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One of the most natural communication tool used by humanhgisyoice. It is hence natural
that a lot of research has been devoted to analyze and uadétstiman uttered speech for
various applications. The most obvious oneaigomatic speech recognitionwhere the
goal is to transcribe a recorded speech utterance into litesmonding sequence of words.
Other applications includspeaker recognition where the goal is to either determine the
claimed identity of the speaker (verification) or who is dpeg (identification), and speaker
segmentation or diarization, where the goal is to segmemicanstic sequence in terms of
the underlying speakers (such as during a dialog).

Although enormous amount of research has been devoted ézlspeocessing, there
appear to be some form of local optimum in terms of the funddai¢ools used to approach
these problems. The aim of this book is to introduce the dpeesearcher community
with radically different approaches based on more recenteiebased machine learning
approaches. In this introduction, we first briefly remindrtiegn speech processing approach,
based on hidden Markov models, as well as its known probldmas,introduce the most well
known kernel based approach, the Support Vector Machin®S&nd finally opens to the
various contributions of this book.
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2 INTRODUCTION
1.1 The Traditional Approach to Speech Processing

Most speech processing problems, including speech retmghispeaker verification,
speaker segmentation, etc., proceed with basically thee sggneral approach, which is
described here in the context of speech recognition, asighise field that has attracted
most of the research in the last 40 years. The approach isl loasthe following statistical
framework.

A sequence of acoustic feature vectors is extracted fromaokesp utterance by a
front-end signal processor. We denote the sequence of icdeaature vectors bk =
(x1,X2,...,%X7), wherex; € X andX C R? is the domain of the acoustic vectors. Each
vector is a compact representation of the short-time spectfypically, each vector covers a
period of 10 msec and there are approximaik: 300 acoustic vectors in a 10 word utter-
ance. The spoken utterance consists of a sequence of wetd%:, ..., vy ). Each of the
words belongs to a fixed and known vocabulgryhat is,v; € V. The task of the speech rec-
ognizer is to predict the most probable word sequenggven the acoustic sign&l. Speech
recognition is formulated asraaximum a posterioiMAP) decoding problem as follows

(x|v)P(v)

p(X)
where we used Bayes’ rule to decompose the posterior pritgabithe last equation. The
termp(x|v) is the probability of observing the acoustic vector seqeengiven a specified
word sequence and it is known ashe acoustic modelThe termP (%) is the probability of
observing a word sequenceand it is known ashe language modeThe termp(x) can be
disregarded, since it is constant underiiex operation.

The acoustic model is usually estimated by a Hidden Markod&¢HMM) (Rabiner
and Juang 1993), a kind of graphical model (Jordan 1999)rémaesents the joint proba-
bility of an observed variable and a hidden (or latent) \@galn order to understand the
acoustic model, we now describe the basic HMM decoding mod&y decoding we mean
the calculation of therg maxz in Equation (1.1). The process starts with an assumed word
sequence. Each word in this sequence is converted into a sequencesaf §igoken units
calledphones$ using a pronunciation dictionary. Each phone is represete single HMM,
where the HMM is a probabilistic state machine typically garsed of three states (which
are the hidden or latent variables) in a left-to-right taqgyl. Assume tha@ is the set of all
states, and let be a sequence of states, thaj is (q1, ¢2, . - ., g7 ), where itis assumed there
exists some latent random variahglec Q for each framex, of x. Wrapping up, the sequence
of words® is converted into a sequence of phopessing a pronunciation dictionary, and the
sequence of phones is converted to a sequence of statesnwitheral at least 3 states per
phone. The goal now is to find the most probable sequencetefsta

Formally, the HMM is defined as a pair of random procegsasdx, where the following
first order Markov assumptions are made:

v’ = argmax P(7]|X) = arg max , (1.1

l. P(gtlq1,q2,---.qt—1) = P(gt|gi—1); and

Il p(xtlxla- ey X1, X1y - XT5 1, - - aqT) :p(xt|Qt) .

1A phoneis a consonant or vowel speech soungbonemas any equivalent set of phones which leaves a word
meaning invariant (Allen 2005).
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The HMM is agenerative modednd can be thought of as a generator of acoustic vector
sequences. During each time unit (frame), the model cangeharstate with probability
P(q:|g:—1), also known as th&ansition probability Then, at every time step, an acoustic
vector is emitted with probability(x:|q: ), sometimes referred to as thmission probability

In practice the sequence of states is not observable; heeamadel is called hidden. The
probability of the state sequengegiven the observation sequengecan be found using
Bayes'’ rule as follows,

where the joint probability of a vector sequencand a state sequengés calculated simply
as a product of the transition probabilities and the outpoibabilities,

p(%,@) = P(go) [ [ Plarlar—1) p(xilar) , (1.2)
t=1

where we assumed that is constrained to be a non-emitting initial state. The eimisden-
sity distributionsp(x:|q:) are often estimated using diagonal covariance Gaussiatuhdix
Models (GMMs) for each statg, which model the density of &dimensional vectok as
follows:

p(x) = Z wiN (x; p;, 04); (1.3)

wherew; € R is positive with . w; = 1, andN(-; u, o) is a Gaussian with megm; € R4

and standard deviatiom; € R?. Given the HMM parameters in the form of the transition
probability and emission probability (as GMMs), the prablef finding the most probable
state sequence is found by maximizipgk, g) over all possible state sequences using the
Viterbi algorithm(Rabiner and Juang 1993).

