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Foreword

The Australasian Data Mining Conference sedesDM initiated in 2002, is the annual
flagship venue where data mining and analytics professionat®lass and practitioners, can
present the state-of-art in the field. Together with the InstidditAnalytics Professionals of
AustraliaAus DM has a unique profile in nurturing this joint community. The first sexbnd
edition of the conference (held in 2002 and 2003 in Canberra, Australigated the links
between different research groups in Australia and some induatijtipners. The event the
event has been supported by:

« Togaware, again hosting the website and the conference manageystsih,s
coordinating the review process and other essential expertise;

» the University of Technology, Sydney, providing the venue, regstrécilities and
various other support at the Faculty of Information Technology;

« the Institute of Analytic Professionals of Australia (IAP&)d NetMap Analytics Pty
Limited, facilitating the contacts with the industry;

* the e-Markets Research Group, providing essential expertise for the event;

» the ARC Research Network on Data Mining and Knowledge Discoyeoyiding
financial support.

The conference program committee reviewed 42 submissions, out df Mhisubmissions
have been selected for publication and presentaiesDMfollows a rigid blind peer-review
process and ranking-based paper selection process. All papers vesrg@vety reviewed by

at least three referees drawn from the program commitfeenould like to note that the cut-
off threshold has been very high (4.1 on a 5 point scale), which indibatiethe quality of

submissions is very high. We would like to thank all those who suloirihigr work to the

conference. We will be extending the conference format to be aldecommodate more
papers.

Today data mining and analytics technology has gone far beyomdhing databases of
credit card usage or retail transaction records. This techn@agygore part of the so-called
“embedded intelligence” in science, business, health care, drug desmumjty and other
areas of human endeavour. Unstructured text and richer multimediaadatecoming a
major input to the data mining algorithms. Consistent and reliablihoea@ogies are
becoming critical to the success of data mining and analyticsndustry. Accepted
submissions have been grouped in four sessions reflecting thess. teeach session is
preceded by invited industry presentation.

Special thanks go to the program committee members and exteuwmalers. The final
quality of selected papers depends on their efforts.AltsdDM review cycle runs on a very
tight schedule and we would like to thank all reviewers for theimmitment and
professionalism.

Last but not least, we would like to thank the organisers of Al 20@5ACAL 2005 for
assisting in hostingus DM

Simeon, J. Simoff, Graham J. Williams
John Galloway and Inna Kolyshkina

November 2005
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Incorporate Domain Knowledge into Support Vector
Machine to Classify Price Impacts of Unexpected News

Ting Yu, Tony Jan, John Debenham and Simeon Simoff

Institute for Information and Communication Technologies
Faculty of Information Technology, University of Technology, Sydney,
PO Box 123, Broadway, NSW 2007, Australia

{yuting , jant, debenham, simeon}@it .uts.edu.au

Abstract. We present a novel approach for providing approximate answers to
classifying news events into simple three categories. The approach is based on
the authors’ previous research: incorporating domain knowledge into machine
learning [1], and initially explore the results of its implementation for this par-
ticular field. In this paper, the process of constructing training datasets is em-
phasized, and domain knowledge is utilized to pre-process the dataset. The
piecewise linear fitting etc. is used to label the outputs of the training datasets,
which is fed into a classifier built by support vector machine, in order to learn
the interrelationship between news events and volatility of the given stock
price.

1 Introduction and Background

In macroeconomic theories, the Rational Expectations Hypothesis (REH) assumes
that all traders are rational and take as their subjective expectation of future variables
the objective prediction by economic theory. In contrast, Keynes already questioned a
completely rational valuation of assets, arguing those investors’ sentiment and mass
psychology play a significant role in financial markets. New classical economists
have views these as being irrational, and therefore inconsistent with the REH. In an
efficient market, ‘irrational’ speculators would simply lose money and therefore fail
to survive evolutionary competition.

Hence, financial markets are viewed as evolutionary systems between different, com-
peting trading strategies [2]. In this uncertain world, nobody really knows what ex-
actly the fundamental value is; good news about economic fundamental reinforced by
some evolutionary forces may lead to deviations from the fundamental values and
overvaluation.

Hommes C.H. [2] specifies the Adaptive Belief System (ABS), which assumes that
traders are boundedly rational, and implied a decomposition of return into two terms:
one martingale difference sequence part according to the conventional EMH theory,
and an extra speculative term added by the evolutionary theory. The phenomenon of
volatility clustering occurs due to the interaction of heterogeneous traders. In periods
of low volatility fundamentalists dominate the market. High volatility may be trig-

S. J. Simoff, G. J. Williams, J. Galloway and I. Kolyshkina (eds). 1
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gered by news about fundamental values and may be amplified by technical trading.
Once a (temporary) bubble has started, evolutionary forces may reinforce deviations
from the benchmark fundamental values.

As a non-linear stochastic system, ABS: X, |, = F(X,;ny,....ny;4;0,;&,)

Where F is a nonlinear mapping, the noise term &, is the model approximation error

representing the fact that a model can only be an approximation of the real world. In
economic and financial models one almost has to deal with intrinsic uncertainty rep-
resented here by the noise termd, . For example one typically deals with investors’

uncertainty about economic fundamental values. In the ABS there will be uncertainty
about future dividends.

Maheu and McCurdy [3] specified a GARCH-Jump model for return series. They
label the innovation to returns, which is directly measurable from price data, as the
news impact from latent news innovations. The latent news process is postulated to
have two separate components, normal and unusual news events. These news innova-
tions are identified through their impact on return volatility. The unobservable normal
news innovations are assumed to be captured by the return innovation compo-
nent, & ,. This component of the news process causes smoothly evolving changes in

the conditional variance of returns. The second component of the latent news process
causes infrequent large moves in returns, ¢&,,. The impacts of these unusual news

events are labelled jumps. Given an information set at time t-1, which consists of the
history of returns @, ; = {r,_;,...,#;}, the two stochastic innovations, &, and &,,

drive returns: 7, = u+¢, +&,,, &, is a mean-zero innovation (E[g;, [®,;]1=0)
with a normal stochastic forcing process, &, =0,z,,z, ~ NID(0,1) and &, Isa

jump innovation.

Both of the previous models provide general frameworks to incorporate the impacts
from news articles, but with respect to thousands of news articles from all kinds of
sources, these methods do not provide an approach to figure out the significant news
of the given stocks. Therefore, these methods cannot make significant improvement
in practice.

Numerous publications describe machine-learning researches that try to predict short-
term movement of stock prices. However very limited researches have been done to
deal with unstructured data due to the difficulty of the combination of numerical data
and textual data in this specific field. Marc-Andre Mittermayer developed a prototype
NewsCATS [4], which provides a rather completed framework. Being different from
this, the prototype developed in this paper, gives an automatic pre-processing ap-
proach to build training datasets and keyword sets. Within the NewsCATS, experts do
these works manually, and this is very time consuming and lack of flexibility to dy-
namic environments of stock markets. A similar work has been done by B. Wuthrich
and V. Cho et al [5]. The following part of this paper emphasizes the pre-processing
approach and the combination of the rule-based clustering and nonparametric classi-
fications.
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2. Methodologies and System Design

Being different from common interrelationships among multiple sequences of obser-
vations, heterogeneous data e.g. price (or return) series and event sequences are con-
sidered in this paper. Normally, the price (or return) series is numerical data, and the
later is textual data. At the previous GARCH-Jump model, the component ¢,, incor-

porates the impacts from events into price series. But it is manual and time consuming
to measure the value of &,, and the model does not provide a clear approach.

Moreover, with respect to thousands of news from overall the world, it is almost
impossible for one individual to pick up the significant news and make a rational
estimation immediately after they happen. At the following parts, this paper will pro-
pose an approach that uses machine learning to classify influent news

The prototype of this classifier is a combination of rule-based clustering, keywords
extraction and non-parametric classification e.g. support vector machine (SVM). To
initiate this prototype, some training data from the archive of press release and a clos-
ing price series from the closing price data archive are fed into the news pre-
processing engine, and the engine tries to “align” news items to the price (or return
series). After the alignment, training news items are labelled as three types of news
using a rule-based clustering. Further the training news items are fed into a keywords
extraction engine within the news pre-processing engine [6], in order to extract key-
words to construct an archive of keywords, which will be used to convert the news
items into term-frequency data understood by the classification engine (support vec-
tor machine).

~
Rule base:
Rules for labeling
Stock Profiles
J

'

Downward
AMP take- I];Irelv\i; ePreprocessing Quata: 0.12 glas'siﬁcation impact
oVers ... I g gine Upward
A A impact
Neutral
:l News
\ 4
Unrelated
Archive Closing Archive H
of press price of
release data key-

archive

Fig 2.1. Structure of the classifier

After the training process is completed, the inflow of news will be converted as a
term-frequency format and fed into the classification engine to predict its impact to
the current stock price.
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On the other hand, before news items are fed into the classifier, a rule-based filter,
“stock profile”, screens out the unrelated articles. Given a stock, a set of its casual
links is named as its “Stock Profile”, which represents a set of characteristics of that
stock. For example, AMP is an Australia-based financial company. If a regional natu-
ral disease happens in Australia, its impact to AMP is much stronger than its impact
to News Corp, which is multi-national news provider. The stock price of AMP is
more sensitive to this kind of news than the stock price of News Corp is.

2.1. Temporal Knowledge Discovery

John Roddick et al [7] described that time-stamped data can be scalar values, such as
stock prices, or events, such as telecommunication signals. Time-stamped scalar val-
ues of an ordinal domain form curves, so-called “time series”, and reveal trends. They
listed several types of temporal knowledge discovery: Apriori-like Discovery of As-
sociation Rules, Template-Based Mining for Sequences, and Classification of Tempo-
ral Data. In the case of trend discovery, a rationale is related to prediction: if one time
series shows the same trend as another but with a known time delay, observing the
trend of the latter allows assessments about the future behaviour of the former.

In order to more deeply explore the interrelationship between sequences of temporal
data, the mining technique must be beyond the simple similarity measurement, and
the further causal links between sequences is more interesting to be discovered.

