

Life on the Edge:
Monitoring and Running A Very Large

Perforce Installation
Dan Bloch, Google

March 24, 2007

Abstract
Although Perforce does a remarkable job of scaling, Google's main server is at the limits of what
Perforce can do, and eternal vigilance is the price of being able to provide acceptable service to
our users. This talk discusses the monitoring tools and techniques used at Google and the
actions that we (or the tools) take in response to the information provided. Some new Perforce
features, notably the performance tracking information introduced in Perforce 2005.2, are
discussed in detail.

A key result which applies to smaller sites is that server load is often caused by a few users or a
few commands, and the ability to identify these allows improvement to performance without the
purchase of additional hardware or software.

Introduction
Perforce scales astonishingly well, but many if not most sites run into performance issues sooner
or later. The two standard solutions to performance problems are buying faster hardware or
splitting the depot.

Hardware upgrades are indeed often the right solution, but they involve expense, downtime, and
uncertainty as to whether the new hardware will really solve the problem. Google is already at
the limits of what can be done through hardware improvements, so most of our improvements
have to come from the way we use our server.

Splitting a depot is a great deal of work, involving changes to supporting tools and procedures
(e.g., backups, authentication, builds), user education, and some amount of ongoing increased
workload for both users and administrators forever. We have embarked on this course as well
(we're now running a half dozen smaller servers), but most sites will choose to avoid splitting their
depot if at all possible.

Google has a very large, very active, fast growing Perforce server. As far back as two years ago,
we started encountering performance problems, and investigation into server utilization found that
significant load was due to unnecessary commands which could be eliminated. Refinement of
that investigation has continued to this day. Over the last year and a half we have improved our
server's responsiveness while more than doubling the number of users, the size of the database,
and the volume of transactions per day. This is the result of work on many fronts including
incremental hardware and software upgrades, aggressive database cleanup, and moving some
users to satellite servers, but the most significant factor has been monitoring server use at a

detailed level and taking ongoing action to prevent unacceptable commands from running. At this
point most routine enforcement is automated.

This paper discusses the monitoring provided by Perforce and additional tools built at Google on
top of Perforce's native monitoring (available in the Perforce public depot). The discussion
applies to Perforce installations of all sizes, although since there is an investment in the
administrator's time, the processes may not be of interest to sites unless they're experiencing
performance problems. Even at Google we only run most of these tools on our main server, but
they're available on smaller servers in case of need. Server size is of course relative to machine
size--a small installation running on a small machine can benefit from monitoring as much as
large installation running on a fast machine.

This paper describes Perforce 2006.1 and some Perforce 2006.2 features, running on Linux.
Some results are not applicable to servers running on Windows. In particular, on Windows it's
not possible to kill individual Perforce commands on the server using OS commands.

Note that parts of this paper discuss Perforce internals which, though they have been stable for
many releases, are undocumented and subject to change.

Perforce at Google
Google's main Perforce server is very large, very active and requires 24x7 uptime. It has more
than 4000 active users, 200 GB of metadata, and performs more than 2 million commands a day.
In addition to this main server we run a number of smaller servers, read-only replicas, and proxies
worldwide. We use an extensive layer of tools built on top of Perforce, and make heavy use of
triggers. Perforce at Google is used by IT and other departments in addition to Engineering. Our
operating platform consists of an HP DL585 with 4 dual-core Opterons and 128 GB of RAM
running Red Hat 2.6 Linux and Perforce 2006.1. The depot is on a NetApp filer, and the
database and journal are on RAID-10 local disk using the ext3 file system.

We do a number of things right: we set MaxScanrows and MaxResults to limit large queries; we
aggressively clean up inactive clients, labels, and users; we make use of proxies and read-only
replicas; and we upgrade to new versions of Perforce within three or four months of their release
to take advantage of performance enhancements.

Unfortunately, we also do a number of things which are less than ideal from a performance
standpoint: we have a very complex protect table, our users run many automated scripts, we
have many large (30,000+ file) clients and branches, and we make heavy use of temporary
clients. We are working to change some of this, but much of it arises from Google's culture:
within limits, any engineer is free to use Perforce in any way he or she sees fit.

Perforce Architecture
In order to understand performance, it's necessary to understand something about the Perforce
architecture.

