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ABSTRACT 

The combination of MinHash-based signatures and Locality-

Sensitive Hashing (LSH) schemes has been effectively used 

for finding approximate matches in very large audio and 

image retrieval systems.    In this study, we introduce the 

idea of permutation-grouping to intelligently design the 

hash functions that are used to index the LSH tables.  This 

helps to overcome the inefficiencies introduced by hashing 

real-world data that is noisy, structured, and most 

importantly is not independently and identically distributed.  

Through extensive tests, we find that permutation-grouping 

dramatically increases the efficiency of the overall retrieval 

system by lowering the number of low-probability 

candidates that must be examined by 30-50%.  
 

Index Terms— Audio Retrieval, Image Retrieval, LSH, MinHash 
 

1. INTRODUCTION 
 

Hashing is one of the most common ways to perform 

efficient lookups in large databases, but suffers from the fact 

that a small perturbation of the data point can dramatically 

change the hash value. This makes hashing using a single 

hash function a poor candidate for nearest neighbor (NN) 

computation. Locality Sensitive Hashing (LSH) addresses 

the approximate-NN problem by using multiple hash 

functions [5]. Consider L groups of B randomly created hash 

functions. Given a data point, we compute L keys, each of 

which is the concatenation of B hash values.  By hashing 

both the reference and the probe into L tables, we restrict the 

search to only the examples for which at least one of the 

keys – all B hash values – match.  To find the approximate 

matches to a probe, we perform L lookups (one from each 

table), and take the union of the resulting candidate sets.  In 

its simplest form, the candidate for which the largest number 

of hash groups (out of L) matched the probe is the best 

match. Assuming the hash-table lookups take constant time, 

LSH lookups take O(L) time per probe.  LSH has been 

effectively applied to the retrieval of approximate-duplicate 

matches in the audio, video and image domains [1][2][7]. 

Recently, a system was created based on a combination 

of using MinHash Signatures [4] to describe both audio and 

video data, and an LSH approach for retrieval [1]. It was 

designed to hold 10
8
-10

9
 keys, distributed to a network of 

machines. Despite this success and the theoretical guarantees 

that can be made about MinHash+LSH [4][5], severe 

inefficiencies were encountered with respect to the required 

computation and bandwidth. These inefficiencies arose 

because the expected performance was computed with 

respect to the L*B hash functions, and ignored the 

distribution of the data itself.   In reality, most data generates 

non-uniform, highly-correlated distributions. With correlated 

distributions, the probability of randomly generating 

“unlucky” hash functions increases dramatically.  Individual 

hash groups, from our set of L groups, can be non-

distinctive: They will map many dissimilar examples to the 

same hash-bin, leading to excessive numbers of candidates 

from each lookup.  Long candidate lists increase 

computation cost (to tally the evidence for each candidate) 

and increase bandwidth requirements (to transfer long lists 

of candidates from database machines to be tallied).  

In this paper, we propose a method based on 

permutation-grouping.  Permutation grouping addresses the 

problem of non-distinctive hash functions selected in LSH, 

by observing and adjusting for the underlying structure in 

the data. We skew the distribution from which the hash 

functions are sampled, and intelligently select their 

grouping, to ensure that the resulting L keys are as 

distinctive as possible. Our results show that our grouping 

method maintains the attractive statistical properties of LSH, 

while considerably reducing the retrieval cost. 
 

2. FAST MATCHING WITH MINHASH + LSH 

 

The goal of our matching system is to be robust to the types 

of degradations that we expect to see between database 

entries and probes.  In the audio domain, the system is 

designed to handle random noise, competing structured 

noise (other songs in the background, voices), echoes, poor 

mp3 encoding, playback over cell phones, etc.  In the visual 

domain, we address common variations seen in images – 

poor jpeg encoding, changes in aspect ratio, saturation and 

hue, overlayed text, sharpening and blurring, etc. 

The matching system works in the following basic steps.   

To create the reference database, Haar-Wavelets of the 

image (or spectrogram segment) are first computed.  By 

itself, the wavelet-image is not resistant to noise or 

degradations.  To reduce the effects of noise, while 

maintaining the major characteristics of the image, we select 

the t top wavelets (by magnitude) and discard the rest. 

Jacobs [6] further determined that after keeping only the top 

wavelets, the coefficient magnitudes are not needed for 



effective retrieval: instead the sign bits alone could be used.  

As memory usage is a primary concern in this system, this 

same top-wavelet-sign representation is used here.  The 

sparsity of the resulting top-wavelet vector makes it 

amenable to further reduction using the MinHash [4].   