In financial research, the stock price (or return) is normally treated as a time series, in
order to explore the autocorrelation between the current and previous observations.
On the other hand, events, e.g. news arrival, may be treated as a sequence of observa-
tions, and it will be very significant to explore correlation between these two se-
quences of observations.

2.2. A Rule Base Representing Domain Knowledge

How to link two different sequences of observations? A tradition way is employing
financial researchers, who use their expertise and read through all of news articles to
distinguish. Obviously it is a very time consuming task and not react timely to the
dynamic environment. To avoid these problems, this prototype utilizes some existing
financial knowledge, especially some time series analysis to price (or return), to label
news articles. Here financial knowledge is named as domain knowledge: knowledge
about the underlying process, 1) Functional form: either parametric (e.g. addictive or
multiplicative), or semi-parametric, or nonparametric; and 2) identify economic cy-
cles, unusual events, and causal forces.

Numerous financial researches have demonstrated that high volatilities often correlate
with dramatic price discovery processes, which are often caused by unexpected news
arrival, so-called “jump” in the GARCH-Jump model or “shock”. On the other hand,
as the previous ABS suggested, high volatility may be triggered by news about fun-
damental values and may be amplified by technical trading, and the ABS model also
implied a decomposition of return into two terms: one martingale difference sequence
part according to the conventional EMH theory, and an extra speculative term added
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by the evolutionary theory. Some other financial researches also suggest that volatil-
ity may be caused by two groups of disturbance: traders’ behaviours, e.g. trading
process, inside the market, and impacts from some events outside the markets, e.g.
unexpected breaking news. Borrowing some concepts from the electronic signal
processing, “Inertial modelling” is the inherent model structure of the process even
without events, and “Transient problem” is the changes of flux after new event hap-
pens. Transient problem may cause a shock at series of price (or return), or may
change the inherent structure of the stock permanently, e.g. interrelationship between
financial factors.

How to represent the domain knowledge into machine learning system? Some re-
searches have been done by Ting Yu et al [1]. The rule base represents domain
knowledge, e.g. causal information. Here, in case of unexpected news announcement,
the causal link between the news and short-range trend is represented by knowledge
about the subject area.

2.2.1. Associating events with patterns in volatility of stock price

A large amount of financial researches have indicated that important information

releases are already followed by dramatic price adjustment processes, e.g. extremely

increase of trading volume and volatility. This phenomena normally lasts one or two

days [8].

In this paper, a filter will treat the observation beyond 3 standard derivations as ab-

normal volatilities, and the news released at these days with abnormal volatilities will

be labelled as shocking news.

P-P .

—t_—=1 the net-of-market return is
-1

the difference between absolute return and index return: NR, = R, — IndexR, . This

indicates the magnitude of information released and excludes the impact from the
whole stock market.

Different from the often-used return, e.g. R, =

Piecewise Linear Fitting:

In order to measure the impact from unexpected news event, the first step is to get rid
of the inertial part of the series of return. At the price series, the piecewise linear
regression is used to fit into the real price series and detect the change of trend. Here,
piecewise linear fitting screens out the disturbance caused by traders’ behaviours,
which normally are around 70% total disturbances.

Linear regression falls into the category of so-called parametric regression, which
assumes that the nature of the relationships (but not the specific parameters) between
the dependent and independent variables is known a priori (e.g., is linear). By con-
trast, nonparametric regression does not make any such assumption as to how the
dependent variables are related to the predictors. Instead it allows the regression func-
tion to be "driven" directly from data [9].

Three major approaches to segment time series [10]: sliding windows, top-down and
bottom-up. Here the bottom-up segmentation algorithm is used to fit a piecewise
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linear function into the price series, and the algorithm is developed by Eamonn Ke-
ogh el at [11]. The piecewise segmented model M is given by [12]:
Y=fit,w)+e(),(1<t<6)

=t wy)+ey(1),(0, <t<6,)

= [e(t,wi) + e (1, (G <t <)
An f;(t,w;) is the function that is fit in segment i. In case of the trend estimation,
this function is a linear one between price and date. The 6,’s are change points be-
tween successive segments, and e; (¢) ’s are error terms.

In the piecewise fitting of a series of stock price, the connecting points of piecewise
release points of the significant change of trends. In the statistics literature this has
been called the change point detection problem [12].

After detecting the change points, the next stage is to select an appropriate set of
news stories. Victor Lavrenko el at named this stage as “Aligning the trends with
news stories” [13].

In this paper, these two rules, extreme volatilities detection and change point detec-
tion, are employed to label training news items, and at the same time, some rules are
employed to screen out the unrelated news. This rule base contains some domain
knowledge, which has been discussed at the previous part, and bridges the gap be-
tween different types of information.

Collopy and Armstrong have done some similar researches. The objective of their
rule base [14] are: to provide more accurate forecasts, and to provide a systematic
summary of knowledge. The performance of rule-based forecasting depends not only
on the rule base, but also on the conditions of the series. Here conditions mean a set
of features that describes a series.

An important feature of time series is a change in the basic trend of a series. A piece-
wise regression line is fitted on the series to detect the level discontinuity and changes
of basic trend.

The pseudo-code for an example of the algorithms:

rule base();
Piecewise (data) ;
While not finish the time series
If {condition 1, condition 2} then
a_set of news=scan news (time) ;
Episode_array[il= a_set_of_news;
End if
Return Episode_array;
End loop
/**Rule base**/
rule base() {
Condition 1:
Day € {upward, neutral, downward};
Condition 2: shock == true;
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The combination of two rules are quite straightforward: unanticipated negative news
= within downward trend + large volatility, unanticipated positive news = within
upward trend + large volatility.

2.3. Text Classification:

The goal of text classification is the automatic assignment of documents, e.g. com-
pany announcements, to simple three categories. In this experiment, the commonly
used Term Frequency-Inverse Document Frequency (TF-IDF) is utilized to calculate
the frequency of predefined key words in order to represent documents as a set of
term-vectors. The set of key words is constructed by comparing general business
articles come from the website from the Australian Financial Reviews, with com-
panied announcements collected and pre-processed by Prof Robert Dale [15]. The
detailed algorithms are developed by eMarket group. Keywords are not restricted to
single words, but can be phrases. Therefore, the first step is to identify phrases in the
target corpus. The phrases are extracted based on the assumption that two constituent
words form a collocation if they co-occur a lot [6].

2.3.1. Extracting Document Representations

Documents are represented as a set of fields where each field is a term-vector. Fields
could include the title of the document, the date of the document and the frequency of
selected key words.

In a corpus of documents, certain terms will occur in the most of the documents,
while others will occur in just a few documents. The inverse document frequency
(IDF) is a factor that enhances the terms that appear in fewer documents, while down-
grading the terms occurring in many documents. The resulting effect is that the docu-
ment-specific features get highlighted, while the collection-wide features are
diminished in importance. TF-IDF assigns the term i in document & a weight com-
puted as:

Je(@) n
TF, * IDF(t;) = *log( )
l JZI.EDk sz (ti) DF(ti)

Here DF (Document frequency of the term (#)) — the number of documents in the
corpus that the term appears; n — the number of documents in the corpus; TF; — the
occurrence of term i at the document k [16]. As a result, each document is represented

as a set of vectors F% =< term, weight > .

2.3.2. Train the Classifier

Without the clear knowledge about the ways how the news influence a stock price,
nonparametric methods seems to be the better choice than the parametric methods
that base on prior assumptions, e.g. Logistic Regression. Here, the frequencies of
selected key words are used as the input of Support Vector Machine (SVM). Under a

supervised learning, the train sets consist of <F . {upward impact, neutral impact,
downward impact}>, which are constructed by the methods discussed at the previous
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part of this paper. Some of similar researches have been found at papers published by
Ting Yu et al [1] and James Tin-Yan Kwok et al [17].

3 Experiments

Here the price series and return series of AMP are used to carry out some experi-
ments. The first figures (Fig. 3.1) are the closing price and net return series of AMP
from 15/06/1998 to 16/03/2005. On the other hand, more than 2000 company an-
nouncements are collected as a series of news items, which covers the same period as
the closing prices series.
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Fig. 3.1, Closing price and net return series of AMP
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Fig. 3.2a. Shocks (large volatilities) Fig. 3.2b. Trend and changing points

The second figures indicate shocks (large volatilities) (Fig. 3.2a), and the trend
changing points detected (Fig. 3.2b) by the piecewise linear fitting. After pre-
processing, the training dataset consists of 464 upwards news items, 833 downward
news items and 997 neutral news items. The keywords extraction algorithm con-
structs a keyword set consisting of 36 single or double terms, e.g. vote share, demerg,
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court, qanta, annexure, pacif, execut share, memorandum, cole etc. these keywords
are stemmed following the Porter Stemming Algorithm, written Martin Porter [18].
The dataset is split into two parts: training and test data. The result of classification,
e.g. upwards or downwards, is compared with the real trends of the stock price. Un-
der LibSVM 2.8 [19], the accuracy of classification is 65.73%, which is significant
higher than 46%, the average accuracy of Wuthrich’s experiments [5].

4 Conclusions and Further Work

This paper provides a brief framework to classify the coming news into three catego-
ries: upward, neural or downward. One of the major purposes of this research is to
provide financial participants and researchers an automatic and powerful tool to
screen out influential news (information shocks) among thousand of news around this
world everyday. Another main purpose is to discuss an Al based approach to quantify
the impact from news events to stock price movements.

The current prototype has demonstrated promising results of this approach, although
the result of experiments is long distance from the practical satisfaction. On the fur-
ther researches, the mechanism of impacts will be discussed more deeply to get better
domain knowledge to improve the performance of machine learning. More experi-
ments will be carried to compare the results between different types of stocks and
between different stock markets.

