Linear-Space Computation of the Edit-Distance
between a String and a Finite Automaton

Cyril Allauzen' and Mehryar Mohri?!

! Google Research
76 Ninth Avenue, New York, NY 10011, US.
2 Courant Institute of Mathematical Sciences
251 Mercer Street, New York, NY 10012, US.

Abstract. The problem of computing the edit-distance between a string
and a finite automaton arises in a variety of applications in computational
biology, text processing, and speech recognition. This paper presents
linear-space algorithms for computing the edit-distance between a string
and an arbitrary weighted automata over the tropical semiring, or an
unambiguous automaton over an arbitrary semiring. It also gives an effi-
cient linear-space algorithm for finding an optimal alignment of a string
and such a weighted automaton.

1 Introduction

The problem of computing the edit-distance between a string and a finite au-
tomaton arises in a variety of applications in computational biology, text pro-
cessing, and speech recognition [8,10, 18,21, 14]. This may be to compute the
edit-distance between a protein sequence and a family of protein sequences com-
pactly represented by a finite automaton [8,10,21], or to compute the error rate
of a word lattice output by a speech recognition with respect to a reference
transcription [14]. A word lattice is a weighted automaton, thus this further mo-
tivates the need for computing the edit-distance between a string and a weighted
automaton. In all these cases, an optimal alignment is also typically sought. In
computational biology, this may be to infer the function and various properties
of the original protein sequence from the one it is best aligned with. In speech
recognition, this determines the best transcription hypothesis contained in the
lattice.

This paper presents linear-space algorithms for computing the edit-distance
between a string and an arbitrary weighted automata over the tropical semir-
ing, or an unambiguous automaton over an arbitrary semiring. It also gives an
efficient linear-space algorithm for finding an optimal alignment of a string and
such a weighted automaton. Our linear-space algorithms are obtained by using
the same generic shortest-distance algorithm but by carefully defining different
queue disciplines. More precisely, our meta-queue disciplines are derived in the
same way from an underling queue discipline defined over states with the same
level.

The connection between the edit-distance and the shortest distance in a
directed graph was made very early on (see [10,4-6] for a survey of string algo-
rithms). This paper revisits some of these algorithms and shows that they are all
special instances of the same generic shortest-distance algorithm using different
queue disciplines. We also show that the linear-space algorithms all correspond
to using the same meta-queue discipline using different underlying queues. Our
approach thus provides a better understanding of these classical algorithms and
make it possible to easily generalize them, in particular to weighted automata.

The first algorithm to compute the edit-distance between a string = and a
finite automaton A as well as their alignment was due to Wagner [25] (see also
[26]). Tts time complexity was in O(|z||A[3)) and its space complexity O(| Al | 2]+
|z||Alg), where X' denotes the alphabet and |A|g the number of states of A.
Sankoff and Kruskal [23] pointed out that the time and space complexity O(|z||A4])
can be achieved when the automaton A is acyclic. Myers and Miller [17] signif-
icantly improved on previous results. They showed that when A is acyclic or
when it is a Thompson automaton, that is an automaton obtained from a reg-
ular expression using Thompson’s construction [24], the edit-distance between
x and A can be computed in O(|z||A4|) time and O(|z| + |A|) space. They also
showed, using a technique due to Hirschberg [11], that the optimal alignment
between x and A can be obtained in O(|z| 4 |A|) space, and in O(|z||A]) time if
A is acyclic, and in O(|z||A|log |z|) time when A is a Thompson automaton.

The remainder of the paper is organized as follows. Section 2 introduces the
definition of semirings, and weighted automata and transducers. In Section 3,
we give a formal definition of the edit-distance between a string and a finite
automaton, or a weighted automaton. Section 4 presents our linear-space algo-
rithms, including the proof of their space and time complexity and a discussion
of an improvement of the time complexity for automata with some favorable
graph structure property.

2 Preliminaries

This section gives the standard definition and specifies the notation used for
weighted transducers and automata which we use in our computation of the
edit-distance.

Finite-state transducers are finite automata [20] in which each transition is
augmented with an output label in addition to the familiar input label [2,9].
Output labels are concatenated along a path to form an output sequence and
similarly input labels define an input sequence. Weighted transducers are finite-
state transducers in which each transition carries some weight in addition to the
input and output labels [22,12]. Similarly, weighted automata are finite automata
in which each transition carries some weight in addition to the input label. A
path from an initial state to a final state is called an accepting path. A weighted
transducer or weighted automaton is said to be unambiguous if it admits no two
accepting paths with the same input sequence.