MinHash works with sparse binary vectors as follows:   

Select a random, but known, reordering of all the vector 

positions.  For each vector permutation, measure in which 

position the first '1' occurs; this projection is the first 

component of the signature. Note that for two vectors, v1 & 

v2,  the probability that first_1_occurrence(v1) = 

first_1_occurrence(v2) is the same as the probability of 

finding a row that has a 1 in both v1 and v2, from the set of 

rows that have 1 in either v1 or v2.   Therefore, for a given 

permutation, the MinHash values match for v1 and v2 if the 

first position with a 1 is the same in both bit vectors, and 

they disagree if the first such position is a row where one but 

not both, vectors contained a 1.  Note that this is exactly 

what is required; it measures the similarity of the sparse bit 

vectors based on matching “on” positions. A full signature 

is the concatenation of M MinHash projections.   These M 

projections are then placed into the L LSH tables by 

selecting M/L permutations for each hash key. 

For retrieval, each probe is hashed into the L tables in 

the same manner.   The best match from the set of candidate 

neighbors (the union of the entries found in the L matching 

bins—one from each table) is the one that matched in the 

most hash-tables.    

Given this formulation, we created a full system using 

the following parameters
1
.    For images, each image to be 

inserted into the database was reduced to a 32×32 

thumbnail, the Haar wavelets were extracted independently 

for 5 channels of the image (R,G, B, I, Q) and the signs of 

the top-50 wavelets by magnitude were kept; others were set 

to 0.   For the audio spectrogram images, which are based on 

those created in [7][8], a single channel can be used.  The 

length of the subfingerprints (the number of MinHashes that 

were concatenated for use as the key) into each hash table 

was varied from 3-8 and we used L=10; therefore, for each 

channel the total length of the signature varied from 30 

(3×10) MinHashes to 80 (8×10).  Each table had 10
6
 bins. 

We measure the retrieval accuracy of the system in the 

standard manner, by examining the percentage of probe 

queries (consisting of severely degraded probes) that found 

the original entry in the database.   In live deployment, we 

must plan for excessive peak-time query loads (lookups for 

matching signatures); because the queries will be farmed out 

to multiple machines (10s-100s), the number of elements 

returned for each lookup must be kept small.  Large numbers 

of matching elements returned will not only incur large 

computational penalties when the tallies are maintained to 

                                                           
1 These parameters were tuned through significant experimental testing; see 

[1] for a complete description of parameters interactions and full details on 

the audio spectrogram settings. 

determine which image has the most votes, but will also 

incur large amounts of bandwidth as large lists are 

transferred between machines.  To keep the number of 

candidates small, we examine two metrics; the first provides 

insights into system performance, the second provides the 

exact measurement we need to minimize.  
 

(1) Max-Occupancy: the max number of elements in a bin for 

each table, averaged over all hash tables; the lower this 

is, the lower the max bandwidth will be. 

(2) Total-Elements-Returned: average number of total 

elements returned for a lookup of a probe (across all hash 

tables and all channels).     
 

For the baseline tests, shown in Table I, image probes were 

created by random combinations of added noise, auto-color 

“enhancement”, overlaid large text, blurring, sharpening, 

±contrast, ±saturation, and aspect ratio modification. 

 
Table I: System with 2×106 images in DB, 14,100 probes. 
 L=10 Hash Tables per Channel, 106 elements in each table. 

MinHashes  Correct Max Occupancy 

of a Bin 

Total elements 

Returned 

3 per key 99.1% 107,026 432,193 

4 per key 99.0% 45,013 91,908 

5 per key 98.9% 21,172 19,939 

6 per key 98.6% 13,904 4,996 

7 per key 98.2% 11,481 1,363 

8 per key 97.6% 10,122 476 

 

As can be seen, the number of total elements returned drops 

dramatically as the size of the hash-key increases; the longer 

the hash-key, the better the distribution across the bins of the 

hash tables. This is corroborated by the fact that the 

maximum occupancy of any bin also falls dramatically.   

However, the drawback of increasing the hash-key size is 

that it increases the threshold for finding a match.  In order 

for the probe to be hashed to the same bin as the correct 

match, it must be an exact match for a larger set of keys; 

therefore, less degradation is tolerated.    

  In order to maintain at least a 99% retrieval rate, we 

can use at most 4-5 MinHashes per key.   As can be seen, 

however, for these settings, there are a large number of keys 

that are returned for each lookup.  Note that if the entries 

had been distributed perfectly across the hash table, per 

channel, each bin would hold only 2 elements (therefore, 

ideally we would examine only 20 elements per channel (2 × 

10 hash tables per channel).  However, we are far from this 

number.  Next, we explain why this clumping happens in 

some hash bins, and demonstrate how to reduce its effects. 