In the further work, three major issues must be concerned, which are suggested by
Nikolaus Hautsch [20]: 1) Inside information: if inside information has already been
disclosed at the market, the price discovery process will be different. 2) Anticipated
vs. unanticipated information: if traders’ belief has absorbed the information, so-
called anticipated information, the impact must be expressed as a conditional prob-
ability with the brief as a prior condition. 3) Interactive effects between information:
at the current experiment all news at one point are labelled as a set of upward impacts
or other, but the real situation is much more complex. Even at one upward point, it is
common that there is some news with downward impacts. It will be very challenging
to distinguish the subset of minor news and measure the interrelationship between
news.
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Abstract. Text mining plays an important role in text analysis and in-
formation retrieval. However, existing text mining tools rarely address
the high dimensionality and sparsity of text data appropriately, making
the development of relevant and effective analytics difficult. In this pa-
per, we propose a novel pattern called heavy bicliques, which unveil the
inter-relationships of documents and their terms according to different
density levels. Once discovered, many text analytics can be built upon
this pattern to effectively accomplish different tasks. In addition, we also
present a discrete dynamical system called the resonance model to find
these heavy bicliques quickly. The preliminary results of our experiments
proved to be promising.

1 Introduction

With advancements in storage and communication technologies, and the popu-
larity of the Internet, there is an increasing number of online documents con-
taining information of potential value. Text mining has been touted by some
as the technology to unlock and uncover the knowledge contained in these doc-
uments. Research on text data has been on-going for many years, borrowing
techniques from related disciplines (e.g., information retrieval and extraction,
and natural language processing) including entity extraction, N-grams statis-
tics, sentence bound, etc. This has led to a wide number of applications in
business intelligence (e.g., market analysis, customer relationship management,
human resources, technology watch, etc.) [1,2], and in inferencing biomedicine
literature [3-6] to name a few.

In text mining, there are several problems being studied. Typical problems
include information extraction, document organization, and finding predominant
themes in a given collection [7]. Underpinning these problems are techniques
such as summarization, clustering, and classification, where efficient tools exist,

S. J. Simoff, G. J. Williams, J. Galloway and I. Kolyshkina (eds). 1
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such as CLUTO 3 [8] and SVM * [9]. Regardless of the text feature extraction
method, or the linguistic technique used, these tools fail to meet the needs of the
analyst due to high dimensionality and sparsity of the text data. For example,
text clustering based on traditional formulations (e.g., optimization of a metric)
is insufficient for a text collection with complex and reticula topics. Likewise,
a simple flat partition (or even a hierarchical partition; see [10]) of the text
collection is often insufficient to characterize the complex relationships between
the documents and its topics.

To overcome the above, we propose the concept of Heavy Biclique (de-
noted simply as HB) to characterize the inter-relationships between documents
and terms according to their densities levels. Although similar to recent biclus-
ters, which identify coherence, our patterns determine the density of a submatrix,
i.e., the number of non-zeros. Thus, our proposal can also be viewed as a variant
of heavy subgraphs and yet, are more descriptive and flexible than traditional
cluster definitions. Many text mining tasks can be built upon this pattern. One
application of HB is to find those candidate terms with sufficient density for
summarization. Compared against existing methods, our algorithm that discov-
ers the HBs are more efficient at dealing with high dimensionality, sparsity, and
size. This efficiency is achieved by the use of a discrete dynamical system (DDS)
to obtain HB, which simulates the resonance phenomenon in the physical world.
Since it can converge quickly to a give a solution, the empirical results proved
to be promising.

The outline of this paper is as follows. We give a formal definition of our
problem and propose the novel pattern call Heavy Biclique in the next sec-
tion. Section 3 presents the discrete dynamical system to obtain HB, while Sec-
tion 4 discusses the initial results. Section 5 discusses the related work before we
conclude in Section 6 with future directions and works.

2 Problem Formulation

Let O be a set of objects, where o € O is defined by a set of attributes A. Further,
let w;; be the magnitude (absolute value) of o; over a; € A°. Then we can
represent the relationship of all objects and their attributes in a matrix W =
(wij)|o|x .| for the weighted bipartite graph G = (O, A, E, W), where E is the
set of edges, and |O’| is the number of elements in the set O, similarly |.A|. Thus,
the relationship between the dataset W and the bipartite graph G is established
to give the definition of a Heavy Biclique.

Definition 1. Given a weighted bipartite graph G, a o-Heavy Biclique (or
simply o-HB) is a subgraph G' = (O', A", E',W') and W' = (w;;)0/|x|ar| of G

3 http://www-users.cs.umn.edu/~karypis/cluto/

4 http://svmlight.joachims.org/

® By default, all magnitude (absolute value, or the modulus) of o; are non-negative.
If not, they can be scaled to non-negative numbers.
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A A A A A

A Ay As|As|As| [O[20 16 15| 8 | 5 As| As | Ay As | Ay
O1 5/120/15| 8 | 16 T4 12120 20| 5 | 3 Ol 1520 8 16| 5
O,/16| 8|5 |19]| 2 O, 812 |5 |19]|16 0,/20|12| 5|20 3
O,|18| 6|7 |17| 3 O, 6|37 17|18 O, 7|6 |17| 3|18
O,/ 3|12|20| 5|20 Heavy Bidlique O, 5|8|19| 2|16

Fig. 1. The matrix with 4 objects and 5 attributes: (a) original matrix; (b)
reordered by non-linear model; (c) reordered by linear model.

satisfying |W'| > o, where |W'| = Wllfl’l§ icor w;j. Here, o is the density
je Al
threshold. ’

Suppose we have a matrix, as shown in Figure 1(a), with 4 objects and 5
attributes containing entries scaled from 1 to 20. After reordering this matrix, we
may find its largest heavy biclique in the top-left corner as shown in Figure 1(b)
(if we set o = 16). This biclique is {O1, 04} x{ A, A3, A5}. If we assume objects
as documents, attributes as terms, and each entry as the frequency of a term
occurring in a document, we immediately find that a biclique describes a topic
in a subset of documents and terms. Of course, real-world collections are not as
straightforward as Figure 1(b). Nevertheless, we may use this understanding to
develop better algorithms to find subtle structures of collections.

A similar problem is the Maximum Edge Biclique Problem (MBP):
given a bipartite graph G = (V1 UV,, E) and a positive integer K, does G contain
a biclique with at least K edges? Although this bipartite graph G is unweighted,
the problem is NP-complete [11]. Recall from Definition 1, letting K = o|O’||.A’|
makes G unweighted. Then, the problem of finding o-Heavy Biclique by setting
o = 1 reduces to the MBP problem, i.e., our problem of finding largest ¢-HB is
very hard as well. Hence, it is therefore important to have a method to efficiently
find HBs in a document-term matrix. This will also lay the foundation for future
works in developing efficient algorithms based on HBs.

3 The Resonance Model — A Discrete Dynamical System

Given the difficulty of finding o-HB, we seek alternative methods to discover
the heavy bicliques. Since our objective is to find the bicliques with high density
|W’|, then some approximation to the heaviest bicliques (that is computationally
efficient) should suffice. To obtain the approximation of heaviest biclique for
a dataset, we used a novel model inspired by the physics of resonance. This
resonance model, which is a kind of discrete dynamical system [12], is very
efficient even on very large and high-dimensional datasets.

To understand the rationale behind its efficiency, we can discuss a simple
analogy. Suppose we are interested in finding the characteristics of students who

15
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are fans of thriller movies. One way is to poll each student. Clearly, this is time-
consuming. A better solution is to gather a sample but we risk acquiring a wrong
sample that leads to a wrong finding. A smarter approach is to announce the
free screening of a blockbuster thriller. In all likelihood, the fans of thrillers will
turn up for the screening. Despite the possibility of ‘false positives’, this sample
is easily and quickly obtained with minimum effort.

The scientific model that corresponds to the above is the principle of res-
onance. In other words, we can simulate a resonance experiment by injecting
a response function to elicit objects of interest to the analyst. In our analogy,
this response function is the blockbuster thriller that fans automatically react
to by going to the screening. In sections that follow, we present the model and
discuss its properties and support practicality of the model by discussing how it
improves analysis using some real-world applications.

3.1 Model Definition

To simulate a resonance phenomenon, we require a forcing object o6, such that
when an appropriate response function r is applied, 0 will resonate to elicit
those objects {0;,...} C O in G, whose ‘natural frequency’ is similar to o.
This ‘natural frequency’ represents the characteristics of both 6 and the objects
{0i,...} who resonated with 6 when r was applied. For the weighted bipartite
graph G = (0, A, E,W) and W = (w;j;)|0|x|.4|, this ‘natural frequency’ of o; €
O is 0; = (w1, ws2, ..., w;4)). Likewise, the ‘natural frequency’ of the forcing
object 6 is defined as 6; = (W, Wa, ..., W|4))-

Put simply, if two objects of the same ‘natural frequency’ will resonate and
therefore, should have a similar distribution of frequencies, i.e., those entries with
high values and the same attributes shall be easily identified. The evaluation of
resonance strength between objects o0; and o; is given by the response function
r(o0,05) : R” x R™ — R. We defined this function abstractly to support different
measures of resonance strength. For example, one existing measure to compare
two frequency distributions is the well-known rearrangement inequality theorem,
where I(x,y) = Y ., x;y; is maximized when the two positive sequences x =
(1,...,2n) and y = (y1,...,yn) are ordered in the same way (i.e. z1 > xo >

2 x, and y; = Yo = -+ = yp) and is minimized when they are ordered in
the opposite way (i.e. x1 Z 22 = - 2 x, and y; < y2 < -+ - < yp).

Notice if two vectors maximizing I(x,y) are put together to form M =
[x;y¥] (in MATLAB format), we obtain the entry value tendency of these two
vectors. More importantly, all o-HB are immediately obtained from this ‘contour’
of the matrix with no need to search every o-HB! This is why the model is
efficient — it only needs to consider the resonance strength among objects once
the appropriate response function is selected. For example, the response function
I is a suitable candidate to characterize the similarity of frequency distributions
of two objects. Likewise, E(x,y) = exp(}_;_, z;y;) is also an effective response
function.

To find the heaviest biclique, the forcing object o evaluates the resonance
strength of every objects o; against itself to locate a ‘best fit” based on the
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‘contour’ of the whole matrix. By running this iteratively, those objects that
resonated with o6 are discovered and placed together to form the heaviest biclique
within the 2-dimensional matrix W. This iterative learning process between o
and G is outlined below.

