
PERMUTATION GROUPING:

INTELLIGENT HASH FUNCTION DESIGN FOR AUDIO & IMAGE RETRIEVAL

Shumeet Baluja, Michele Covell and Sergey Ioffe
Google Research, Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043

ABSTRACT

The combination of MinHash-based signatures and Locality-

Sensitive Hashing (LSH) schemes has been effectively used

for finding approximate matches in very large audio and

image retrieval systems. In this study, we introduce the

idea of permutation-grouping to intelligently design the

hash functions that are used to index the LSH tables. This

helps to overcome the inefficiencies introduced by hashing

real-world data that is noisy, structured, and most

importantly is not independently and identically distributed.

Through extensive tests, we find that permutation-grouping

dramatically increases the efficiency of the overall retrieval

system by lowering the number of low-probability

candidates that must be examined by 30-50%.

Index Terms— Audio Retrieval, Image Retrieval, LSH, MinHash

1. INTRODUCTION

Hashing is one of the most common ways to perform

efficient lookups in large databases, but suffers from the fact

that a small perturbation of the data point can dramatically

change the hash value. This makes hashing using a single

hash function a poor candidate for nearest neighbor (NN)

computation. Locality Sensitive Hashing (LSH) addresses

the approximate-NN problem by using multiple hash

functions [5]. Consider L groups of B randomly created hash

functions. Given a data point, we compute L keys, each of

which is the concatenation of B hash values. By hashing

both the reference and the probe into L tables, we restrict the

search to only the examples for which at least one of the

keys – all B hash values – match. To find the approximate

matches to a probe, we perform L lookups (one from each

table), and take the union of the resulting candidate sets. In

its simplest form, the candidate for which the largest number

of hash groups (out of L) matched the probe is the best

match. Assuming the hash-table lookups take constant time,

LSH lookups take O(L) time per probe. LSH has been

effectively applied to the retrieval of approximate-duplicate

matches in the audio, video and image domains [1][2][7].

Recently, a system was created based on a combination

of using MinHash Signatures [4] to describe both audio and

video data, and an LSH approach for retrieval [1]. It was

designed to hold 10
8
-10

9
 keys, distributed to a network of

machines. Despite this success and the theoretical guarantees

that can be made about MinHash+LSH [4][5], severe

inefficiencies were encountered with respect to the required

computation and bandwidth. These inefficiencies arose

because the expected performance was computed with

respect to the L*B hash functions, and ignored the

distribution of the data itself. In reality, most data generates

non-uniform, highly-correlated distributions. With correlated

distributions, the probability of randomly generating

“unlucky” hash functions increases dramatically. Individual

hash groups, from our set of L groups, can be non-

distinctive: They will map many dissimilar examples to the

same hash-bin, leading to excessive numbers of candidates

from each lookup. Long candidate lists increase

computation cost (to tally the evidence for each candidate)

and increase bandwidth requirements (to transfer long lists

of candidates from database machines to be tallied).

In this paper, we propose a method based on

permutation-grouping. Permutation grouping addresses the

problem of non-distinctive hash functions selected in LSH,

by observing and adjusting for the underlying structure in

the data. We skew the distribution from which the hash

functions are sampled, and intelligently select their

grouping, to ensure that the resulting L keys are as

distinctive as possible. Our results show that our grouping

method maintains the attractive statistical properties of LSH,

while considerably reducing the retrieval cost.

2. FAST MATCHING WITH MINHASH + LSH

The goal of our matching system is to be robust to the types

of degradations that we expect to see between database

entries and probes. In the audio domain, the system is

designed to handle random noise, competing structured

noise (other songs in the background, voices), echoes, poor

mp3 encoding, playback over cell phones, etc. In the visual

domain, we address common variations seen in images –

poor jpeg encoding, changes in aspect ratio, saturation and

hue, overlayed text, sharpening and blurring, etc.

The matching system works in the following basic steps.

To create the reference database, Haar-Wavelets of the

image (or spectrogram segment) are first computed. By

itself, the wavelet-image is not resistant to noise or

degradations. To reduce the effects of noise, while

maintaining the major characteristics of the image, we select

the t top wavelets (by magnitude) and discard the rest.

Jacobs [6] further determined that after keeping only the top

wavelets, the coefficient magnitudes are not needed for

effective retrieval: instead the sign bits alone could be used.

As memory usage is a primary concern in this system, this

same top-wavelet-sign representation is used here. The

sparsity of the resulting top-wavelet vector makes it

amenable to further reduction using the MinHash [4].