In the training phase, the model parameters are estimat=lirde one has access to a
training set ofm examplesTyain = {(x¢, %)} ,. Training of the acoustic model and the
language model can be done in two separate steps. The acowstel parameters include
the transition probabilities and the emission probabiitiand they are estimated by a pro-
cedure known as thBaum-Welch algorithniBaum et al. 1970), which is a special case
of the expectation-maximization (EM) algorithm, when apglto HMMs. This algorithm
provides a very efficient procedure to estimate these pibitiebiteratively. The parame-
ters of the HMMs are chosen to maximize the probability of éleeustic vector sequence
p(x) given a virtual HMM composed as the concatenation of the phdMs that corre-
spond to the underlying sequence of wofdsThe Baum-Welch algorithm monotonically
converges in polynomial time (with respect to the numbertafes and the length of the
acoustic sequences) to local stationary points of theitiked function.

Language models are used to estimate the probability ofmgigquence of wordg,(v).
The language model is often estimatedrbgrams (Manning and Schutze 1999), where the
probability of a sequence @f words (1, U2, ..., Uy) is estimated as follows:

p(v) = Hp(vth)t,l, Ve ey Vg N ) (1.4)
t



4 INTRODUCTION

where each term can be estimated on a large corpus of writimaent by simply counting
the occurrences of eaehgram. Various smoothing and back-off strategies have beeal-
oped in the case of largewhere mosti.-grams would be poorly estimated even using very
large text corpora.

1.2 Potential Problems of the Probabilistic Approach

Although most state-of-the-art approaches to speech nitimy are based on the use of
HMMs and GMMs, also called continuous-density HMMs (or CIMMSs) they have several
drawbacks, some of which we discuss hereafter.

e Consider the logarithmic form of Equation (1.2),

T T
log p(%,q) = log P(q0) + Y _log P(qilgi—1) + Y _logp(xi|ar) . (1.5)
t=1 t=1

There is a known structural problem when mixing densiies |¢:) and probabilities
P(q¢|q:—1): the global likelihood is mostly influenced by the emissiastributions
and almost not by the transition probabilities, hence teraspects are poorly taken
into account (Bourlard et al. 1996; Young 1996). This happerainly because the
variance of densities of the emission distribution depemdsthe actual dimension of
the acoustic features: the high&rthe higher the expected variancepgk|g), while
the variance of the transition distributions mainly dependhe number of states of
the HMM. In practice, one can observe a ratio of about 100 eefwthese variances,
hence when selecting the best sequence of words for a giverstc sequence, only
the emission distributions are taken into account. Althotng latter may well be very
well estimated using GMMs, they do not take into account rresaporal dependencies
between them (which are supposed to be modeled by trarsition

e While the EM algorithm is very well known and efficiently ingshented for HMMs, it
can only converge to local optima, and hence optimizatioy gnaatly vary according
to initial parameter settings. For CD-HMMSs, the Gaussiaranseand variances are
often initialized using K-Means, which is itself also knowm be very sensitive to
initialization.

e Notonly EM is known to be prone to local optimal, it is basigalsed to maximize the
likelihood of the observed acoustic sequence, in the coofeke expected sequence
of words. Note however that the performance of most speedyrezers are estimated
using other measures than the likelihood. In general, oigésested in minimizing
the number of errors in the generated word sequence. Thiteis done by computing
the Levenshtein distance between the expected and thenebtaiord sequences, and
is often known as thevord error rate There might be a significant difference between
the best HMM models according to the maximum likelihoodesign and the word
error rate criterion.

Hence, throughout the years, various alternatives have pegposed. One line of
research has been centered around proposing more disativeinraining algorithms for
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HMMs. That includes Maximum Mutual Information EstimatiGiMIE) (Bahl et al. 1986),
Minimum Classification Error (MCE) (Juang and Katagiri 199®linimum Phone Error
(MPE) and Minimum Word Error (MWE) (Povey and Woodland 200¥)these approaches,
although proposing better training criteria, still suffiedm most of the drawbacks described
earlier (local minima, useless transitions).

The last 15 years of research in the machine learning conmtynbas welcomed the
introduction of so-called large margin and kernel appreaclf which the Support Vector
Machine (SVM) is its best known example. An important topii¢hds book is to show how
these recent effort from the machine learning communitytEansed to improve research in
the speech processing domain. Hence, the next section asetieto a brief introduction to
SVMs.

1.3 Support Vector Machines for Binary Classification

The most well known kernel based machine learning appradbieiSupport Vector Machine
(SVM) (Vapnik 2000). While it was not developed in partiaular speech processing, most
of the chapters in this book propose kernel methods thanameeé way or another inspired
by the SVM.

