Sec. 2. This achieves 19.4% PhER.
The last model (4) drops the independence assumption. It is a 5-gram
language model on (orthography, ad-hoc, phoneme) triples, trained on
the 43K lexicon by first aligning ad-hoc transcriptions with phonemes
and then aligning the orthography with the already aligned (ad-hoc,
phoneme) pairs. During testing the model is first combined with
the orthography to predict (ad-hoc, phoneme) pairs, and those are
further combined with the observed ad-hoc transcription to predict
the phonemes. This model achieves 18.8% PhER – a 36% relative
error rate reduction over the baseline model (1). We conclude that
ad-hoc pronunciations – alone or in combination with the standard
orthography – are extremely useful for predicting the pronunciations
of unseen rare words.

5. CONCLUSION

Large quantities of human-supplied pronunciations are available on
the Web, which we exploit to build lexica comparable in quality to
Pronlex and larger in size. To our knowledge, this is the first study of
its kind; we are aware of [9], which addresses a much more restricted
problem for Japanese that exploits its multiple writing systems. Our
approach can be used to bootstrap pronunciation lexica for any lan-
guage where IPA or similar resources are available; e.g. extraction
statistics (cf Sec. 2) for French and German are very promising.

One issue that we did not address is the usefulness of a pronun-
ciation. For example, ad-hoc transcriptions of common words often
highlight unusual pronunciations (e.g. ‘cheenah’ for ‘China’, which
is a Spanish first name). This would be scored correct in Sec. 4.2,
but there is a question of how many of these rare pronunciations we
would want to put in our lexicon.

6. REFERENCES

[1] H. Elovitz et al., “Letter-to-sound rules for automatic translation
of English text to phones,” IEEE Trans. ASSP, 1976.

[2] T. G. Dietterich, “Machine learning for sequential data: A review,”
LNCS, vol. 2396, 2002.

[3] A. Black, K. Lenzo, and V. Pagel, “Issues in building general
letter to sound rules,” in ESCA WSS-3, 1998.

[4] Y. Marchand and R. I. Damper, “A multi-strategy approach to
improving pronunciation by analogy,” Comp. Ling., 2000.

[5] P. Taylor, “Hidden Markov models for grapheme to phoneme
conversion,” in Interspeech, 2005.

[6] M. Bisani and H. Ney, “Investigations on joint-multigram models
for grapheme-to-phoneme conversion,” in ICSLP, 2002.

[7] R. Kneser and H. Ney, “Improved backing-off for m-gram lan-
guage modeling,” in ICASSP, 1995.

[8] C. Allauzen et al., “OpenFST: A general and efficient weighted
finite-state library,” in CIAA, 2007.

[9] E. Sumita and F. Sugaya, “Word pronunciation disambiguation
using the Web,” in HLT/NAACL, 2006.

4292