Initialization Set up 6 with a uniform distribution: 6 = (1,
it as 6 = norm(5)%; then let & = 0; and record this as 6(%) = &.

Apply Response Function For each object o; € O, compute the resonance
strength r(6,0;); store the results in a vector r = (r(6,01),1(5,02), ...,
r(6,0/0)); and then normalize it, i.e., r = norm(r).

Adjust Forcing Object Using r from the previous step, adjust the frequency
distribution of 6 for all o; € O. To do this, we define the adjustment function
c(r,a;) : ROl x RI®l — R, where the weights of the j-th attribute is given
in aj = (w1, way, ..., w)e|;). For each attribute a;, w; = c(r,a;) integrates
the weights from a; into 60 by evaluating the resonance strength recorded
in r. Again, c is abstract, and can be materialized using the inner product
c(r,a;) =rea; =)  w;;-r(0,0;). Finally, we compute 6 = norm(6) and
record it as 8¢t =&

Test Convergence Compare 6(+1) against ). If the result converges, go to
the next step; else apply r on O again (i.e., forcing resonance), and then
adjust o.

Reordering Matrix Sort the objects o; € O by the coordinates of r in de-
scending order; and sort the attributes a; € A by the coordinates of 6 in
descending order.

We denote the resonance model as R(O, A, W, r, c), where the instances of
functions r and c can be either I or E. Interestingly, the instance R(O, A, W, I, I)
is actually the HITS algorithm [13], where W is the adjacency matrix of a di-
rected graph. However, this instance is actually different from HITS in 3 ways:
(i) the objective of our model is to obtain an approximate heaviest biclique of the
dataset (through the resonance simulation), while HITS is designed for Web IR
and looks at only the top k& authoritative Web pages (a reinforcement learning
process); (ii) the implementation is different by the virtue that our model is able
to use a non-linear instance, i.e., R(O, A, W,E,E), to discover heavy bicliques
while HITS is strictly linear; and (iii) we study a different set of properties and
functions from HITS, i.e., heaviest biclique.

3.2 Properties of the Model

We shall discuss some important properties of our model in this section. In
particular, we show that the model gives a good approximation to the heaviest
biclique, and that its iterative process converges quickly.

—_— P
% norm(x) = x/||x||2, where ||x|2 = (" I, 22)'/? is 2-norm of vector x = (z1,...,xn).
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Convergence Since the resonance model is iterative, it is essential that it con-
verges quickly to be efficient. Essentially, the model can be seen as a type of
discrete dynamical system [12]. Where the functions in the system is linear, then
it is a linear dynamical system. For linear dynamical systems, it corresponds to
eigenvalue and eigenvector computation [12-14]. Hence, its convergence can be
proved by eigen-decomposition for R where the response and adjustment func-
tions are linear. In the non-linear case (i.e., R(O, A, W,E,E)), its convergence is
proven below.

Theorem 1. R(O, A, W, r,c), where r, c are I or E, converges in limited iter-
ations.

Proof. When r and c are I, we get 6*) = norm(6(*)(WZW)*) by linear alge-
bra [14]. If A is symmetric and x is a row vector that is not orthogonal to the first
eigenvector corresponding to the first largest eigenvalue of A, then norm(xA*)
converges to the first eigenvector as k increases. Thus, 6(%) converges to the
first eigenvector of WXW. As the exponential function has Maclaurin series
exp(z) = Y2, x"/n!, the convergence of the non-linear model with E functions
can be decomposed to the convergence of the model, when r and c are simple
polynomial functions z™.

So far, either implementations converge quickly if a reasonable precision
threshold ¢ is set. In practice, this is acceptable because we are only interested in
the convergence of orders of coordinates in 6* and r*, i.e., we are not interested
in how closely 6* and r* approximate the converged 6* and r*. Furthermore,
R(O, A, W,E,E) converges faster than R(O, A, W, I, I). Therefore, each iteration
of learning is bounded by O(|O| x t, + |A| X t.)), where ¢, and ¢, is the runtime
of the response function r, and the adjustment function c respectively. With k
iterations, the final complexity is O(k x (|O| x t.+|A| X t.)). Since the complexity
of r is O(]O]) and c is O(|.A]), we have O(k x |O] x |A]). In our experiments (in
Section 4), our model converges within 50 iterations even on the non-linear con-
figurations giving a time complexity of O(]O| x |A]). In all cases, the complexity
is sufficiently low to efficiency handle large datasets.
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Average Inter-resonance Strength é Zzléjlle_okf r(o;,0;) among Objects
Theorem 2 is in fact an optimization process to find the best k objects, whose
average inter-resonance strength is the largest among any subset of k£ objects.

Lemma 1. Given a row vector u = (ul,ug,...,un), where uy = ug = ... =
un, = 0, we generate a matriz U = AuTu, where A > 0 is a scale factor. We
then define the k-sub-matriz of U as U, = U (1 : k,1: k) (in MATLAB format).
Then, U has the following ‘staircase’ property

U > |0l 2 Ul > [Un] = U] 1)

where |U| of a symmetric matric U = (u;j)nxn 15 given as |U| = ﬁ doi<itj<n Wi
2 X X

Proof. By induction, when n = 2 (base case), we prove |Us| > |Us|. Since |Us| =

uyug, |Us| = %(U1UQ+’U/1U3+U2U3) and uy > ug = uz > 0, we have |Us| > |Us|.
When n = k, we prove |Uy| > |Ug41|. We first define

1
o = gy (v +2 3w

1<i<k

which after a straightforward calculation, we have the following

|Ut1| = Trt1 (2)
2k +1
|Uk1| = |Uk| = m($k+l - |Uk|) 3)

and finally from Equations (2) and (3), we have

|Uk| 2 [Ug1]
Lemma 2. Giwen a resonance space Rjo|x|jo| = WWT of O, its first eigenvalue
A, and the eigenvector u = (uy,us, ..., u,) € RYX" we have
Vx,y € RPX"
IR = u"ullr < [|R—x"ylF (4)

where || ® || denotes the Frobenius norm of a matrix.

Proof. We denote the the first singular value of A as s (its largest absolute value),
and the corresponding left and right singular vectors as p and q, respectively.
By the Eckart-Young theorem, any given matrix B, yx, that satisfies the rank is
1. Therefore, we have

|A—spa”|lr < ||A—B|r

and by the symmetric property of A, it can be proved that s = A and p = q = u.
Rewriting the inequality will give us
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|4 = Muu”[|p < ||A~ Bllr ()

where for any two vectors x,y € R"*!, the rank of xy” is 1. Therefore, substi-
tuting xy? for B in the inequality (5) gives us Equation 4.

Theorem 2. Given the reordered matriz W' by the resonance model, the average
inter-resonance strength é Z1<1¢j<k r(o;,0;) of the first k objects, w.r.t. the

resonance strength with o, is largest for any subset with k objects.

Proof. For linear models, i.e., R(O, A, W,I,I),r = (r(6, 01),r(0,02),...,r(0, 0|@|))
converges to the first eigenvector u of WW7, i.e. r = u as shown in Theo-
rem 1. And since the functions are linear, we can rewrite them as WW7 =
(r(oi’oj))|0|x|O|' Further, since W and R are already reordered in descend-
ing order of their resonance strength u, we have the following (together with
Lemma 1 and Lemma 2)

[Bi| > [Ral ... > [Ry[... > [Rn| = |R| (6)
and because |Ry| = ﬁ > 1<izj<k T(0i,0;) is the average inter-resonance strength
2 ~ ~

of the first k£ objects, we have Theorem 2.

Approximation to Heaviest Biclique In the non-linear configuration of our
model, i.e., R(O, A, W,E,E), we have another interesting property that is not
available in the linear model: the approximation to the heaviest biclique. Our
empirical observations in Section 4 further confirmed this property of the non-
linear model in finding the heaviest o-HB. Given the efficiency of our model, it
is therefore possible to find heavy biclique by running the model on different
parts of the matrix with different 0. We exploited this property to find heavy
bicliques, i.e., the algorithm that we shall discuss in the next subsection.

3.3 Algorithm of Approximating the Complete 1-HB

Recall from Theorem 2, the first k objects have the highest average inter-
resonance strength. Therefore, we can expect a higher probability of finding
the heaviest biclique among these objects. This has also been observed in vari-
ous experiments earlier [15], and we note that the exponential functions in the
non-linear models are better at eliciting the heavy biclique from the top k objects
(compare Figure 1(b) and 1(c)). We will illustrate this with another example
using the MovieLens [15] dataset. The matrix is shown in Figure 3(a). Here, we
see that the non-zeros are scattered without any distinct clusters or concentra-
tion. After reordering using both models, we see that the non-linear model in
Figure 3(c) better shows the heavy biclique than that of the linear model in
Figure 3(Db).

While the non-linear model is capable of collecting entries with high values
to the top-left corner of the reordered matrix, a strategy is required to extend
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Fig. 3. Gray scale images of original and reordered matrix with 50 rows and
50 columns by different resonance models: (a) original matrix; (b) reordered
by linear model; (¢) reordered by non-linear model. In (b) and (c), the top-left
corner circled by gray ellipse is the initial heavy biclique found by the models.

the 1-HB biclique found to the other parts of the matrix. The function Find B is
to find a 1-HB biclique by extending a row of the reordered matrix to a biclique
using the heuristic in Line 5 of Find_B. The loop from Line 4 to 9 in Find_1HB is
needed to get the bicliques computed from each row. The largest 1-HB biclique is
then obtained by comparing the size |B.L||B.R| among the bicliques found. The
complexity of Find B is O(|O||.A|). Hence, the complexity of Find_1HB is O((k1+
k2)|O||A]), where k; is the convergence loop number of the non-linear model,
and ks is the loop number in the FOR statement of Find_1HB. If computing on
all rows, ko is |O|. However, because most large bicliques are concentrated on the
left-top corner, the loop for Find_1HB is insignificant, i.e., we could set ks to a
small value to consider only the first few rows to reduce the runtime complexity
of Find_1HB to O(]O||A|).

