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One of the most natural communication tool used by humans is their voice. It is hence natural
that a lot of research has been devoted to analyze and understand human uttered speech for
various applications. The most obvious one isautomatic speech recognition, where the
goal is to transcribe a recorded speech utterance into its corresponding sequence of words.
Other applications includespeaker recognition, where the goal is to either determine the
claimed identity of the speaker (verification) or who is speaking (identification), and speaker
segmentation or diarization, where the goal is to segment anacoustic sequence in terms of
the underlying speakers (such as during a dialog).

Although enormous amount of research has been devoted to speech processing, there
appear to be some form of local optimum in terms of the fundamental tools used to approach
these problems. The aim of this book is to introduce the speech researcher community
with radically different approaches based on more recent kernel based machine learning
approaches. In this introduction, we first briefly remind themain speech processing approach,
based on hidden Markov models, as well as its known problems,then introduce the most well
known kernel based approach, the Support Vector Machine (SVM), and finally opens to the
various contributions of this book.
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2 INTRODUCTION

1.1 The Traditional Approach to Speech Processing

Most speech processing problems, including speech recognition, speaker verification,
speaker segmentation, etc., proceed with basically the same general approach, which is
described here in the context of speech recognition, as thisis the field that has attracted
most of the research in the last 40 years. The approach is based on the following statistical
framework.

A sequence of acoustic feature vectors is extracted from a spoken utterance by a
front-end signal processor. We denote the sequence of acoustic feature vectors bȳx =
(x1,x2, . . . ,xT ), wherext ∈ X andX ⊂ R

d is the domain of the acoustic vectors. Each
vector is a compact representation of the short-time spectrum. Typically, each vector covers a
period of 10 msec and there are approximatelyT = 300 acoustic vectors in a 10 word utter-
ance. The spoken utterance consists of a sequence of wordsv̄ = (v1, . . . , vN ). Each of the
words belongs to a fixed and known vocabularyV , that is,vi ∈ V . The task of the speech rec-
ognizer is to predict the most probable word sequencev̄′ given the acoustic signal̄x. Speech
recognition is formulated as amaximum a posteriori(MAP) decoding problem as follows

v̄′ = argmax
v̄

P (v̄|x̄) = arg max
v̄

p(x̄|v̄)P (v̄)

p(x̄)
, (1.1)

where we used Bayes’ rule to decompose the posterior probability in the last equation. The
termp(x̄|v̄) is the probability of observing the acoustic vector sequence x̄ given a specified
word sequencēv and it is known asthe acoustic model. The termP (v̄) is the probability of
observing a word sequencev̄ and it is known asthe language model. The termp(x̄) can be
disregarded, since it is constant under themax operation.

The acoustic model is usually estimated by a Hidden Markov Model (HMM) (Rabiner
and Juang 1993), a kind of graphical model (Jordan 1999) thatrepresents the joint proba-
bility of an observed variable and a hidden (or latent) variable. In order to understand the
acoustic model, we now describe the basic HMM decoding process. By decoding we mean
the calculation of theargmaxv̄ in Equation (1.1). The process starts with an assumed word
sequencēv. Each word in this sequence is converted into a sequence of basic spoken units
calledphones1 using a pronunciation dictionary. Each phone is represented by a single HMM,
where the HMM is a probabilistic state machine typically composed of three states (which
are the hidden or latent variables) in a left-to-right topology. Assume thatQ is the set of all
states, and let̄q be a sequence of states, that isq̄ = (q1, q2, . . . , qT ), where it is assumed there
exists some latent random variableqt ∈ Q for each framext of x̄. Wrapping up, the sequence
of wordsv̄ is converted into a sequence of phonesp̄ using a pronunciation dictionary, and the
sequence of phones is converted to a sequence of states, within general at least 3 states per
phone. The goal now is to find the most probable sequence of states.