Let us assume we are given a training setroexamplesTZiain = {(x;, v:)}72, where
x; € R? is ad-dimensional input vector angi € {—1,1} is the target class. The simplest
binary classifier one can think of is the linear classifierevéhwe are looking for parameters
(w € R%, b € R) such that

J(x) = sign(w - x +b) . (1.6)

When the training set is said to be linearly separable, tisgretentially an infinite num-
ber of solutiongw € R%, b € R) that satisfy (1.6). Hence, the SVM approach looks for the
one that maximizes thmargin between the two classes, where the margin can be defined
as the sum of the smallest distances between the separgpeglane and points of each
class. This concept is illustrated in Figure 1.1.

This can be expressed by the following optimization problem

1 2

i = 1.7

min - 5lwll (7
subjecttovi y;(w-x;+b) > 1.

While this is difficult to solve, its following dual formuletn is computationally more effi-

cient:

m 1 m n
mgx Z a; — B} Z Z YiYj o0 X4 - X (1.8)
i=1 i=1 j=1
Vi (67 Z 0

subject to a
. Zaiyi =0.
=1

One problem with this formulation is that if the problem isttinearly separable, there
might be no solution to it. Hence one can relax the conssdigtallowing errors with an
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Figure 1.1 lllustration of the notion of margin.

additional hyper-parametér that controls the trade-off between maximizing the margith a
minimizing the number of training errors, as follows:

. 1 2
min - Swl*+C) & (1.9)
. Vi yi(w-x;+b)>1-¢
subject to{ Vi & >0
which dual becomes

m 1 m n
max Z =3 Z Z Yil; OGX - X (1.10)

i=1 =1 j=1

subject to u
=1

In order to look for non-linear solutions, one can easiljaepx by some non-linear function
¢(x). Itis interesting to note that only appears in dot products in (1.10). It has thus been
proposed to replace all occurrencesfdk;) - ¢(x;) by some kernel functiok(x;, x;). As
long ask(-,-) lives in a reproducing kernel Hilbert space (RKHS), one caargntee that
there exists some functiaf(-) such that

k(xi,x5) = d(x;) - p(x;) -

Thus, even ifp(x) projectsx in a very high (possibly infinite) dimensional spatéx;, x;)
can still be efficiently computed.

Problem (1.10) can be solved using off-the-shelf quadogtenization tools. Note how-
ever that the underlying computational complexity is asteguadratic in the number of
training examples, which can often be a serious limit forispsech processing applications.
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After solving (1.10), the resulting SVM solution takes tloerh of

g(x) = sign <Z yicik(x;,%x) + b) (1.11)
i=1

where mosty; are zero except those corresponding to examples in the margnisclassi-
fied, often callecdupport vectorghence the name of SVMs).

1.4 Outline

The book has four parts. The first pafgundations, covers important aspects of extending
the binary support vector machine to speech and speakegiitiom applications. Chapter 1
provides a detailed review on efficient and practical sohgito large scale convex opti-
mization problems one encounters when using large marginkamel methods with the
enormous datasets used in speech applications. Chaptes@nps an extension of the binary
support vector machine to multiclass, hierarchical andgatcal classification. Specifically,
the chapter presents a more complex setting in which thaljedabels or categories are
many and organized.

The second parf\coustic Modeling, deals with large margin and kernel method algo-
rithms for sequence prediction required for acoustic madelChapter 4 presents a large
margin algorithm for forced alignment of a phoneme sequéace corresponding speech
signal, that is, proper positioning of a sequence of phoiseimeelation to a correspond-
ing continuous speech signal. Chapter 5 describes a kerapper for the task of phoneme
recognition, which is based on the Gaussian kernel. Thiptehalso presents a kernel-
based iterative algorithm aims at minimizing the Levenishdéstance between the predicted
phoneme sequence and the true one. Chapter 6 reviews the dgaamic kernels for
acoustic models and especially describes the augmentetisth models, resulted from the
generative kernel, a generalization of the Fisher kernehper 7 investigates a framework
for large margin parameter estimation for continuous-g kviMs.

The third part of the book is devotedltanguage Modeling Chapter 8 reviews past and
present work on discriminative training of language mogdeatsl focuses on three key issues:
training data, learning algorithms, and features. Chapuescribes different large margin
algorithms for the application of part-of-speech taggi@bapter 10 presents a proposal for
large vocabulary continuous speech recognition, whiclolisls based on large margin and
kernel methods, incorporating the acoustic models desgiibPart | and the discriminative
language models.

The last part is dedicated #pplications. Chapter 11 covers a discriminative keyword
spotting algorithm, based on a large margin approach, waiicts at maximizing the area
under the ROC curve, the most common measure to evaluateoképpotters. Chapter 12
surveys recent work on the use of kernel approaches toridependent speaker verifica-
tion. Finally, Chapter 13 introduces the main concepts dgdrithms together with recent
advances in learning a similarity matrix from data. The téghes in the chapter are illus-
trated on the blind one-microphone speech separation gmgldy casting the problem as
one of segmentation of the spectrogram.
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