Fig. 1. (a) Example of a weighted transducer T'. (b) Example of a weighted automaton
A. T'(aab, bba) = A(aab) = min(.14+.2+.6+.8,.2+ .44 .54 .8). A bold circle indicates
an initial state and a double-circle a final state. The final weight p[q] of a final state ¢
is indicated after the slash symbol representing gq.

The weights are elements of a semiring (K, ®,®,0,1), that is a ring that
may lack negation [12]. Some familiar semirings are the tropical semiring (R U
{o0}, min, +, 00, 0) and the probability semiring (R4 U {00}, +, x,0,1). In the
following, we will only consider weighted automata and transducers over the
tropical semiring. However, all the results of section 4.2 hold for an unambiguous
weighted automata A over an arbitrary semiring.

The following gives a formal definition of weighted transducers.

Definition 1. A weighted finite-state transducer T over the tropical semiring
(R4 U {oo}, min, +,00,0) is an 8-tuple T = (X, A,Q,I,F,E, X p) where X is
the finite input alphabet of the transducer, A its finite output alphabet, Q) is a
finite set of states, I C @Q the set of initial states, F' C @ the set of final states,
ECQ@Qx(XU{e}) x (AU{e}) x (Ry U{oc}) x Q a finite set of transitions,
AT — Ry U{oo} the initial weight function, and p : F — Ry U {oco} the final
weight function mapping F to Ry U {oo}.

We define the size of T as |T| = |T|g + |T'|g where |T'|g = |@| is the number of
states and |T|g = |E| the number of transitions of 7.

The weight of a path « in T is obtained by summing the weights of its
constituent transitions and is denoted by w(r]. The weight of a pair of input and
output strings (z,y) is obtained by taking the minimum of the weights of the
paths labeled with (z,y) from an initial state to a final state.

For a path 7, we denote by p[r] its origin state and by n[n] its destination
state. We also denote by P(I,z,y, F') the set of paths from the initial states I
to the final states F' labeled with input string and output string y. The weight
T(z,y) associated by T to a pair of strings (z,y) is defined by:

Twy)=__min Aplr]) +wlr] + pn(r]. (1)
Figure 1(a) shows an example of weighted transducer over the tropical semiring.

Weighted automata can be defined as weighted transducers A with identical

input and output labels, for any transition. Thus, only pairs of the form (z,x)

can have a non-zero weight by A, which is why the weight associated by A to
(z,z) is abusively denoted by A(z) and identified with the weight associated by
A to x. Similarly, in the graph representation of weighted automata, the output
(or input) label is omitted. Figure 1(b) shows an example.

3 Edit-distance

We first give the definition of the edit-distance between a string and a finite
automaton.

Let X' be a finite alphabet, and let {2 be defined by 2 = (X U {¢}) x
(X U{e}) — {(e,€)}. An element of {2 can be seen as a symbol edit operation:
(a,€) is a deletion, (€,a) an insertion, and (a,b) with a # b a substitution. We
will denote by h the natural morphism between (2* and X* x X* defined by
h((a1,b1) - (an,bpn)) = (a1 -+ - an,b1 -+ -by). An aligment w between two strings
x and y is an element of 2* such that h(w) = (z,y).

Let ¢ : 2 — R be a function associating a non-negative cost to each edit op-
eration. The cost of an alignment w = wy - - - wy, is defined as c(w) = Y., c(w;).

Definition 2. The edit-distance d(z,y) of two strings x and y is the minimal
cost of a sequence of symbols insertions, deletions or substitutions transforming
one string in the other:

— i . 2
d(z,y) pm c(w) (2)

When ¢ is the constant function ¢ = 1, the edit-distance is also known as the
Levenshtein distance. The edit-distance d(z, A) between a string x and a finite
automaton Acan then be defined as

d(z, A) = ,uin d(z,y), (3)

where L(A) denotes the regular language accepted by A. The edit-distance d(z, A)
between a string x and a weighted automaton A over the tropical semiring is
defined as:

d(z, 4) = min (A(y) + d(z,)). (4)

4 Algorithms

In this section, we present linear-space algorithms both for computing the edit-
distance d(x, A) between an arbitrary string x and an automaton A, and an
optimal alignment between = and A, that is an alignment w such that c¢(w) =
d(z, A).