4 Preliminary Experimental Results

Our result is preliminary, but promising. In our experiment, we used the re0
text collection”, that has been widely used in [10, 16]. This text collection con-
tains 1504 documents, 2886 stemmed terms and 13 predefined classes (“hous-
ing”, “money”, “trade”, “reserves”, “cpi”, “interest”, “gnp”, “retail”, “ipi”,
“jobs”, “lei”, “bop”, “wpi”). Although re0 has 13 predefined classes, most of
the clusters are small with some having less than 20 documents while a few
classes (“money”, “trade” and “interest”) made up 76.2% of documents in re0,
i.e., the remaining 10 classes contain 23.8% of the documents. Therefore, tradi-
tional clustering algorithms may not be applicable in finding effective clusters.
Moreover, due to the diverse and unbalanced distribution of classes, traditional
clustering algorithms may not be helpful for users to effectively understand the
relationships and details among documents. This is made more challenging when
the 10 classes are highly related. Therefore, we applied our initial method based

" http://www-users.cs.umn.edu/~karypis/cluto/files/datasets.tar.gz
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Algorithm 1 B = Find_1HB(G), Find the complete 1-HB in G

Input :G=(0,AE,W) and o

Output : 1-HB, B = (L, R, E',W'), where L C QO and RC A

1: convert W = (wi;) to the binary matrix Wi = (b;;), by setting b;; as 1 if w;; > 0 and 0
otherwise

2: get reordered binary matrix W;" by doing R(O, A, W}, E, E)

3: maxsize =0 and B =0

4: for i = 1 to ky do {comment: i is index of row, k2 can be set with a small fixed value by
users. }

5: B = Find B(W}, i)

6: if (|B.L||B.R| > maxzsize) then
7 record B

8: end if

9: end for

10: if (B #0) then
11: get B.W’ from W by B.L and B.R

12: end if

B = Find B(W}', start_row) = Extend B(W}', B)
1: set B.L empty and addset(B.L, start_row)

2: B.R=binvec2set(b’,,,.; ,...,) and mazsize = |B.R| for i =1 to (start_row — 1) do
3: for i = (start_row + 1) to |O| do R = binvec2set(b])

B/
1: start_row = min(B.L)
2:
3:
R = B.R/binvec2set(b}) 4: if (B.RC R) then
5:
6:
7
8:

4:

5: if ((|B.L|+ 1)|R| > maxsize) then addset(B.L,1)
6: B.R = R and addset(B.L, ) end if

7 maxsize = |B.L||B.R| end for

8: end if B'=B

9: end for

10: B = Extend B(W', B)

Note on set functions:
binvec2set returns elements with indices of non-zero coordinates in the binary vector.
addset adds a value to a set.
min returns the minimum value among all elements of a set.
A/B returns a set whose elements are in A, but not in B.

on the resonance model, Algorithm 1, to find something interesting in re0, that
may not be discovered by traditional clustering algorithms.

We used the binary matrix representation of re0, i.e. the weights of all terms
occurring in documents are set to 1. In the experiment, we implemented and used
Algorithm 1 to find 1-HB. That is to say, we find the complete large bicliques in
the unweighted bipartite graph. Here, we present some interesting results in the
following.

Result 1: we found a biclique with 287 documents, where every document
contains several stemmed terms: pct, bank, rate, market, trade, billion, monei,
billion, expect and so on. This means these documents are highly related each
other in terms of money, banking and trade. However, these documents are
from 10 classes except “housing”, “lei”, “wpi”. So this result indicates how
these documents are related in key words and domains, although they come
from different classes. Traditional clustering algorithms can not find such subtle
details among documents.

Result 2: We also found several bicliques with small numbers of documents,
where they share a large number of terms. That is to say, documents in a bi-
clique may be duplicated in whole of in part. For example, a biclique with three
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documents has 233 terms. This means these three documents do duplicate each
other.

Result 3: Some denser sub-cluster in a single class were found by our al-
gorithm. For example, a biclique whose all documents belong to “money” was
found. It is composed of 81 documents with the key terms: market, monei, eng-
land, assist, shortag, forecast, bill and stg (the abbreviation of sterling). From
this biclique, we may find that documents in this sub-cluster contain more in-
formation about assistance and shortage in money and market areas.

In this initial experiment, three types of denser sub-clusters were found as
shown above. They represent dense sub-cluster across different classes, in single
classes and duplicated documents. Further experiments can be done in more text
collections.

5 Related Work

Biclique problems have been addressed in different fields. There are traditional
approximation algorithms rooted in mathematical programming relaxation [17].
Despite their polynomial runtime, their best result is 2-approximations, i.e., the
subgraph discovered may not be a biclique but must contain the exact maximum
edge biclique that is double in size. The other class of algorithms is to exhaus-
tively enumerate all maximum bicliques [18] and then do a post-processing on
all the maximum bicliques to obtain the desired results. Although efficient al-
gorithms have been proposed and applied to computational biology [19], the
runtime cost is too high. The third class of algorithms are developed based on
some given conditions. For example, the bipartite graph G=(O, A, E, W) must
be of d-bounded degree, i.e., |O] < d or |A| < d [20] to give a complexity of
0O(n29) where n=max(|O|,|A|). While this gives the exact solution, the given
conditions often do not satisfy the needs of real-world datasets and the runtime
cost can be high for large d.

We can also view our work as a form of clustering. Often, clustering in high-
dimensional space is problematic [21]. Therefore, subspace clustering and biclus-
tering were proposed to discover the clusters embedded in the subspaces of the
high-dimensional space. Subspace clustering, e.g., CLIQUE, PROCLUS, OR-
CLUS, fascicles, etc., are extensions of conventional clustering algorithms that
seek to find clusters by measuring the similarity in a subset of dimensions [22].
Biclustering was first introduced in gene expression analysis [23], and then ap-
plied in data mining and bioinformatics [24]. Biclusters are measured based on
submatrices and therefore, is equivalent to the maximum edge biclique prob-
lem [24]. Under this context, a o-B is similar to a bicluster. However, these
algorithms are inefficient, especially in the data with very high dimensionality
and massive size. Therefore, they are only suitable to datasets with tens of hun-
dreds of dimensions and medium size, such as gene expression data, and they are
not applicable to text data with thousands and tens of thousands of dimensions
and massive size.

23


simeon
Australiasian  Data  Mining  Conference  AusDM05

simeon
23


Australiasian Data Mining Conference AusDM05

Since our simulation of the resonance phenomenon involves an iterative learn-
ing process, where the forcing object would update its weight distribution, our
work can also be classified as a type of dynamical system, i.e., the study of
how one state develops into another over some course of time [12]. Actually,
the application and design of discrete dynamical system has been widely used
in neural networks. Typical applications include the well-known Hopfield net-
work [25] and bidirectional associative memory network [26] for combinatorial
optimization and pattern meomories. In the recent years, this field has con-
tributed to many important and effective techniques in information retrieval,
e.g., HITS [13], PageRank [27] and others [28]. In dynamical systems, the theory
on its linear counterpart is closely related to the eigenvectors of matrices as used
in HITS and PageRank; while the non-linear aspect is what forms the depth
of dynamical systems theory. From its success in information retrieval, we were
motivated to apply this field of theory to solve combinatorial problems in data
analysis. To the best of our knowledge, our application of dynamical systems for
analysis of massive and skewed datasets is completely novel.

6 Conclusions

In this paper, we proposed a novel pattern call heavy bicliques to be dis-
covered in text data. We show that finding these heavy bicliques proved to be
difficult and computationally expensive. As such, the resonance model — which is
a discrete dynamical system simulating the resonance phenomenon in the phys-
ical world — is used to approximate the heavy bicliques. While this result is
approximated, our initial experiments confirmed the effectiveness in producing
heavy bicliques quickly and accurately for analytics purposes.

Of course, the initial results present a number of future works possible. In
addition to further and more thorough experiments, we are also interested in
developing algorithms that uses the heaviest bicliques to mine text data accord-
ing to the different requirements of the users as illustrated in Algorithm 1. We
are also interested in testing our work on very large data sets leading to the
development of scalable algorithms for finding heavy bicliques.
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Abstract. This paper proposes a new text categorisation method based
on the critical vector learning algorithm. By implementing a Bayesian
treatment of a generalised linear model of identical function form to
the support vector machine, the proposed approach requires significantly
fewer support vectors. This leads to much reduced computational com-
plexity of the prediction process, which is critical in online applications.

Key words: Support Vector Machine, Relevance Vector Machine, Critical
Vector Learning, Text Classification

1 Introduction

Text categorisation is the classification of natural text or hypertext documents
into a fixed number of predefined categories based on their content. Many ma-
chine learning approaches have been used in the text classification problem [1].
One of the leading approaches is the support vector machine (SVM) [2], which
has demonstrated successfully in many applications. SVM is based on general-
isation theory of statistical inference. SVM classification algorithms, proposed
to solve two-class problems, are based on finding a separation between hyper
planes. In the application of SVM in text categorisation [3-6], it fixes the rep-
resentation of text document, extracts features from the set of text documents
needed to be classified, then selects subset of features, transforms the set of
documents to a series of binary classification sets, and final makes kernel from
document features. SVM has good performance on large data sets and scales
well. It is linear efficient and scalable to large document sets. Using the Reuters
News Data Sets, Rennie and Rifkin [7] compared the SVM with Naive Bayes al-
gorithm based on two data sets: 19,997 news related documents in 20 categories
and 9649 industry sector data documents in 105 categories. Another researcher
Joachims [8] compared the performance of several algorithms with SVM by us-
ing 12,902 documents from the Reuters 21578 document set and 20,000 medical
abstracts from the Ohsumed corpus. Both Rennie and Joachims has shown that
SVM performed better.