Formally, the HMM is defined as a pair of random processesq̄ andx̄, where the following
first order Markov assumptions are made:

I. P (qt|q1, q2, . . . , qt−1) = P (qt|qt−1); and

II. p(xt|x1, . . . ,xt−1,xt+1, . . . ,xT , q1, . . . , qT ) = p(xt|qt) .

1A phoneis a consonant or vowel speech sound. Aphonemeis any equivalent set of phones which leaves a word
meaning invariant (Allen 2005).
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The HMM is a generative modeland can be thought of as a generator of acoustic vector
sequences. During each time unit (frame), the model can change a state with probability
P (qt|qt−1), also known as thetransition probability. Then, at every time step, an acoustic
vector is emitted with probabilityp(xt|qt), sometimes referred to as theemission probability.
In practice the sequence of states is not observable; hence the model is called hidden. The
probability of the state sequencēq given the observation sequencex̄ can be found using
Bayes’ rule as follows,

P (q̄|x̄) =
p(x̄, q̄)

p(x̄)
,

where the joint probability of a vector sequencex̄ and a state sequenceq̄ is calculated simply
as a product of the transition probabilities and the output probabilities,

p(x̄, q̄) = P (q0)

T∏

t=1

P (qt|qt−1) p(xt|qt) , (1.2)

where we assumed thatq0 is constrained to be a non-emitting initial state. The emission den-
sity distributionsp(xt|qt) are often estimated using diagonal covariance Gaussian Mixture
Models (GMMs) for each stateqt, which model the density of ad-dimensional vectorx as
follows:

p(x) =
∑

i

wiN (x;µi,σi); (1.3)

wherewi ∈ R is positive with
∑

iwi = 1, andN (·;µ,σ) is a Gaussian with meanµi ∈ R
d

and standard deviationσi ∈ R
d. Given the HMM parameters in the form of the transition

probability and emission probability (as GMMs), the problem of finding the most probable
state sequence is found by maximizingp(x̄, q̄) over all possible state sequences using the
Viterbi algorithm(Rabiner and Juang 1993).

In the training phase, the model parameters are estimated. Assume one has access to a
training set ofm examplesTtrain = {(x̄i, v̄i)}mi=1. Training of the acoustic model and the
language model can be done in two separate steps. The acoustic model parameters include
the transition probabilities and the emission probabilities, and they are estimated by a pro-
cedure known as theBaum-Welch algorithm(Baum et al. 1970), which is a special case
of the expectation-maximization (EM) algorithm, when applied to HMMs. This algorithm
provides a very efficient procedure to estimate these probabilities iteratively. The parame-
ters of the HMMs are chosen to maximize the probability of theacoustic vector sequence
p(x̄) given a virtual HMM composed as the concatenation of the phone HMMs that corre-
spond to the underlying sequence of wordsv̄. The Baum-Welch algorithm monotonically
converges in polynomial time (with respect to the number of states and the length of the
acoustic sequences) to local stationary points of the likelihood function.

Language models are used to estimate the probability of a given sequence of words,P (v̄).
The language model is often estimated byn-grams (Manning and Schutze 1999), where the
probability of a sequence ofN words (̄v1, v̄2, . . . , v̄N ) is estimated as follows:

p(v̄) ≈
∏

t

p(vt|vt−1, vt−2, . . . , vt−N ) (1.4)
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where each term can be estimated on a large corpus of written document by simply counting
the occurrences of eachn-gram. Various smoothing and back-off strategies have beendevel-
oped in the case of largen where mostn-grams would be poorly estimated even using very
large text corpora.

1.2 Potential Problems of the Probabilistic Approach

Although most state-of-the-art approaches to speech recognition are based on the use of
HMMs and GMMs, also called continuous-density HMMs (or CD-HMMs) they have several
drawbacks, some of which we discuss hereafter.