We first briefly describe two general algorithms that we will use as subrou-
tines.

4.1 General algorithms

Composition. The composition of two weighted transducers T and 15 over the
tropical semiring with matching input and output alphabets X, is a weighted
transducer denoted by T} o T5 defined by:

(Tl © TZ)(x’y) = nglzn* Tl(if,Z) + TQ(Z’y)' (5)

T1 o Ty can be computed from 77 and 75 using the composition algorithm for
weighted transducers of [19,15]. States in the composition T} o T are identified
with pairs of a state of 77 and a state of T5. In the absence of transitions with
€ inputs or outputs, the transitions of 77 o T, are obtained as a result of the
following matching operation applied to the transitions of 77 and T5:

(Q1aa7bawl7qll) and (QQ,b, ¢, UJQ,QQ) - ((Q17qll)aavc7 w1 + wa, (quqg)) (6)

In the worst case, all transitions of T} leaving a state g; match all those of T5
leaving state g2, thus the space and time complexity of composition is quadratic,
that is O(|T1||T2|).

Shortest distance. Let A be a weighted automaton over the tropical semiring.
The shortest distance from p to g is defined as

dlp, q] = Lo wlr]. (7)

It can be computed using the generic single-source shortest-distance algorithm
of [13], a generalization of the classical shortest-distance algorithms. This generic
shortest-distance algorithm works with an arbitrary queue discipline, that is the
order according to which elements are extracted from a queue. We shall make use
of this key property in our algorithms. The pseudocode of a simplified version
of the generic algorithm for the tropical semiring is given in Figure 2.

The complexity of the algorithm depends on the queue discipline selected for
S. Its general expression is

O(Q + C(A) max N(q)| &| +(C(1) +C(X)) Y N(a)), (8)

q
q€Q

where N(q) denotes the number of times state ¢ is extracted from queue S, C(X)
the cost of extracting a state from S, C(l) the cost of inserting a state in S, and
C(A) the cost of an assignment.

With a shortest-first queue discipline implemented using a heap, the algo-
rithm coincides with Dijkstra’s algorithm [7] and its complexity is O((|E| +
|Q|) log|Q]). For an acyclic automaton and with the topological order queue
discipline, the algorithm coincides with the standard linear-time (O(|Q| + |E|))
shortest-distance algorithm [3].

SHORTEST-DISTANCE(A, s)

1 for each pe @ do

2 d[p] « oo

3 ds] <0

4 S {s}

5 while S #(do

6 q — HEAD(S)

7 DEQUEUE(S)

8 for each e € E[g] do

9 if (d[s] +wle] < d[nle]]) then
10 d[nle]] < d[s] + wle]
11 if (nle] ¢ S) then
12 ENQUEUE(S, nle])

Fig. 2. Pseudocode of the generic shortest-distance algorithm.

4.2 Edit-distance algorithms

The edit cost function ¢ can be naturally represented by a one-state weighted
transducer over the tropical semiring T, or T" in the absence of ambiguity, with
each transition corresponding to an edit operation: 7, = (¥, X, {0}, {0}, E., 1,1)
where E. = {(a, b, ¢(a,b),0)|(a,b) € 2}.

Lemma 1. Let A be a weighted automaton over the tropical semiring and let X
be the finite automata representing a string x. Then, the edit-distance between
x and A is the shortest-distance from the initial state to a final state in the
weighted transducer U = X oT o A.

Proof. Each transition e in T' corresponds to edit operation (i[e], ole]) € £2, and
each path 7 correspond to an alignment w between i[r] and o[n]. The cost of
that alignment is, by definition of T', ¢(w) = w[n]. Thus, T defines the function:

T(u,v) = min {c(w): h(w) = (u,v)} = d(u,v), (9)
we2*
for any strings u, v in X*. Since A is an automaton and z is the only string
accepted by X, it follows from the definition of composition that U(x,y) =
T(x,y) + A(y) = d(x,y) + A(y). The shortest-distance from the initial state to
a final state in U is then:

reBl e T = R iy = i U)o (10)
= min (d A =d(z,A 11
;reuzn*((z,y) + (y)) (r, A), (11)

that is the edit-distance between x and A. O

Fig. 3. (a) Finite automaton X representing the string z = aba. (b) Finite automaton
A. (c¢) Edit transducer T over the alphabet {a,b} where the cost of any insertion,
deletion and substitution is 1. (d) Weighted transducer U = X o T o A.