Tipping [9] introduced the relevance vector machine (RVM) methods which
can be viewed from a Bayesian learning framework of kernel machine and pro-
duces an identical functional form to the SVM. Tipping compared the RVM
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with SVM and demonstrated that the RVM has a comparable generalisation
performance to the SVM and requires dramatically fewer kernel functions or
model terms than the SVM. As Tipping stated, SVM suffer from its limitation
of probabilistic prediction and Mercer’s condition that it must be the continu-
ous symmetric kernel of a positive integral operator. While RVM adopt a fully
probabilistic framework and sparsity is achieved because the posterior distrib-
utions of many of the weights are sharply peaked around zero. The relevance
vector comes from those training vectors associated with the remaining non-zero
weights. However, a draw back of the RVM algorithm is a significant increase
in computational complexity, compared with the SVM. Orthogonal least square
(OLS) was first developed for the nonlinear data modelling, recently Chen [10-
12] derived the locally regularised OLS (LROLS) algorithm to construct sparse
kernel models, which has shown to possess computational advantages compared
with RVM. The LROLS only selects the significant terms, while RVM starts with
the full model set. Moreover, LROLS only use a subset matrix of the full matrix
that has been used by RVM. The subset matrix is diagonal and well-conditioned
with small eigen-value spread. Further to Chen’s research, Gao [13] has derived
a critical vector learning (CVL) algorithm and improved the LROLS algorithm
for the regression model, which has shown to possess more computational advan-
tages. In this paper, the critical vector classification learning algorithm is applied
to the text categorisation problem. Comparison results of SVM and CVL using
the Reuters News Data Sets are presented and discussed.

The rest of this paper is organised as follows: In section 2, the basic idea of
SVM is reviewed and explains its limitation compared with RVM. The algorithm
of RVM with critical vector classification is presented in section 3. The detail
implementation of applying critical learning algorithm in text categorisation is
described in section 4. In section 5, the experiments are carried out using the
Reuters data set, followed by the conclusions in section 6.

2 The Support Vector Machine

SVM is a learning system that uses a hypothesis space of linear functions in
a high dimensional feature space. Joachims [8] explained the reason that SVM
works well for text categorisation. Let’s consider the binary classification prob-
lems about text document categorisation with SVM. Linear support vector ma-
chine trained on separable data. Let f be a function of f : X C R"™ — R,
where X is the term frequency representation of documents. The input z € X
is assigned to the positive class, if f (z) > 0; otherwise to negative class. When
consider the f (x) is a linear function, it can be rewritten as

f(x):(w-x>+b=Zwixi+b (1)

i=1

where w is the weight vector. The basic idea of the support vector machine is to
find the largest margin to do the classification in the hyper-plane, which means
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Fig. 1. Support vector machines find the hyper-plane h, which separates the positive
and negative training examples with maximum margin. The examples closest to the
hyper-plane in Figure 1 are called Support Vectors (marked with circles).

to minimise |[wl||? , subject to

(zi-w)+b>+1-&, fory, =+1, (2)

(;-w)+b< —14¢, fory; = —1. (3)
where the &; is the slack variable. The optimal classification function is given
by
g (z) = sgn{(w - ) + b} (4)
An appropriate inner product kernel K (z;, ;) will be selected to realise the

linear classification for non-linear problem. Then the equation (1) can be written
as:

N
y(x;w) = Z w; K (x,%;) + wo (5)

Support vector machine has demonstrated successfully in many applications.
However SVM suffers four major disadvantages: unnecessary use of basis func-
tions; predictions are not probabilistic; entails a cross-validation procedure and
the kernel function must satisfy Mercer’s condition.

3 Critical Vector Learning

Tipping introduced the relevance vector machine (RVM), which does not suffer
from the limitations mentioned in section 2. RVM can be viewed from a Bayesian
learning framework of kernel machine and produces an identical functional form
to the SVM. RVM generates predictive distributions which is a limitation of the
SVM. And also RVM requires substantially fewer kernel functions.

Consider the scalar-valued target functions and giving the input-target pairs
{Xn, tn}ivzl. The noise is assumed to be zero-mean Gaussian distribution with
a variance of o2 . The likelihood of the complete data set can be written as

p (tlw,0?) = (27r02)7N/2 exp {_%i? It — <I>w|2} (6)
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where t = (t..tx)", w = (wi..wy)’, and & = [ (x1), ¢ (x2) ... & (xn)]”
wherein ¢ (x,,) = [1, K (xp,%1) , K (Xpn,X2), ...,K(xme)]T. To make a simple
function for the Gaussian prior distribution over w , 6 can be written as:

p(wla) = [N (wil0,a; ") (7)

=0

where « is a vector of N + 1 hyper parameters.

Relevance vector learning can be looked as the search for the hyper parameter
posterior mode, i.e. the maximisation of p (a, 02[t) o p (t|a,0%) p (a) p (02) with
respect to a and B3(3 = 02?). RVM involves the maximisation of the product of
the marginal likelihood and priors over o and o2. And MacKay [14] has given

2
Qe — i ﬂnew — ||t - QMH
o2y N =327

where p; is the ¢ — th posterior mean weight and N in the denominator refers
to the number of data examples and not the number of basis functions. v; €
[0,1] can be interpreted as a measure of how well-determined its corresponding
parameter w; is by the data.

A drawback of the RVM is a significant increase in computational complex-
ity. Based on kernel methods and least squares algorithm, a locally regularised
orthogonal least squares (LROLS) algorithm has been derived by Chen [10] to
construct sparse kernel model.

(8)

y(k)=f(y(k=1),.,yk—ny),ulk—1),....,u(k —ny,))+e(k)

y (k) = [f(z (k) +e(k) (9)

where, z (k) = [y(k—1),...,y(k—ny),u(k—1),...,u(k — ny)]” denotes the
system “input” vector, f is the unknown system mapping. Considering a general
discrete-time nonlinear system represented by a nonlinear model, u (k) and y (k)
are the system input and output variables, respectively, n, and n, are positive
integers representing the lags in y (k) and u (k), respectively, e (k) is the system
white noise.

The system identification involves in construct a function (model) to approx-
imate the unknown mapping f based on an N-sample observation dataset D =
{z (k) ,y(k)}szl, i.e., the system input-output observation data {u (k),y (k)}.
The most popular class of such approximating functions is the kernel regression
model of the form:

N
y(k):E(k)+6(k):Zwidu(k)Jre(k), 1<k<N (10)

where y (k) denotes the “approximated” model output, w;’s are the model weights,
and ¢; (k) = k (x (i) ,z (k)) are the classifiers generated from a given kernel func-
tion k (z,y) [15].
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Focus on the single kernel function and by definitions in [13], the model can
be viewed as the following matrix form:

y=%w+e (11)

The goal is to find the best linear combination of the columns of @ (i.e. the
best value for w) to explain y according to some criterion. The normal criterion
is to minimise the sum of squared errors,

E=cle (12)

where the solution w is called the least squares solution to the above model.
Detail implementation is given in [16].

An equivalent regularisation formula can be adopted in the critical vector al-
gorithm with PRESS statistic for the regularised objective [13]. The regularised
critical vector algorithm with PRESS statistic is based on the following regu-
larised error criterion

nm

E(w o, 8)=pfe"e+ ) aw =pe’e+w Ho (13)
=1

where nj is the number of involved critical vectors, 3 is the noise parameter and
H = diag{aq,...,an,, } consisting of the hyper parameters used for regularising
weights. The key issue in regularised regression formulation is to automatically
optimise the regularisation parameter. The Bayesian evidence technique [14] can
readily be used for this objective. Estimating hyper parameters is implemented
in a loop procedure based on the calculation for « and 3 [17].
Define
A=pdTd+ H (14)

and

nyM
vi=l-a (A7), =3 (15)
=1

Then the update formulas for hyper parameters «; and 8 can be given by

N —~

o
2eTe

new — ’yl new — 16
1= g, (16)

The iterative hyper parameter and model selection procedure can be sum-
marised:

Initialisation Set initial value for «; and g for i = 1,2,..., N, for example,
using estimated noise variance for the inverse of § and a small value 0.0001 for
all (o7

Step 1 Given the current a;; and 3, use the procedure with PRESS statistic
to select a subset model with critical vectors.

Step 2 Update a; and (§ using equation 16. If «; and § remains sufficiently
unchanged in two successive iterations or a pre-set maximum iteration number
is reached, then stop the algorithm; otherwise go to step 1.
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4 Applying Critical Vector Learning in Text
Categorisation

The document collection with n documents is represented by a term frequency
document matrix

dy

C=|d;| epmxn (17)

where document vector d; € R™*! represents the term frequency of m key terms
in each document. The target variable

y:[y17"'7yj7"'7yn]T (18)

where y; denotes the corresponding output of d;, which represents the category
that d; belongs to.
The procedures of the training process was implemented as follows:

1. Calculate the keyword frequency of each document to construct the term
frequency document matrix.
2. Construct the kernel matrix. Its (¢, j)-th element is K(d;,d;). Denote x; as
the ¢-th row of the kernel matrix @.
3. Select the k best x; by repeating the following steps k times:
(a) For every x;, use the least square algorithm to estimate the w; in equation
11.
(b) Select the x; with the smallest error.
(¢) Remove the i-th row of the kernel matrix (corresponding to the selected
x; f) to form a new matrix.
(d) Remove the corresponding i-th element in the target variable vector y
and form a new target variable as:

T
Y= [y1 — Xiwi, Yol — XiWi, Yir1 — XiWis 5 Yn — XiWi]
4. Construct the training kernel model, K _training(xx) = (X1,X2, ..., Xg)-

The prediction (or test) is conducted using the constructed training kernel.

5 Experimental Results

Experimental studies have been carried out to compare the performance of CVL
and SVM. In this study, a java library for SVM (LIBSVM) was utilised while
CVL was implemented using Scilab.

The Reuters News Data Sets, which has been frequently used as benchmarks
for classification algorithms, has been used in this paper for the experiments. The
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Reuters 21578 collection is a set of 21,578 short (average 200 words in length)
news items, largely financially related, that have been pre-classified manually
into 118 categories.