• Consider the logarithmic form of Equation (1.2),

log p(x̄, q̄) = logP (q0) +

T∑

t=1

logP (qt|qt−1) +

T∑

t=1

log p(xt|qt) . (1.5)

There is a known structural problem when mixing densitiesp(xt|qt) and probabilities
P (qt|qt−1): the global likelihood is mostly influenced by the emission distributions
and almost not by the transition probabilities, hence temporal aspects are poorly taken
into account (Bourlard et al. 1996; Young 1996). This happens mainly because the
variance of densities of the emission distribution dependsond the actual dimension of
the acoustic features: the higherd, the higher the expected variance ofp(x̄|q̄), while
the variance of the transition distributions mainly dependon the number of states of
the HMM. In practice, one can observe a ratio of about 100 between these variances,
hence when selecting the best sequence of words for a given acoustic sequence, only
the emission distributions are taken into account. Although the latter may well be very
well estimated using GMMs, they do not take into account mosttemporal dependencies
between them (which are supposed to be modeled by transitions).

• While the EM algorithm is very well known and efficiently implemented for HMMs, it
can only converge to local optima, and hence optimization may greatly vary according
to initial parameter settings. For CD-HMMs, the Gaussian means and variances are
often initialized using K-Means, which is itself also knownto be very sensitive to
initialization.

• Not only EM is known to be prone to local optimal, it is basically used to maximize the
likelihood of the observed acoustic sequence, in the context of the expected sequence
of words. Note however that the performance of most speech recognizers are estimated
using other measures than the likelihood. In general, one isinterested in minimizing
the number of errors in the generated word sequence. This is often done by computing
the Levenshtein distance between the expected and the obtained word sequences, and
is often known as theword error rate. There might be a significant difference between
the best HMM models according to the maximum likelihood criterion and the word
error rate criterion.

Hence, throughout the years, various alternatives have been proposed. One line of
research has been centered around proposing more discriminative training algorithms for
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HMMs. That includes Maximum Mutual Information Estimation(MMIE) (Bahl et al. 1986),
Minimum Classification Error (MCE) (Juang and Katagiri 1992), Minimum Phone Error
(MPE) and Minimum Word Error (MWE) (Povey and Woodland 2002). All these approaches,
although proposing better training criteria, still sufferfrom most of the drawbacks described
earlier (local minima, useless transitions).

The last 15 years of research in the machine learning community has welcomed the
introduction of so-called large margin and kernel approaches, of which the Support Vector
Machine (SVM) is its best known example. An important topic of this book is to show how
these recent effort from the machine learning community canbe used to improve research in
the speech processing domain. Hence, the next section is devoted to a brief introduction to
SVMs.

1.3 Support Vector Machines for Binary Classification

The most well known kernel based machine learning approach is the Support Vector Machine
(SVM) (Vapnik 2000). While it was not developed in particular for speech processing, most
of the chapters in this book propose kernel methods that are in one way or another inspired
by the SVM.

Let us assume we are given a training set ofm examplesTtrain = {(xi, yi)}mi=1 where
xi ∈ R

d is a d-dimensional input vector andyi ∈ {−1, 1} is the target class. The simplest
binary classifier one can think of is the linear classifier, where we are looking for parameters
(w ∈ R

d, b ∈ R) such that
ŷ(x) = sign(w · x + b) . (1.6)

When the training set is said to be linearly separable, thereis potentially an infinite num-
ber of solutions(w ∈ R

d, b ∈ R) that satisfy (1.6). Hence, the SVM approach looks for the
one that maximizes themargin between the two classes, where the margin can be defined
as the sum of the smallest distances between the separating hyper-plane and points of each
class. This concept is illustrated in Figure 1.1.

This can be expressed by the following optimization problem:

min
w,b

1

2
‖w‖2 (1.7)

subject to∀i yi(w · xi + b) ≥ 1 .

While this is difficult to solve, its following dual formulation is computationally more effi-
cient:

max
α

m∑

i=1

αi −
1

2

m∑

i=1

n∑

j=1

yiyjαiαjxi · xj (1.8)

subject to





∀i αi ≥ 0
m∑

i=1

αiyi = 0 .