MinHash works with sparse binary vectors as follows:

Select a random, but known, reordering of all the vector

positions. For each vector permutation, measure in which

position the first '1' occurs; this projection is the first

component of the signature. Note that for two vectors, v1 &

v2, the probability that first_1_occurrence(v1) =

first_1_occurrence(v2) is the same as the probability of

finding a row that has a 1 in both v1 and v2, from the set of

rows that have 1 in either v1 or v2. Therefore, for a given

permutation, the MinHash values match for v1 and v2 if the

first position with a 1 is the same in both bit vectors, and

they disagree if the first such position is a row where one but

not both, vectors contained a 1. Note that this is exactly

what is required; it measures the similarity of the sparse bit

vectors based on matching “on” positions. A full signature

is the concatenation of M MinHash projections. These M

projections are then placed into the L LSH tables by

selecting M/L permutations for each hash key.

For retrieval, each probe is hashed into the L tables in

the same manner. The best match from the set of candidate

neighbors (the union of the entries found in the L matching

bins—one from each table) is the one that matched in the

most hash-tables.

Given this formulation, we created a full system using

the following parameters
1
. For images, each image to be

inserted into the database was reduced to a 32×32

thumbnail, the Haar wavelets were extracted independently

for 5 channels of the image (R,G, B, I, Q) and the signs of

the top-50 wavelets by magnitude were kept; others were set

to 0. For the audio spectrogram images, which are based on

those created in [7][8], a single channel can be used. The

length of the subfingerprints (the number of MinHashes that

were concatenated for use as the key) into each hash table

was varied from 3-8 and we used L=10; therefore, for each

channel the total length of the signature varied from 30

(3×10) MinHashes to 80 (8×10). Each table had 10
6
 bins.

We measure the retrieval accuracy of the system in the

standard manner, by examining the percentage of probe

queries (consisting of severely degraded probes) that found

the original entry in the database. In live deployment, we

must plan for excessive peak-time query loads (lookups for

matching signatures); because the queries will be farmed out

to multiple machines (10s-100s), the number of elements

returned for each lookup must be kept small. Large numbers

of matching elements returned will not only incur large

computational penalties when the tallies are maintained to

1 These parameters were tuned through significant experimental testing; see

[1] for a complete description of parameters interactions and full details on

the audio spectrogram settings.

determine which image has the most votes, but will also

incur large amounts of bandwidth as large lists are

transferred between machines. To keep the number of

candidates small, we examine two metrics; the first provides

insights into system performance, the second provides the

exact measurement we need to minimize.

(1) Max-Occupancy: the max number of elements in a bin for

each table, averaged over all hash tables; the lower this

is, the lower the max bandwidth will be.

(2) Total-Elements-Returned: average number of total

elements returned for a lookup of a probe (across all hash

tables and all channels).

For the baseline tests, shown in Table I, image probes were

created by random combinations of added noise, auto-color

“enhancement”, overlaid large text, blurring, sharpening,

±contrast, ±saturation, and aspect ratio modification.

Table I: System with 2×106 images in DB, 14,100 probes.
 L=10 Hash Tables per Channel, 106 elements in each table.

MinHashes Correct Max Occupancy

of a Bin

Total elements

Returned

3 per key 99.1% 107,026 432,193

4 per key 99.0% 45,013 91,908

5 per key 98.9% 21,172 19,939

6 per key 98.6% 13,904 4,996

7 per key 98.2% 11,481 1,363

8 per key 97.6% 10,122 476

As can be seen, the number of total elements returned drops

dramatically as the size of the hash-key increases; the longer

the hash-key, the better the distribution across the bins of the

hash tables. This is corroborated by the fact that the

maximum occupancy of any bin also falls dramatically.

However, the drawback of increasing the hash-key size is

that it increases the threshold for finding a match. In order

for the probe to be hashed to the same bin as the correct

match, it must be an exact match for a larger set of keys;

therefore, less degradation is tolerated.

 In order to maintain at least a 99% retrieval rate, we

can use at most 4-5 MinHashes per key. As can be seen,

however, for these settings, there are a large number of keys

that are returned for each lookup. Note that if the entries

had been distributed perfectly across the hash table, per

channel, each bin would hold only 2 elements (therefore,

ideally we would examine only 20 elements per channel (2 ×

10 hash tables per channel). However, we are far from this

number. Next, we explain why this clumping happens in

some hash bins, and demonstrate how to reduce its effects.

3. PERMUTATION GROUPING

In this section, we first describe the cause of the uneven

clumping in the hash bins that led to the large number of

element returned per lookup. Second, we propose a method,

permutation grouping, to avoid the clumping.

The first insight into the cause of the problem is found

in the distribution of the MinHash signatures. Recall that

the MinHash signature measures the first ‘on’ position in a

random permutation of a sparse vector. When each element

of the original sparse vector has an independent and

identical (i.i.d.) probability of being on, the MinHash

signatures exhibit a smooth drop in probability as the

positions get larger. Using this model with p for the ‘on’

probability, the MinHash output space will follow a

geometric distribution: P(reference=n) = p(1–p)
n
; i.e. there

are n ‘off’ entries before there is a ‘on’ entry. This

distribution outputs the lowest values with the highest

frequency, in a monotonic decreasing distribution. In Figure

2A, we see that the generated distribution (for i.i.d data) is

almost exactly the expected; the entropy is 6.7.