Figure 3 shows an example illustrating Lemma 1. Using the lateral strategy
of the 3-way composition algorithm of [1] or an ad hoc algorithm exploiting the
structure of T', U = X o T o A can be computed in O(|x||A|) time. The shortest-
distance algorithm presented in Section 4.1 can then be used to compute the
shortest distance from an initial state of U to a final state and thus the edit
distance of z and A. Let us point out that different queue disciplines in the com-
putation of that shortest distance lead to different algorithms and complexities.
In the next section, we shall give a queue discipline enabling us to achieve a
linear-space complexity.

4.3 Edit-distance computation in linear space

Using the shortest-distance algorithm described in Section 4.1 leads to an algo-
rithm with space complexity linear in the size of U, i.e. in O(|z||A]). However,
taking advantage of the topology of U, it is possible to design a queue discipline
that leads to a linear space complexity O(|z| + |A]).

A state g in the composition U = X oT o A can be identified with a triplet
(,0,7) where i a state of X, 0 the unique state of T, and j a state of A. Since

T has a unique state, we further simplify the notation identify each state ¢ with
a pair (4,7). For a state ¢ = (4,7) of U, we will refer to ¢ by the level of gq.
A key property of the levels is that there is a transition in U from ¢ to ¢ iff
level(q') = level(q) or level(q') = level(q) + 1.

From any queue discipline < on the states of U, we can derive a new queue
discipline <; over U defined for all ¢,¢’ in U as follows:

q <1 " iff (level(q) < level(q')) or (level(q) = level(¢') and g < ¢'). (12)

Proposition 1. Let < be a queue discipline that requires at most O(|V]) space
to maintain a queue over any set of states V. Then, the edit-distance between x
and A can be computed in linear space, O(|x| + |A|), using the queue discipline
<.

Proof. The benefit of that queue discipline is that when computing the shortest
distance to ¢ = (i, 7) in U, only the shortest distances to the states in U of level
7 and ¢ — 1 need to be stored in memory. The shortest distances to the states of
level strictly less than i — 1 can be safely discarded. Thus, the space required to
store the shortest distances is in O(]A|g).

Similarly, there is no need to store in memory the full transducer U. In-
stead, we can keep in memory the last two levels active in the shortest-distance
algorithm. This is possible because the computation of the outgoing transi-
tions of a state with level ¢ only requires knowledge about the states with
level i and ¢ + 1. Therefore, the space used to store the active part of U is
in O(|A|g + |Alg) = O(]A|). Thus, it follows that the space required to compute
the edit-distance of x and A is linear, that is in O(|z| + |A]). O

The time complexity of the algorithm depends on the underlying queue dis-
cipline <. A natural choice is for < is the shortest-first queue discipline, that
is the queue discipline used in Dijkstra’s algorithm. This yields the following
corollary.

Corollary 1. The edit-distance between a string x and an automaton A can
be computed in time O(|z||A|log|A|g) and space O(|z| + |A|) using the queue
discipline <.

Proof. A shortest-first queue is maintained for each level and contains at most
|Alg states. The cost for the global queue of an insertion, C(I), or an assignment,
C(A), is in O(log | A|g) since it corresponds to inserting in or updating one of the
underlying level queues. Since N(q) = 1, the general expression of the complexity
(8) leads to an overall time complexity of O(|z||A|log|A|g) for the shortest-
distance algorithm. O

When the automaton A is acyclic, the time complexity can be further im-
proved by using for < the topological order queue discipline.

Corollary 2. If the automaton A is acyclic, the edit-distance between x and
A can be computed in time O(|z||A|) and space O(|z| + |A|) using the queue
discipline <; with the topological order queue discipline for <.

Proof. Computing the topological order for U would require O(|U]) space. In-
stead, we will used the topological order on A, which can be computed in O(|A|),
to define the underlying queue discipline. The order inferred by (12) is then a
topological order on U. ad

Myers and Miller [17] showed that when A is a Thompson automaton, the
time complexity can be reduced to O(|z||A|) even when A is not acyclic. This is
possible because of the following observation: in a weighted automaton over the
tropical semiring, there exists always a shortest path that is simple, that is with
no cycle, since cycle weights cannot decrease path weight.