 

3. PERMUTATION GROUPING 
 

In this section, we first describe the cause of the uneven 

clumping in the hash bins that led to the large number of 

element returned per lookup.  Second, we propose a method, 

permutation grouping, to avoid the clumping.    



The first insight into the cause of the problem is found 

in the distribution of the MinHash signatures.  Recall that 

the MinHash signature measures the first ‘on’ position in a 

random permutation of a sparse vector.   When each element 

of the original sparse vector has an independent and 

identical (i.i.d.) probability of being on, the MinHash 

signatures exhibit a smooth drop in probability as the 

positions get larger.  Using this model with p for the ‘on’ 

probability, the MinHash output space will follow a 

geometric distribution:  P(reference=n) = p(1–p)
n
; i.e. there 

are n ‘off’ entries before there is a ‘on’ entry. This 

distribution outputs the lowest values with the highest 

frequency, in a monotonic decreasing distribution.  In Figure 

2A, we see that the generated distribution (for i.i.d data) is 

almost exactly the expected; the entropy is 6.7.  

In contrast, in Figure 2B, we look at 10 sample 

permutations and examine the probability of occurrence for 

each position; it is clearly non-uniform and severe clumping 

of the samples is apparent.   For these distributions, the 

entropy is approximately 4.0; significantly lower than with 

i.i.d. samples.  The entropy distributions of 100 sample 

permutations of i.i.d. and top-wavelets data is shown in 

Figure 3.  Importantly, with an entropy of 4, only 16 of the 

255 positions are being effectively used; with the i.i.d. 

samples (entropy=6.7), approximately 105 positions are. 

Given the large variation in the entropies observed by 

the random selection of permutations with real data (Figure 

3); the fist step in intelligently designing the L hash 

functions used for LSH is to use those permutations with 

highest entropies.    However, recall that when the MinHash 

signatures are used with LSH, multiple MinHash projections 

are concatenated to form a single hash-key (in the previous 

experiments, the groups consisted of 3-8 elements).    Rather 

than simply selecting high entropy permutations to place 

together, a more principled method is to use the Mutual 

Information (MI) between permutations to guide which 

permutations are grouped.  Mutual information is a measure 

of how much knowing the value of one variable reduces the 

uncertainty in another variable.  Formally, in terms of 

entropy, mutual information is defined as:  
 

I(X;Y) = H(X) – H (X|Y) = H(X) + H(Y) – H (X,Y)   

            =  ∑∑
∈ ∈Yy Xx ypxp

yxp
yxp

)()(

),(
log),(  

  
To determine whether there is sufficient mutual information 

variance to use this as a valid signal, for 100 permutations, 

we examined the mutual information between all pairs 

(100*99/2 samples).  The results are shown in Figure 4 for 

i.i.d. and real data. Although the same general shape, note 

the significantly longer tail for real data.  The existence of 

this tail is important; if the permutations with high mutual 

information are in the same group, clumping will be 

increased (intuitively, since the new permutations will be 

correlated, the bits used for that hash will be inefficiently 

used, and the spread of the items in the bins will diminish).     

In order to create groups of low mutual information 

permutations to put together into hashing chunks, we use a 

greedy selection procedure that is loosely based on the  

algorithm used in Chow and Liu [3].  Whereas [3] created a 

spanning tree that maximized the MI between sets of 

variables, we use a similar greedy selection procedure to 

minimize the mutual information in order to create a forest 

of trees; each of whose constituents are the set of 

permutations that are grouped together.    

  First, for all of the L groups of hashes, an initial 

permutation is assigned.  These are chosen to be the L 

permutations with the highest unconditional entropy.  These 

L are added into the selected set, S.  Using G as the set of L 

groups, and B as the size of the group (number of 

MinHashes per key), the remaining permutations are 

selected iteratively through one of the three procedures:  

 

(1): ( )






∈<∈∉
),(minmin

||..,,
tsI

gtBgtsGgSs

: Find the unselected 

permutation, s, with the minimum MI with any of member of 

a group that does not already have B members.  Once found, 

add s to the group g, (t∈g) and add s to S.   This is the most 
aggressive of the three methods as it uses the lowest MI to a 

single member of the group to make the next selection.  

1

31

61

91

121

151

181

P1

P3

P5

P7

P9

Bernoulli

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 2:  MinHash 

distributions for first 200 

positions.  A: with i.i.d. 

data.   Note monotonic, 

smooth decreasing 

probabilities as position 

increases.   Furthest 

distribution is actually 

based on Bernoulli trials.     