In contrast, in Figure 2B, we look at 10 sample

permutations and examine the probability of occurrence for

each position; it is clearly non-uniform and severe clumping

of the samples is apparent. For these distributions, the

entropy is approximately 4.0; significantly lower than with

i.i.d. samples. The entropy distributions of 100 sample

permutations of i.i.d. and top-wavelets data is shown in

Figure 3. Importantly, with an entropy of 4, only 16 of the

255 positions are being effectively used; with the i.i.d.

samples (entropy=6.7), approximately 105 positions are.

Given the large variation in the entropies observed by

the random selection of permutations with real data (Figure

3); the fist step in intelligently designing the L hash

functions used for LSH is to use those permutations with

highest entropies. However, recall that when the MinHash

signatures are used with LSH, multiple MinHash projections

are concatenated to form a single hash-key (in the previous

experiments, the groups consisted of 3-8 elements). Rather

than simply selecting high entropy permutations to place

together, a more principled method is to use the Mutual

Information (MI) between permutations to guide which

permutations are grouped. Mutual information is a measure

of how much knowing the value of one variable reduces the

uncertainty in another variable. Formally, in terms of

entropy, mutual information is defined as:

I(X;Y) = H(X) – H (X|Y) = H(X) + H(Y) – H (X,Y)

 = ∑∑
∈ ∈Yy Xx ypxp

yxp
yxp

)()(

),(
log),(

To determine whether there is sufficient mutual information

variance to use this as a valid signal, for 100 permutations,

we examined the mutual information between all pairs

(100*99/2 samples). The results are shown in Figure 4 for

i.i.d. and real data. Although the same general shape, note

the significantly longer tail for real data. The existence of

this tail is important; if the permutations with high mutual

information are in the same group, clumping will be

increased (intuitively, since the new permutations will be

correlated, the bits used for that hash will be inefficiently

used, and the spread of the items in the bins will diminish).

In order to create groups of low mutual information

permutations to put together into hashing chunks, we use a

greedy selection procedure that is loosely based on the

algorithm used in Chow and Liu [3]. Whereas [3] created a

spanning tree that maximized the MI between sets of

variables, we use a similar greedy selection procedure to

minimize the mutual information in order to create a forest

of trees; each of whose constituents are the set of

permutations that are grouped together.

 First, for all of the L groups of hashes, an initial

permutation is assigned. These are chosen to be the L

permutations with the highest unconditional entropy. These

L are added into the selected set, S. Using G as the set of L

groups, and B as the size of the group (number of

MinHashes per key), the remaining permutations are

selected iteratively through one of the three procedures:

(1): ()






∈<∈∉
),(minmin

||..,,
tsI

gtBgtsGgSs

: Find the unselected

permutation, s, with the minimum MI with any of member of

a group that does not already have B members. Once found,

add s to the group g, (t∈g) and add s to S. This is the most
aggressive of the three methods as it uses the lowest MI to a

single member of the group to make the next selection.

1

31

61

91

121

151

181

P1

P3

P5

P7

P9

Bernoulli

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 2: MinHash

distributions for first 200

positions. A: with i.i.d.

data. Note monotonic,

smooth decreasing

probabilities as position

increases. Furthest

distribution is actually

based on Bernoulli trials.

B: Distributions with top

wavelet data.

B. 10 MinHash

distribution with top-

wavelet data.

(200 positions)

A. 10 MinHash distribution with

random i.i.d. data

 (first 200 positions shown) &

Actual computed

geometric distribution

1

31

61

91

121

151

181

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

1.
96

2.
28 2.

6
2.
92

3.
24

3.
56

3.
88 4.

2
4.
52

4.
84

5.
16

5.
48 5.

8 ~
6.
74

6.
75

6.
76

Actual Data

Uniformly Randomly Generated Data

Figure 3: (-1.0*)

Entropy of 100

MinHash permutations

using real data (left)

and i.i.d. data (right,

striped). Note the

large differences in

averages (4.0 vs. 6.7).

X-Axis Scale

exaggerated on right.

(2):








∑
∈

<∈∉
gt

BgtsGgSs
tsI),(min

||..,,

: Find the unselected permutation

as above, except assign the MI to the group as the MI of the

candidate summed across the members already in the group.

(3): ()






∈<∈∉
),(maxmin

||..,,
tsI

gtBgtsGgSs

: Find the unselected

permutation as above, except assign the MI to the group to

be the maximum of the MIs between s and any member of

that group. Select the minimum of these across groups and

unselected s. This is the most conservative of the

procedures; it minimizes the worst of the correlations.