In general, it is not clear how to take advantage of this observation. However,
a Thompson automaton has additionally the following structural property: a
loop-connectedness of one. The loop-connectedness of A is k if in any depth-
first search of A, a simple path goes through at most & back edges. [17] showed
that this property, combined with the observation made previously, can be used
to improve the time complexity of the algorithm. The results of [17] can be
generalized as follows.

Corollary 3. If the loop-connectedness of A is k, then the edit-distance between
x and A can be computed in O(|z||Alk) time and O(|z| + |A]) space.

Proof. We first use a depth-first search of A, identify back edges, and mark them
as such. We then compute the topological order for A, ignoring these back edges.
Our underlying queue discipline < is defined such that a state ¢ = (4, j) is ordered
first based on the number of times it has been enqueued and secondly based on
the order of j in the topological order ignoring back edges. This underlying queue
can be implemented in O(|A|g) space with constant time costs for the insertion,
extraction and updating operations. The order <; derived from < is then not
topological for a transition e iff e was obtained by matching a back edge in A
and level(p[e]) = level(nle]). When such a transition e is visited, n[e] reinserted
in the queue.

When state ¢ is dequeued for the Ith time, the value of d[q] is the weight of
the shortest path from the initial state to g that goes through at most [— 1 back
edges. Thus, the inequality N(q) < &k 4 1 holds for all ¢ and, since the costs for
managing the queue, C(I), C(A), and C(X), are constant, the time complexity of
the algorithm is in O(|z||Alk). O

4.4 Optimal alignment computation in linear space

The algorithm presented in the previous section can also be used to compute an
optimal alignment by storing a back pointer at each state in U. However, this
can increase the space complexity up to O(|z||A4|g). The use of back pointers
to compute the best alignment can be avoided by using a technique due to
Hirschberg [11] (also used by [16,17]).

As pointed out in previous sections, an optimal alignment between x and A
corresponds to a shortest path in U = X oT o A. We will say that a state ¢ in U
is a midpoint of an optimal alignment between = and A if ¢ belongs to a shortest
path in U and is such that level(q) = ||x|/2].

Lemma 2. Given a pair (x,A), a midpoint of the optimal alignment between x
and A can be computed in O(|z|+ |A]) space with a time complezity in O(|z||A|)
if A is acyclic and in O(|z||Allog|A|g) otherwise.

Proof. Let us consider U = X o T o A. For a state ¢ in U let d[g] denote the
shortest distance from the initial state to g, and by d’?[q] the shortest distance
from ¢ to a final state. For a given state ¢ = (i, §) in U, d[(i,)] +d®[(i, j)] is the
cost of the shortest path going through (7, j). Thus, for any 4, the edit-distance
between x and A is d(z, A) = min;(d[(i, 7)] + d®[(4, 7)]).

For a fixed 49, we can compute both d[(ig, ;)] and d¥[(ip,j)] for all j in
O(|z||Allog|A|g) time (or O(|z||A| time if A is acyclic) and in linear space
O(|z| + |A|) using the algorithm from the previous section forward and back-
ward and stopping at level ¢y in each case. Running the algorithm backward
(exchanging initial and final states and permuting the origin and destination of
every transition) can be seen as computing the edit-distance between z¥ and
AR the mirror images of x and A.

Let us now set ip = ||z]/2] and jo = argmin,(d[(io,)] + d®[(io,)]). Tt
then follows that (ig, jo) is a midpoint of the optimal alignment. Hence, for a
pair (z, A), the running-time complexity of determining the midpoint of the
alignment is in O(|z||4]) if A is acyclic and O(|x||A|log |A|g) otherwise. O

The algorithm proceeds recursively by first determining the midpoint of the
optimal alignment. At step 0 of the recursion, we first find the midpoint (i, jo)
between = and A. Let z; and z2 be such that z = z'z? and |a:1| = ip, and let
Al and A? be the automata obtained from A by respectively changing the final
state to jo in A' and the initial state to jo in A%. We can now recursively find
the alignment between z' and A' and between z? and AZ2.