B:  Distributions with top 

wavelet data. 

B.  10 MinHash 

distribution with top-

wavelet data.  

(200 positions) 

A.  10 MinHash distribution with 

random i.i.d. data 

 (first 200 positions shown) & 

Actual computed 

geometric distribution  

1

31

61

91

121

151

181

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

1.
96

2.
28 2.

6
2.
92

3.
24

3.
56

3.
88 4.

2
4.
52

4.
84

5.
16

5.
48 5.

8 ~
6.
74

6.
75

6.
76

Actual Data

Uniformly Randomly Generated Data

Figure 3: (-1.0*) 

Entropy of 100 

MinHash permutations 

using real data (left) 

and i.i.d. data (right, 

striped).   Note the 

large differences in 

averages (4.0 vs. 6.7).  

X-Axis Scale 

exaggerated on right. 



(2): 








∑
∈
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gt
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: Find the unselected permutation 

as above, except assign the MI to the group as the MI of the 

candidate summed across the members already in the group.  

(3): ( )






∈<∈∉
),(maxmin

||..,,
tsI

gtBgtsGgSs

: Find the unselected 

permutation as above, except assign the MI to the group to 

be the maximum of the MIs between s and any member of 

that group.  Select the minimum of these across groups and 

unselected s. This is the most conservative of the 

procedures; it minimizes the worst of the correlations. 

Note that many more permutations can be generated 

than need to be used; this allows us to generate a large pool 

from which to select.  These procedures run in O(n
2
) time, 

where n is the # of permutations.  Importantly, this 

computational load is only incurred during system design, 

not during matching, retrieval, or database generation.  
 

4. EXPERIMENTS 
 

For the experiments, the trials described in Section 2 were 

rerun.   In these experiments, however, instead of randomly 

grouping the permutations, they were grouped in the 3 

manners described above.  A total of 100 permutations were 

generated, from which 30-80 were selected (depending on 

the experiment, as shown in Table 2). 

       The findings all revealed dramatically improved results, 

in terms of the maximum occupancy of any bin, and the total 

elements-returned.   There was no significant change in the 

number of correct matches.    Due to space restrictions, we 

show the results, in Table 2, for only method #3 described 

above; this had the best overall performance.  From Table 2: 

the maximum occupancy of any bin in the hash tables has 

dramatically dropped for all MinHash settings.  The 

maximum drop was 46% (when 4 hashes per key were 

employed); the minimum, 14% when 7 hashes were 

employed).  The more pronounced effect with the smaller 

number of keys occurs because, as the number of keys 

increases, the effect of a few ‘unlucky’ permutation 

combinations diminishes.  Most importantly, the total 

number of elements returned has decreased between 30% 

and 51%.   This yields not only substantial savings in the 

amount of computation required to tabulate and track the 

candidates, but also eases the enormous network burden 

caused by transferring large lists of candidates between 

multiple machines.   
 

Table 2: System with 2×106 images in DB, 14,100 probes. 

 L=10 Hash Tables per Channel, 106 elements in each table.    

% improvement over not using MI-based grouping also shown. 

MinHashes  Correct Max Occupancy Total Elements 

3 per key 99.1% 63,273 -41% 302,605 -30% 

4 per key 99.0% 24,195 -46% 55,978 -39% 

5 per key 98.8% 13,762 -35% 10,994 -45% 

6 per key 98.5% 10,212 -27% 2,463 -51% 

7 per key 98.0% 9,852 -14% 684 -50% 

8 per key 97.2% 8,316 -18% 243 -49% 

 

5. CONCLUSIONS & FUTURE WORK 
 

With no extra computation cost during retrieval time, and 

with no significant change in retrieval accuracy, we were 

able to significantly reduce the number of candidates (by 30-

50%) that need to be examined.   We achieved this by better 

selecting the permutations that were grouped together for 

hashing; this minimized their MI and more effectively used 

the bits.  This has a large benefit in the context of large 

systems; the fewer the candidates, the better the computation 

and bandwidth performance.     

      The performance improvement was demonstrated across 

all sizes of hash keys examined.   In our implementation, we 

will use between 4-6 hashes per group in live systems; 

thereby resulting in savings of over 40%.   In the future, we 

would like to examine directly changing the distribution of 

the hashes by augmenting the MinHash permutation scheme. 
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Figure 4: Histogram of Mutual 

information between all pairs 

of 100 MinHash permutations 

using real data (left) and i.i.d. 

data (right).    Line is 

cumulative probability.   Note 

the longer tail observed with 

real data (circled).   Randomly 

chosen, unlucky, combinations 

will yield clumping.  
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