The experiments were conducted using 100 and 200 documents from three
news group: C15 (performance group), C22 (new products/services group) and
C21 (products/services group). The first set of experiments used C15 and C22
data, while the second set of experiments used C21 and C22. The second set of
data is more difficult to classify than the first set since data sets C21 and C22
are closely related. This is confirmed by the experimental results, as shown in
table 1 and table 2.

Table 1. Results of SVM and CVL classifiers on C15 and C22 data

No. of No. of | nSv [Accuracy| nSv |Accuracy
Documents|Keywords|(SVM)| (SVM) |(CVL)| (CVL)
100 50 83 92.3% 13 | 91.02%
100 83 92.3% 13 | 91.02%
200 50 122 92.4% 14 93.6%
100 122 92.4% 14 93.6%

Table 2. Results of SVM and CVL classifiers on C21 and C22 data

No. of No. of | nSv |Accuracy| nSv |Accuracy
Documents|Keywords|(SVM)| (SVM) [(CVL)| (CVL)
100 50 86 85.89% 14 84.61%
100 86 85.89% 14 84.61%
200 50 153 | 84.81% 14 89.24%
100 153 | 84.81% 14 89.24%

The result of the experiment shows that critical vector learning algorithm
achieves the comparable accuracy with SVM. The advantage of using critical
vector learning algorithm is that it requires dramatically fewer support vectors
to construct the training model. This means it has less computation complexity
and requires less computation time in conducting the prediction after the model
is being built.

SVM performs slightly better when the number of document increase, while
the CVL remain almost the same. However the number of support vectors re-
quired by SVM grows linearly with the size of the training set, while CVL various
slightly.

The result of the experiment also shows that both SVM and CVL are not
sensitive to the number of keywords, which the accuracy and the number of
support vectors remain the same with different keyword attributes.
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While SVM and CVL are implemented in different languages, comparison
of computational time cannot be conducted at this stage. The next step is to
implement CVL using JAVA which allows meaningful comparison of execution
times.

6 Conclusions

The critical learning algorithm based on the kernel methods and least squares
algorithm has achieves comparable classification accuracy to the SVM. SVM
performs better when the number of document increase, but require much more
support vectors with the size of the training set increasing. CVL requires slightly
different number of the support vectors when the training set increase. The
most benefit of CVL is that it requires dramatically fewer numbers of support
vectors to construct the model. This will improve the prediction efficiency which
is particularly useful in online applications.
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Abstract. Deduplicating one data set or linking several data sets are
increasingly important tasks in the data preparation steps of many data
mining projects. The aim of such linkages is to match all records relating
to the same entity. Research interest in this area has increased in recent
years, with techniques originating from statistics, machine learning, in-
formation retrieval, and database research being combined and applied
to improve the linkage quality, as well as to increase performance and
efficiency when deduplicating or linking very large data sets. Different
measures have been used to characterise the quality of data linkage algo-
rithms. This paper presents an overview of the issues involved in measur-
ing deduplication and data linkage quality, and it is shown that measures
in the space of record pair comparisons can produce deceptive accuracy
results. Various measures are discussed and recommendations are given
on how to assess deduplication and data linkage quality.

Keywords: data or record linkage, data integration and matching, dedu-
plication, data mining pre-processing, quality measures.

1 Introduction

With many businesses, government organisations and research projects collect-
ing massive amounts of data, data mining has in recent years attracted interest
both from academia and industry. While there is much ongoing research in data
mining algorithms and techniques, it is well known that a large proportion of
the time and effort in real-world data mining projects is spent understanding the
data to be analysed, as well as in the data preparation and pre-processing steps
(which may well dominate the actual data mining activity). An increasingly im-
portant task in data pre-processing is detecting and removing duplicate records
that relate to the same entity within one data set. Similarly, linking or matching
records relating to the same entity from several data sets is often required, as
information from multiple sources needs to be integrated, combined or linked in
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order to allow more detailed data analysis or mining. The aim of such linkages
is to match all records relating to the same entity, such as a patient, a customer,
a business, a consumer product, or a genome sequence.

Deduplication and data linkage can be used to improve data quality and in-
tegrity, to allow re-use of existing data sources for new studies, and to reduce
costs and efforts in data acquisition. In the health sector, for example, dedupli-
cation and data linkage have traditionally been used for cleaning and compiling
data sets for longitudinal or other epidemiological studies [23]. Linked data might
contain information that is needed to improve health policies, and which tradi-
tionally has been collected with time consuming and expensive survey methods.
Statistical agencies routinely link census data [18,37] for further analysis. Busi-
nesses often deduplicate and link their data sets to compile mailing lists, while
within taxation offices and departments of social security, data linkage and dedu-
plication can be used to identify people who register for benefits multiple times
or who work and collect unemployment benefits. Another application of current
interest is the use of data linkage in crime and terror detection. Security agencies
and crime investigators increasingly rely on the ability to quickly access files for
a particular individual, which may help to prevent crimes by early intervention.

The problem of finding similar entities doesn’t only apply to records which
refer to persons. In bioinformatics, data linkage helps to find genome sequences
in large data collections that are similar to a new, unknown sequence at hand. In-
creasingly important is the removal of duplicates in the results returned by Web
search engines and automatic text indexing systems, where copies of documents
— for example bibliographic citations — have to be identified and filtered out be-
fore being presented to the user. Comparing consumer products from different
online stores is another application of growing interest. As product descriptions
are often slightly different, comparing them becomes difficult.

If unique entity identifiers (or keys) are available in all the data sets to be
linked, then the problem of linking at the entity level becomes trivial: a simple
database join is all that is required. However, in most cases no unique keys are
shared by all of the data sets, and more sophisticated data linkage techniques
need to be applied. An overview of such techniques is presented in Section 2. The
notation used in this paper, and a problem analysis are discussed in Section 3,
before a description of various quality measures is given in Section 4. A real-
world example is used in Section 5 to illustrate the effects of applying different
quality measures. Finally, several recommendations are given in Section 6, and
the paper is concluded with a short summary in Section 7.

2 Data Linkage Techniques

Computer-assisted data linkage goes back as far as the 1950s. At that time, most
linkage projects were based on ad hoc heuristic methods. The basic ideas of prob-
abilistic data linkage were introduced by Newcombe and Kennedy [30] in 1962,
and the theoretical statistical foundation was provided by Fellegi and Sunter [16]
in 1969. Similar techniques have independently been developed in the 1970s by
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computer scientists in the area of document indexing and retrieval [13]. However,
until recently few cross-references could be found between the statistical and the
computer science community.

As most real-world data collections contain noisy, incomplete and incorrectly
formatted information, data cleaning and standardisation are important pre-
processing steps for successful deduplication and data linkage, and before data
can be loaded into data warehouses or used for further analysis [33]. Data may be
recorded or captured in various, possibly obsolete, formats and data items may
be missing, out of date, or contain errors. Names and addresses can change over
time, and names are often reported differently by the same person depending
upon the organisation they are in contact with. Additionally, many proper names
have different written forms, for example ‘Gail’ and ‘Gayle’. The main tasks of
data cleaning and standardisation are the conversion of the raw input data into
well defined, consistent forms, and the resolution of inconsistencies [7,9].

If two data sets A and B are to be linked, the number of possible record pairs
equals the product of the size of the two data sets |A| x |B|. Similarly, when
deduplicating a data set A the number of possible record pairs is |[A| x (JA| —
1)/2. The performance bottleneck in a data linkage or deduplication system is
usually the expensive detailed comparison of fields (or attributes) between pairs
of records [1], making it unfeasible to compare all record pairs when the data sets
are large. For example, linking two data sets with 100,000 records each would
result in ten billion possible record pair comparisons. On the other hand, the
maximum number of truly matched record pairs that are possible corresponds
to the number of records in the smaller data set (assuming a record can only be
linked to one other record). For deduplication, the number of duplicate records
will be smaller than the number of records in the data set. The number of
potential matches increases linearly when linking larger data sets, while the
computational efforts increase quadratically.

To reduce the large number of possible record pair comparisons, data linkage
systems therefore employ blocking [1, 16, 37], sorting [22], filtering [20], cluster-
ing [27], or indexing [1, 5] techniques. Collectively known as blocking, these tech-
niques aim at cheaply removing pairs of records that are obviously not matches.
It is important, however, that no potential match is removed by blocking.

All record pairs produced in the blocking process are compared using a variety
of field (or attribute) comparison functions, each applied to one or a combination
of record attributes. These functions can be as simple as an exact string or a
numerical comparison, can take into account typographical errors, or be as com-
plex as a distance comparison based on look-up tables of geographic locations
(longitude and latitude). Each comparison returns a numerical value, often pos-
itive for agreeing values and negative for disagreeing values. For each compared
record pair a weight vector is formed containing all the values calculated by the
different field comparison functions. These weight vectors are then used to clas-
sify record pairs into matches, non-matches, and possible matches (depending
upon the decision model used). In the following sections the various techniques
employed for data linkage are discussed in more detail.
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2.1 Deterministic Linkage

Deterministic linkage techniques can be applied if unique entity identifiers (or
keys) are available in all the data sets to be linked, or a combination of attributes
can be used to create a linkage key, which is then used to match records that
have the same key value. Such linkage systems can be developed based on stan-
dard SQL queries. However, they only achieve good linkage results if the entity
identifiers or linkage keys are of high quality. This means they have to be precise,
stable over time, highly available, and robust with regard to errors (for example,
include a check digit for detecting invalid or corrupted values).

Alternatively, a set of (often very complex) rules can be used to classify pairs
of records. Such rule-based systems can be more flexible than using a simple link-
age key, but their development is labour intensive and highly dependent upon the
data sets to be linked. The person or team developing such rules not only needs
to be proficient with the rule system, but also with the data to be deduplicated
or linked. In practise, therefore, deterministic rule based systems are limited to
ad-hoc linkages of smaller data sets. In a recent study [19], an iterative deter-
ministic linkage system was compared with the commercial probabilistic system
AutoMatch [25], and empirical results showed that the probabilistic approach
achieved better linkages.