The Perforce Process Model
There is a single Perforce server, p4d, which runs on the server machine. Each command run by
a user results in a child p4d process on this server machine. Processes can be identified by their
pid (process ID), which is shown or used by various OS-level tools (ps, top, kill) and shown by
Perforce in p4 monitor show output and in the error log. An important point is that any
command, from any client (e.g., from P4V, P4SQL, or the P4API), appears to the server as if it
came from the p4 command line. That is, the set of possible commands is defined entirely by the
Perforce Command Reference.

The Perforce Database and Locking
The Perforce server stores all its information except for the content of users' files in a database.
The database is a modified version of BerkeleyDB. Physically, this consists of about thirty-five
database files in the P4ROOT directory on the server machine, with names like “db.have”,
“db.labels”, and “db.counters”. This is the data which is saved in checkpoints. Details about the
database schema can be found at http://www.perforce.com/perforce/doc.062/schema/index.html.

Discussion of the database files themselves is outside the scope of this paper, but their existence
is tremendously significant from a performance standpoint, because the p4d processes take locks
on them while executing commands.

Locks are an OS-level feature which prevents multiple processes from modifying a file at the
same time, or from getting inconsistent views of a file. Two types of locks are used: exclusive
("write") locks and shared ("read") locks. When a process has a write lock on a file, no other
process can either read or write to the file. When a process has a read lock on a file, other
processes can also read it (they will take locks on the same file), but no process can write to it.

From an administrator's or a user's point of view, the consequences of this are immensely
significant. When a long-running command is holding a lock, all other access to that database file
(or all write access, if it's a read lock) is blocked. Since some files are used by almost all
commands, this has the effect of stopping almost all activity on the server.

This is the source of a widespread misconception that the Perforce server is single-threaded.
The server is very much multi-threaded, but database locks can block all the threads, making it
effectively single-threaded for the duration that locks are held. The typical examples of this are
big submits or integrates, which on an installation of our size can block the server for many
minutes.

Note that the operative phrase is "for the duration that locks are held". If locks were held for the
entire time a command was run, Perforce wouldn't work at all. Perforce allows as much
concurrency as possible by holding locks for the shortest possible time. In particular, locks are
never held while files from the depot are being accessed (p4 sync, p4 print, p4 submit) or while
triggers are being run. This means that slow depot access or poorly written triggers will never
block database access to other commands. This also means that syncs continue to run while the
server appears to be hanging for other commands.

A final significant point about lock time is that from a hardware point of view, this is a disk I/O
bottleneck on the volume holding the Perforce database. The locks are being held for the amount
of time it takes the server to do seeks, reads, or writes on that disk. Anything you can do to
speed up disk access will improve this situation.

Perforce has recognized the importance of database locking in their most recent releases.
Perforce 2005.2 added the time spent holding locks to the diagnostic information in the error log,
and Perforce 2006.2 added a settable MaxLockTime resource limit. Both of these are discussed
in more detail below.

Additional detail on database locking can be found in my presentation from the 2006 Perforce
European User Conference, Performance and Database Locking at Large Perforce Sites.

Monitoring Tools Provided By Perforce
p4 monitor show

The p4 monitor show command lists commands currently running. For some reason this
functionality is disabled by default. If when you try to run it you see, "Monitor not currently
enabled", you'll need to enable it by running "p4 counter -f monitor 1", and restarting the
server. Output looks like this:
% p4 monitor show

http://www.perforce.com/perforce/doc.062/schema/index.html

 3114 R build 00:00:09 changes
 4394 R alexh 00:00:01 have
 4419 R dbloch 00:00:00 monitor
 ...

The first number is the process ID. Users with p4 admin access can use the -l flag, which
provides the command arguments as well:
% p4 monitor show -l
 3114 R build 00:00:09 changes -m 1 -s submitted ...
 4394 R alexh 00:00:01 have /home/alexh/google/search/trace.h
 4419 R dbloch 00:00:00 monitor show -l
 ...

or the -e flag, which includes the IP address, client, and client program (p4, p4v, etc.) as well:

% p4 monitor show -e
 3114 p4/v99999 172.27.75.60 R build unittest_c 00:00:09 changes
 4394 p4/v99999 172.24.8.91 R alexh alexh-src 00:00:01 have
 4419 p4/v99999 172.25.203.43 R dbloch dbloch 00:00:00 monitor
 ...