Theorem 1. An optimal alignment between a string x and an automaton A can
be computed in linear space O(|x| + |A|) and in time O(|z||A|) if A is acyclic,
O(|z||A|log |z|log |A|q) otherwise.

Proof. We can assume without loss of generality that the length of x is a
power of 2. At step k of the recursion, we need to compute the midpoints
for 2% string-automaton pairs (w7, A},)1<i<2r. Thus, the complexity of step k

is in O(Y 7, [74]|AL|log|AL|o) = O(4L S°7, |4 | log| Aj o) since |af | = |z]/2"

for all &. When A is acyclic, the log factor can be avoided and the equality
Zfil |Ai| = |A| holds, thus the time complexity of step k is in O(|z||A]/2%).
In the general case, each |A%| can be in the order of |A|, thus the complexity of
step k is in O(|z||Allog|A|g).

Since there are at most log |x| steps in the recursion, this leads to an overall
time complexity in O(|z||4|) if A is acyclic and O(|x||A|log|A|g log|z|) in gen-
eral. O

When the loop-connectedness of A is k, then the time complexity can be im-
proved to O(k|z||A|log |x|) in the general case.

5

Conclusion

We presented general algorithms for computing in linear space both the edit-
distance between a string and a finite automaton and their optimal alignment.
Our algorithms are conceptually simple and make use of existing generic algo-
rithms. Our results further provide a better understanding of previous algorithms
for more restricted automata by relating them to shortest-distance algorithms
and general queue disciplines.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

C. Allauzen and M. Mohri. 3-Way Composition of Weighted Finite-State Trans-
ducers. In O. Ibarra and B. Ravikumar, editors, Proceedings of CIAA 2008, volume
5148 of Lecture Notes in Computer Science, pages 262—-273. Springer-Verlag Berlin
Heidelberg, 2008.

J. Berstel. Transductions and Context-Free Languages. Teubner Studienbucher:
Stuttgart, 1979.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press: Cambridge, MA, 1992.

M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, 2007.

M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269-271, 1959.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probalistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge, UK, 1998.

S. Eilenberg. Automata, Languages and Machines, volume A—B. Academic Press,
1974-1976.

D. Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Cambridge, UK, 1997.

D. S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common
Subsequences. Communications of the ACM, 18(6):341-343, June 1975.

W. Kuich and A. Salomaa. Semirings, Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1986.

M. Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.

M. Mohri. Edit-Distance of Weighted Automata: General Definitions And Algo-
rithms. International Journal of Foundations of Computer Science, 14(6):957-982,
2003.

M. Mohri, F. C. N. Pereira, and M. Riley. Weighted Automata in Text and Speech
Processing. In Proceedings of the 12th biennial FEuropean Conference on Artificial
Intelligence (ECAI-96), Workshop on Extended finite state models of language,
Budapest, Hungary. John Wiley and Sons, Chichester, 1996.

E. W. Myers and W. Miller. Optimal alignments in linear space. CABIOS, 4(1):11—
17, 1988.

E. W. Myers and W. Miller. Approximate Matching of Regular Expressions. Bul-
letin of Mathematical Biology, 51(1):5-37, 1989.

18

19.

20.

21.

22.

23.

24.

25.

26.

G. Navarro and M. Raffinot. Flezible pattern matching. Cambridge University
Press, 2002.

F. Pereira and M. Riley. Finite State Language Processing, chapter Speech Recog-
nition by Composition of Weighted Finite Automata. The MIT Press, 1997.

D. Perrin. Finite automata. In J. V. Leuwen, editor, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Semantics, pages 1-57. Elsevier,
Amsterdam, 1990.

P. A. Pevzner. Computational Molecular Biology: an Algorithmic Approach. MIT
Press, 2000.

A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power Series.
Springer-Verlag, 1978.

D. Sankoff and J. B. Kruskal. Time Wraps, String Edits and Macromolecules:
The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA,
1983.

K. Thompson. Regular Expression Search Algorithm. Communications of the
ACM, 11(6):365-375, 1968.

R. A. Wagner. Order-n Correction for Regular Languages. Communications of the
ACM, 17(5):265-268, May 1974.

R. A. Wagner and J. I. Seiferas. Correcting Counter-Automaton-Recognizable
Languages. SIAM Journal on Computing, 7(3):357-375, August 1978.