Note that many more permutations can be generated

than need to be used; this allows us to generate a large pool

from which to select. These procedures run in O(n
2
) time,

where n is the # of permutations. Importantly, this

computational load is only incurred during system design,

not during matching, retrieval, or database generation.

4. EXPERIMENTS

For the experiments, the trials described in Section 2 were

rerun. In these experiments, however, instead of randomly

grouping the permutations, they were grouped in the 3

manners described above. A total of 100 permutations were

generated, from which 30-80 were selected (depending on

the experiment, as shown in Table 2).

 The findings all revealed dramatically improved results,

in terms of the maximum occupancy of any bin, and the total

elements-returned. There was no significant change in the

number of correct matches. Due to space restrictions, we

show the results, in Table 2, for only method #3 described

above; this had the best overall performance. From Table 2:

the maximum occupancy of any bin in the hash tables has

dramatically dropped for all MinHash settings. The

maximum drop was 46% (when 4 hashes per key were

employed); the minimum, 14% when 7 hashes were

employed). The more pronounced effect with the smaller

number of keys occurs because, as the number of keys

increases, the effect of a few ‘unlucky’ permutation

combinations diminishes. Most importantly, the total

number of elements returned has decreased between 30%

and 51%. This yields not only substantial savings in the

amount of computation required to tabulate and track the

candidates, but also eases the enormous network burden

caused by transferring large lists of candidates between

multiple machines.

Table 2: System with 2×106 images in DB, 14,100 probes.

 L=10 Hash Tables per Channel, 106 elements in each table.

% improvement over not using MI-based grouping also shown.

MinHashes Correct Max Occupancy Total Elements

3 per key 99.1% 63,273 -41% 302,605 -30%

4 per key 99.0% 24,195 -46% 55,978 -39%

5 per key 98.8% 13,762 -35% 10,994 -45%

6 per key 98.5% 10,212 -27% 2,463 -51%

7 per key 98.0% 9,852 -14% 684 -50%

8 per key 97.2% 8,316 -18% 243 -49%

5. CONCLUSIONS & FUTURE WORK

With no extra computation cost during retrieval time, and

with no significant change in retrieval accuracy, we were

able to significantly reduce the number of candidates (by 30-

50%) that need to be examined. We achieved this by better

selecting the permutations that were grouped together for

hashing; this minimized their MI and more effectively used

the bits. This has a large benefit in the context of large

systems; the fewer the candidates, the better the computation

and bandwidth performance.

 The performance improvement was demonstrated across

all sizes of hash keys examined. In our implementation, we

will use between 4-6 hashes per group in live systems;

thereby resulting in savings of over 40%. In the future, we

would like to examine directly changing the distribution of

the hashes by augmenting the MinHash permutation scheme.

6. REFERENCES

[1] Baluja, S., Covell, M. “Audio Fingerprinting: Combining Computer

Vision & Data Stream Processing”, ICASSP-2007.

[2] Casey, M., Slaney, M. (2006) Song intersection by Approximate

Nearest Neighbor Search, ISMIR 2006.

[3] Chow, C., Liu, C, “Approximating Discrete Probability Distributions

with Dependence Trees”, IEEE-Info Theory 14(3)

[4] Cohen, E. et. al (2001) Finding interesting associations without support

pruning. Knowledge and Data Engineering, 13(1):64–78.

[5] Gionis, A., P. Indyk, R. Motwani (1999), Similarity search in high

dimensions via hashing. in Proc. VLDB, pp. 518–529.

[6] Jacobs, C., Finkelstein, A., Salesin, D. (1995) Fast Multiresolution

Image Querying. in Proc of SIGGRAPH 95.

[7] Ke, Y., D. Hoiem, R. Sukthankar (2005). Computer Vision for Music

Identification. In CVPR pp. 597-604.

[8] Haitsma & Kalker, “A Highly Robust Audio Fingerprinting System”,

ISMIR-2002.

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

0.
06
0.
13
0.
21
0.
28
0.
36
0.
43
0.
51
0.
58
0.
66
0.
73
0.
81
0.
88
0.
95
1.
03
1.
10
1.
18
1.
25

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Frequency

Cumulative

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

0.
06
0.
13
0.
21
0.
28
0.
36
0.
43
0.
51
0.
58
0.
66
0.
73
0.
81
0.
88
0.
95
1.
03
1.
10
1.
18
1.
25

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Frequency

Cumulative

Figure 4: Histogram of Mutual

information between all pairs

of 100 MinHash permutations

using real data (left) and i.i.d.

data (right). Line is

cumulative probability. Note

the longer tail observed with

real data (circled). Randomly

chosen, unlucky, combinations

will yield clumping.

i.i.d data Real data