As of Perforce 2006.1 you may, if you choose, set the monitor counter to 2 instead of 1 to include
idle processes in the output. Idle processes exist if an application uses the p4 API, and holds a
connection open to the server so it can run multiple commands. P4V and P4WIN both do this.
Idle processes use no significant resources on the server, and typically aren't of interest.

p4 monitor show is the simplest tool at your disposal. It may be all that's needed at small
sites, but when you have more than a hundred commands running at any one time, visual
inspection of the output isn't all that helpful.

One drawback of p4 monitor is that the p4 monitor show command itself can hang when the
server is hanging. A workaround for this is described in my previous presentation.

The Error Log
The error log is the primary tool available for server analysis of all kinds. It's specified with the -L
log option to the p4d command. This option should always be specified, since otherwise error
messages go to stderr and will be lost. Additionally I highly recommend setting the debug mode
to 2 or 3 (-v server=3), which causes the server to log start and stop records for all Perforce
commands, turning the error log into an event log.

This is invaluable for data mining and after-the-fact performance analysis, and is also very useful
for answering user questions like "who deleted my client?" It does make the error log much
larger than it would be otherwise (Google's sometimes reaches a gigabyte in a day) so it's
important to rotate it and delete or archive the old logs.

Log output looks like this:
Perforce server info:
 2006/01/20 00:10:04 pid 23520 nora@nora-maps 172.30.0.103 [p4]
 'user -add -c 2002444 //depot/google/search/maps.cc'
 2006/01/20 00:10:16 pid 23520 completed 12.512s 20+100us 0+0io
 0+0net 0k 23pf

(line breaks added), where data includes start and stop time, pid, user, client, IP address, client
program, command, and (on the "completed" line, elapsed time, CPU time, io and network
operations, memory used, and page faults.

Some commands, such as sync, have additional “compute end” log entries. Note that only the
CPU time in the first “compute end” line is valid for these. p4 submit commands have
additional dm-CommitSubmit and dm-SubmitChange entries for different phases of the submit.

If a process is killed, there will be a “Process 10927 exited on a signal 15!” line instead of a
“completed” line.

The simplest use of the error log is to grep for commands of interest, e.g., by a specific user, but
it's possible to do arbitrarily complex processing on it.

Perforce 2005.2 added "performance tracking" output: when a command exceeds a certain
threshold of resource use, additional entries are printed to the error log. The thresholds are
dependent on the number of licensed users, e.g., for a server of our size information will be
printed if a command takes more than a minute of elapsed time, 10 seconds of CPU time, etc.
These entries are always printed, irrespective of the -v server value describe above. There is
a -v track option which can turn off performance tracking or change the thresholds, but in our
experience it has never been necessary to modify this.

A fairly simple example of this output is
Perforce server info:
 2007/03/22 23:13:10 pid 26154 config@config-mp 172.26.64.72
 [p4/v99999] 'user-resolve -as'
--- lapse 3180s
--- usage 90656+13715us 0+0io 0+0net 0k 148pf
--- db.resolve
--- pages in+out+cached 11240+11878+64
--- locks wait+held read/write 0ms+811ms/34441ms+31ms

Interpretation of this format is left as an exercise to the reader (and to a script, described below).
These entries, and arguably the whole error log, are intended for use by Perforce product
support, but are certainly amenable to use by local administrators. The format of the entries is
undocumented and subject to change, but has been stable for the two releases since it was
introduced. For our purposes, by far the most interesting information is the time spent holding
and waiting for locks.

The performance tracking information also includes messages "killed by MaxResults", "killed by
MaxScanRows", etc., as appropriate.

Other Logs
The following are not part of a monitoring strategy, but are mentioned for completeness.

Journal - Perforce logs all database modifications to a journal file for the purpose of recovering
the database in case of emergency. Although diagnostic information isn't the goal of the journal,
it is possible to use it for this purpose. This is quite difficult, though, and needed only in
extraordinary circumstances. Use of the journal file for diagnostic purposes is outside the scope
of this paper.

Audit Log - Perforce 2006.1 added an audit log, specified with an optional -A auditlog option
to p4d, which logs every file access by every user. This log (not used at Google) is very large,
and is typically not useful for diagnostic purposes. Audit logging is disabled by default.

Experience at Google
Initial Work
A year and a half to two years ago, performance became unacceptable to our users, with the
server regularly blocked for half a minute or more out of every five minutes. A manual
investigation followed, using tools such as "p4 monitor show" and the OS utility "top", and the
problem was tracked down to a small number of frequently run automated jobs and fixed.