One problem with this formulation is that if the problem is not linearly separable, there
might be no solution to it. Hence one can relax the constraints by allowing errors with an
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Figure 1.1 Illustration of the notion of margin.

additional hyper-parameterC that controls the trade-off between maximizing the margin and
minimizing the number of training errors, as follows:

min
w,b

1

2
‖w‖2 + C

∑

i

ξi (1.9)

subject to

{
∀i yi(w · xi + b) ≥ 1− ξi
∀i ξi ≥ 0

which dual becomes

max
α

m∑

i=1

αi −
1

2

m∑

i=1

n∑

j=1

yiyjαiαjxi · xj (1.10)

subject to





∀i 0 ≤ αi ≤ C
m∑

i=1

αiyi = 0 .

In order to look for non-linear solutions, one can easily replacex by some non-linear function
φ(x). It is interesting to note thatx only appears in dot products in (1.10). It has thus been
proposed to replace all occurrences ofφ(xi) · φ(xj) by some kernel functionk(xi,xj). As
long ask(·, ·) lives in a reproducing kernel Hilbert space (RKHS), one can guarantee that
there exists some functionφ(·) such that

k(xi,xj) = φ(xi) · φ(xj) .

Thus, even ifφ(x) projectsx in a very high (possibly infinite) dimensional space,k(xi,xj)
can still be efficiently computed.

Problem (1.10) can be solved using off-the-shelf quadraticoptimization tools. Note how-
ever that the underlying computational complexity is at least quadratic in the number of
training examples, which can often be a serious limit for most speech processing applications.
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After solving (1.10), the resulting SVM solution takes the form of

ŷ(x) = sign

(
m∑

i=1

yiαik(xi,x) + b

)
(1.11)

where mostαi are zero except those corresponding to examples in the margin or misclassi-
fied, often calledsupport vectors(hence the name of SVMs).

1.4 Outline

The book has four parts. The first part,Foundations, covers important aspects of extending
the binary support vector machine to speech and speaker recognition applications. Chapter 1
provides a detailed review on efficient and practical solutions to large scale convex opti-
mization problems one encounters when using large margin and kernel methods with the
enormous datasets used in speech applications. Chapter 2 presents an extension of the binary
support vector machine to multiclass, hierarchical and categorical classification. Specifically,
the chapter presents a more complex setting in which the possible labels or categories are
many and organized.

The second part,Acoustic Modeling, deals with large margin and kernel method algo-
rithms for sequence prediction required for acoustic modeling. Chapter 4 presents a large
margin algorithm for forced alignment of a phoneme sequenceto a corresponding speech
signal, that is, proper positioning of a sequence of phonemes in relation to a correspond-
ing continuous speech signal. Chapter 5 describes a kernel wrapper for the task of phoneme
recognition, which is based on the Gaussian kernel. This chapter also presents a kernel-
based iterative algorithm aims at minimizing the Levenshtein distance between the predicted
phoneme sequence and the true one. Chapter 6 reviews the use of dynamic kernels for
acoustic models and especially describes the augmented statistical models, resulted from the
generative kernel, a generalization of the Fisher kernel. Chapter 7 investigates a framework
for large margin parameter estimation for continuous-density HMMs.

The third part of the book is devoted toLanguage Modeling. Chapter 8 reviews past and
present work on discriminative training of language models, and focuses on three key issues:
training data, learning algorithms, and features. Chapter9 describes different large margin
algorithms for the application of part-of-speech tagging.Chapter 10 presents a proposal for
large vocabulary continuous speech recognition, which is solely based on large margin and
kernel methods, incorporating the acoustic models described in Part II and the discriminative
language models.

The last part is dedicated toApplications. Chapter 11 covers a discriminative keyword
spotting algorithm, based on a large margin approach, whichaims at maximizing the area
under the ROC curve, the most common measure to evaluate keyword spotters. Chapter 12
surveys recent work on the use of kernel approaches to text-independent speaker verifica-
tion. Finally, Chapter 13 introduces the main concepts and algorithms together with recent
advances in learning a similarity matrix from data. The techniques in the chapter are illus-
trated on the blind one-microphone speech separation problem, by casting the problem as
one of segmentation of the spectrogram.
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