Server Spikes and locks.pl
This solved the urgent issue, but we still had problems. Several times a day, the server would
stop responding to commands. To the user, it appears that the server was hanging. To the

administrator, this was visible as a spike in the number of p4d processes. Spikes could last for
one minute, five minutes, ten minutes, or longer. At that time, the cause of these was a mystery.
They turned out to be caused by long-running p4 commands holding locks.

Two Server Spikes

The diagram here shows two server spikes. Time is on the horizontal axis, and Perforce process
count is on the vertical axis. The first spike is caused by a p4 submit command. Since it's
blocking all other commands, the number of processes waiting on it goes up very steeply. The
second is caused by a p4 integrate so only write commands are waiting on it. It lasts longer
but never blocks as many processes.

The tool which came out of this was the locks.pl script, which uses "p4 monitor show" and the
lsof command, available in most versions of Unix, to report on which specific Perforce
commands are holding locks while a spike is in progress. At Google this script is set to run every
half minute when the process count goes above 250 processes, and to send mail to Perforce
administrators for possible action.

Based on this information, we are able to kill the offending command if appropriate, find the root
causes of commands, and if possible change scripts or work procedures so they don't happen
again. The investigation into this was the subject of my presentation last year.

Automation
With increased understanding of the offending commands, we expanded locks.pl's monitoring
role to also kill known offending commands. A representative sample of the commands the script
now kills is:

• p4 integrated (on a branch)
• p4 changes -i (on a branch)
• p4 filelog ... (I don't know why people do this, but they do)
• p4 integrate //depot/path/... @nnnnnn (note accidental space before @)
• p4 opened -a (on a path with a wildcard)
• p4 fstat -P -Ol //depot/...pattern (generated by p4v)
• p4 files //depot/path/.../path2/... (multiple wildcards)
• and finally, all integrates which take longer than 10 minutes

A time threshold is associated with each of the commands, usually a minute but sometimes two
or three if the commands have legitimate uses (perhaps in small branches). The script
occasionally kills an innocent bystander, that is, a process that is not the cause of a server hang,
but this is infrequent. This capability of the script is the end result of about a year of tuning.

When the script kills a command it notifies p4 administrators by e-mail, and we usually send mail
to the user explaining that his command was killed and why, and offering to help him with
alternatives.

Note that this script targets read commands only, uses the kill system call with a SIGTERM
signal, which allows Perforce to do cleanup on the server side, and as an added safeguard
checks that the process is not holding any write locks before killing it. In the general case, killing
Perforce processes by means other than "p4 monitor terminate" is done at your own risk. It is
possible to corrupt the Perforce database if you kill processes while they are writing to the
database.

Finally, note that while this capability of the script has been invaluable over the last year, it has
been made less essential by the introduction of the MaxLockTime limit in Perforce 2006.2
(described below).

Further Automation - Terminating Commands Proactively
Killing commands this way, or by MaxLockTime, is reactive in that by the time the command is
killed it has already blocked the server for half a minute or more. It turns out that we are able to
identify a set of commands which should never be run.

These are typically run by P4V or P4WIN, so we have little direct control over them. The "p4 fstat
-P -Ol //depot/...pattern" command in the list above is an example of one such. This is generated
by default when a user does a "find file" search. Our depot is so large that this command will
never succeed, but it will block the server until it fails with "MaxScanRows exceeded" or we kill it.

Our solution is to run a script which tails the log, searches for known bad commands, and kills
them as soon as they're run. For that particular command, we send the user a suggestion for an
alternate command. For most, no action need be taken.

Other commands killed by this script are "p4 opened -a" called from P4V or P4WIN, and "p4 fstat"
or "p4 dirs" of //specs/client/*. This script kills about twenty commands a day, so it's giving us
back ten or fifteen minutes a day of time during which the server would otherwise be unavailable.

Another use we've found for this script is that every once in while a rogue automated job starts
doing some kind of expensive query on a regular basis. By adding a regular expression for that
command to the list of commands to be killed, we can shut it down immediately without waiting to
contact the user, or disabling his account, which would block any other work that he's doing.

The Perforce 2005.2 Error Log and lockers.pl
As mentioned above, the performance tracking information added to the error log in Perforce
2005.2 adds locking information which can be invaluable for tracking down performance
bottlenecks. Unfortunately, it isn't very easy for human beings to read. Consider the example
below, of a sync which locks database tables for a little over a minute:
Perforce server info:
 2007/03/25 03:12:41 pid 29576 build@build 172.24.6.10
 [updatebuild.py/v57] 'user-sync //...'
--- lapse 72.6s
--- usage 67412+5241us 0+0io 0+0net 0k 0pf
--- db.have
--- locks read/write 1/1 rows get+pos+scan put+del 0+1+1459792 11+0
--- locks wait+held read/write 0ms+70827ms/0ms+1ms
--- db.resolve
--- locks wait+held read/write 0ms+70826ms/0ms+0ms
--- db.rev
--- pages in+out+cached 259914+0+64
--- locks read/write 1/0 rows get+pos+scan put+del 0+10+7960042 0+0
--- locks wait+held read/write 0ms+57724ms/0ms+0ms

Consider further that it's embedded in an error log with millions of lines. I've written a script,
lockers.pl, availailable in the Perforce Public depot in //guest/dan_bloch, which parses
the error log and lists all commands with lock time over a specified threshold (default is fifteen
seconds), which will extract the above and print it as:
2007/03/25 03:12:41 pid 29576 build@build 172.24.6.10
 [updatebuild.py/v57] 'user-sync //...'
 db.have: read: 70.827
 db.resolve: read: 70.826
 db.rev: read: 57.724

This script is related to locks.pl in that they both report on commands holding locks, but while
locks.pl is used on the live server in real time, lockers.pl is for post-analysis. It can be
used either to investigate a performance problem immediately after it has happened, or to look at
logs on a daily or weekly basis for trends and significant users of lock resources.

Summary of Monitoring at Google
p4d Process Count
In our experience the p4d process count is the one best metric for system performance. This is a
single number which is a measure of system health. Every p4d process represents a user
waiting on a command (or an idle process--there's a baseline which can be ignored). We have
three different tools monitoring this:

• The dashboard, shown in the diagram above, is posted to a web page and is visible to
administrators and all users at all times.

• Also as described above, a script runs locks.pl and sends mail whenever the p4d
count goes above a given threshold.

• Finally, a third script pages the on-call administrator when the count goes over a higher
threshold and stays there for several minutes.

Related
The following two scripts, described in this paper, are arguably not monitoring scripts per se, but
are closely related to monitoring work:

• The script that tails the error log and kills known bad commands.
• lockers.pl, which is run manually to look for commands causing problems on the

server.

Additional Monitoring
The following are typically not referred to on a daily basis:

• We have an OS performance dashboard which shows variables such as system load,
disk reads and writes, and network traffic in real time.

• Our first monitoring tool was a script which runs "p4 edit" every five seconds and logs the
elapsed time. While this is an extremely accurate record of our users' experience, it
hasn't been a real success as we haven't found a good way of visualizing the huge
amount of data it generates.

• We have a very complicated script which looks for changelists with more than 10,000
files, and reports submit time, measured in seconds holding a lock on db.working, per
thousand files. This turns out to be an interesting metric for overall disk performance on
the database volume.

• We run a nightly script which parses the error log and reports actual errors. In practice, it
turns out that these are rarely interesting.

• Another nightly script generates a report on the most active users each day.

MaxLockTime
Google is running Perforce 2006.1 as of this writing, but Perforce 2006.2 introduces an extremely
interesting new resource limit, MaxLockTime. This works similarly to MaxScanRows and
MaxResults. It specifies the a time threshold after which a command holding locks will be
terminated. It's applied to users on a per-group basis. Note that submits are never terminated.

This could be used instead of locks.pl (with less granularity of control) as a way of killing long
running commands holding locks. Since locks.pl involved a lot of effort in tuning, non-Google
sites would be well advised to investigate MaxLockTime first. Before activating it, lockers.pl
can be used to find out which commands would be effected by different values for MaxLockTime.

Conclusion
Performance issues are different at each site, and can be due to a number of factors, but at
Google and probably at many large sites the most pervasive is database lock contention. Lock
contention is often caused by a relatively small number of commands, and overall performance
can be greatly improved if you're able to identify these commands and eliminate or reduce them.
The performance tracking information introduced in Perforce 2005.2 provides enough information
to identify these commands, but the form is hard for humans to use. A script, lockers.pl, is
provided which makes it easy to extract this information.

References
Dan Bloch, Performance and Database Locking at Large Perforce Sites,
http://www.perforce.com/perforce/conferences/eu/2006/presentations/Google.pdf

http://www.perforce.com/perforce/conferences/eu/2006/presentations/Google.pdf