2.2 Probabilistic Linkage

As common unique entity identifiers are rarely available in all data sets to be
linked, the linkage process must be based on the existing common attributes.
These normally include person identifiers (like names and dates of birth), de-
mographic information (like addresses) and other data specific information (like
medical details, or customer information). These attributes can contain typo-
graphical errors, they can be coded differently, and parts can be out-of-date or
even be missing.

In the traditional probabilistic linkage approach [16, 37], pairs of records are
classified as matches if their common attributes predominantly agree, or as non-
matches if they predominantly disagree. If two data sets A and B are to be
linked, the set of record pairs A x B = {(a,b); a ¢ A, b e B} is the union of the
two disjoint sets of true matches M and true non-matches U.

M ={(a,b); a=b, ac A, be B} (1)
U={(a,b); a#b, ac A, be B} (2)

Fellegi and Sunter [16] considered ratios of probabilities of the form

P(y & I'M)

B=pGer)

(3)

where y is an arbitrary agreement pattern in a comparison space I". For example,
I' might consist of six patterns representing simple agreement or disagreement
on given name, surname, date of birth, street address, suburb and postcode.
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Alternatively, some of the v might additionally consider typographical errors, or
account for the relative frequency with which specific values occur. For example,
a surname value ‘Miller’ is much more common in many western countries than
a value ‘Dijkstra’, resulting in a smaller agreement value. The ratio R, or any
monotonically increasing function of it (such as its logarithm) is referred to as
a matching weight. A decision rule is then given by

if R > typper, then designate a record pair as match,
if tiower < R < tupper, then designate a record pair as possible match,
if R < tiower, then designate a record pair as non-match.

The thresholds tjower and typper are determined by a-priori error bounds on false
matches and false non-matches. If v € I" for a certain record pair mainly consists
of agreements, then the ratio R would be large and thus the pair would more
likely be designated as a match. On the other hand for a « ¢ I' that primarily
consists of disagreements the ratio R would be small.

The class of possible matches are those record pairs for which human over-
sight, also known as clerical review, is needed to decide their final linkage status.
While in the past (when smaller data sets were linked, for example for epidemio-
logical survey studies) clerical review was practically manageable in a reasonable
amount of time, linking today’s large data collections — with millions of records
— make this process impossible, as tens or even hundreds of thousands of record
pairs will be put aside for review. Clearly, what is needed are more accurate and
automated decision models that will reduce — or even eliminate — the amount
of clerical review needed, while keeping a high linkage quality. Such approaches
are presented in the following section.

2.3 Modern Approaches

Improvements [38] upon the classical probabilistic linkage [16] approach include
the application of the expectation-maximisation (EM) algorithm for improved
parameter estimation [39], the use of approximate string comparisons [32] to
calculate partial agreement weights when attribute values have typographical
errors, and the application of Bayesian networks [40].

In recent years, researchers have also started to explore the use of techniques
originating in machine learning, data mining, information retrieval and database
research to improve the linkage process. Most of these approaches are based on
supervised learning techniques and assume that training data (i.e. record pairs
with known deduplication or linkage status) is available.

One approach based on ideas from information retrieval is to represent records
as document vectors and compute the cosine distance [10] between such vectors.
Another possibility is to use an SQL like language [17] that allows approxi-
mate joins and cluster building of similar records, as well as decision functions
that decide if two records represent the same entity. A generic knowledge-based
framework based on rules and an expert system is presented in [24], and a hy-
brid system which utilises both unsupervised and supervised machine learning
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techniques is described in [14]. That paper also introduces metrics for deter-
mining the quality of these techniques. The authors find that machine learning
outperforms probabilistic techniques, and provides a lower proportion of possible
matches.

The authors of [35] apply active learning to the problem of lack of training
instances in real-world data. Their system presents a representative (difficult to
classify) example to a user for manual classification. They report that manually
classifying less than 100 training examples provided better results than a fully
supervised approach that used 7,000 randomly selected examples. A similar ap-
proach is presented in [36], where a committee of decision trees is used to learn
mapping rules (i.e. rules describing linkages).

High-dimensional overlapping clustering (as alternative to traditional block-
ing) is used by [27] in order to reduce the number of record pair comparisons to
be made, while [21] explore the use of simple k-means clustering together with
a user tunable fuzzy region for the class of possible matches. Methods based
on nearest neighbours are explored by [6], with the idea to capture local struc-
tural properties instead of a single global distance approach. An unsupervised
approach based on graphical models [34] aims to use the structural information
available in the data to build hierarchical probabilistic models. Results which
are better than the ones achieved by supervised techniques are presented.

Another approach is to train distance measures used for approximate string
comparisons. [3] presents a framework for improving duplicate detection using
trainable measures of textual similarity. The authors argue that both at the
character and word level there are differences in importance of certain character
or word modifications, and accurate similarity computations require adapting
string similarity metrics for all attributes in a data set with respect to the par-
ticular data domain. Related approaches are presented in [5, 12,29, 41], with [29]
using support vector machines for the binary classification task of record pairs.
As shown in [12], combining different learned string comparison methods can re-
sult in improved linkage classification. An overview of other methods — including
statistical outlier identification, pattern matching, and association rules based
approaches — is given in [26].

3 Notation and Problem Analysis

The notation used in this paper is presented here. It follows the traditional data
linkage literature [16,37,38]. The number of elements in a set X is denoted
|X]|. A general linkage situation is assumed, where the aim is to link two sets
of entities. For example, the first set could be patients of a hospital, and the
second set people who had a car accident. Some of the car accidents resulted in
people being admitted into the hospital, some did not. The two sets of entities
are denoted as A, and B.. M., = A, N B, is the intersection set of matched
entities that appear in both A, and B, and U, = (A. UB,.) \ M, is the set
of non-matched entities that appear in either A, or B, but not in both. This
space of entities is illustrated in Figure 1, and called the entity space.
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Me

Fig. 1. General linkage situation with two sets of entities A. and B., their intersection
M. (the entities that appear in both sets), and the set U. which contains the entities
that appear in either A. or B¢, but not in both

The maximum possible number of matched entities corresponds to the size
of the smaller set of A, or B,.. This is the situation when the smaller set is a
proper subset of the larger one, which also results in the minimum number of
non-matched entities. The minimum number of matched entities is zero, which
is the situation when no entities appear in both sets. The maximum number of
non-matched entities in this situation corresponds to the sum of the entities in
both sets. The following equations show this in a more formal way.

min(|Ac|, [Bel) (4)
[Ac| + Bl (5)

0 < |M,|

<
abs(|Ac| — |Be|) < |U.| <

In a simple example, assume the set A. contains 5 million entities (e.g.
hospital patients), and set B, contains 1 million entities (e.g. people involved in
car accidents), with 700,000 entities present in both sets (i.e. [M.| = 700, 000).
The number of non-matched entities in this situation is |U.| = 4, 600, 000, which
is the sum of the entities in both sets (6 millions) minus twice the number of
matched entities (as they appear in both sets A, and B.). This simple example
will be used as a running example in the discussion below.

Records for the entities in A, and B, are now stored in two data sets (or
databases or files), denoted by A and B, such that there is exactly one record
in A for each entity in A. (i.e. the data set contains no duplicate records), and
each record in A corresponds to an entity in A.. The same holds for B, and B.
The aim of a data linkage process is to classify pairs of records as matches or
non-matches in the product space A x B = M UU of true matches M and true
non-matches U [16,37] as given in Equations 1 and 2.

It is assumed that no blocking (as discussed in Section 2) is applied, and
that all possible pairs of records are compared. The total number of comparisons
equals |A| x |B|, which is much larger than the number of entities available in A
and B, together. In case of the deduplication of a single data set A, the number
of record pair comparisons equals |A| x (JA| — 1)/2, as each record in the data
set must be compared with all others, but not to itself. The space of record pair
comparisons is illustrated in Figure 2 and called the comparison space.

43


simeon
Australiasian  Data  Mining  Conference  AusDM05

simeon
43


Australiasian Data Mining Conference AusDM05

n
o

B
N

True
matches

GHERNE

N classified
matches

=
ERBER

B 1
9
8
7 X True
6 positives
5
4 .
3 © True
2 negatives
1

A

Fig. 2. General record pair comparison space with 25 records in data set A arbitrar-
ily numbered on the horizontal axis and 20 records in data set B arbitrarily num-
bered on the vertical axis. The full rectangular area corresponds to all possible record
pair comparisons. Assume that record pairs (A1, B1), (A2, B2) up to (A12, B12) are
true matches. The linkage algorithm has wrongly classified (A10, B11), (Al1l, B13),
(A12, B17), (A13, B10), (A14, B14), (Al5, B15), and (A16, B16) as matches (false pos-
itives), but missed (A10, B10), (A11, B11), and (A12, B12) (false negatives)

For the simple example given earlier, the comparison space consists of |A| x
|B| = 5,000,000 x 1,000,000 = 5 x 10'2 record pairs, with |M| = 700,000 and
|U] =5 x 1012 — 700,000 = 4.9999993 x 102 record pairs.

A linkage algorithm compares pairs of records and classifies them into M
(record pairs considered to be a match by the algorithm) and U (record pairs
considered to be a non-match). To keep this analysis simple, it is assumed here
that the linkage algorithm does not classify record pairs as possible matches (as
discussed in Section 2.2). Both records of a truly matched pair correspond to
the same entity in M. Un-matched record pairs, on the other hand, correspond
to different entities in A, and B, with the possibility of both records of such a
pair corresponding to different entities in M.. As each record relates to exactly
one entity, and there are no duplicates in the data sets, a record in A can only
be correctly matched to a maximum of one record in B, and vice versa. For
each record pair, the binary classification into M and U results in one of four
possible outcomes [15] as shown in Table 1. As can be seen, M = TP + FN,
U=TN+FP,M=TP+FP,and U =TN + FN.

When assessing the quality of a linkage algorithm, the general interest is in
how many truly matched entities and how many truly non-matched entities have
been classified correctly as matches and non-matches, respectively. However, the
outcome of the classification is measured in the comparison space (as number
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Table 1. Confusion matrix of record pair classification

Actual Classification
Match (M) Non-match (U)
Match (M) True match False non-match
True positive (TP)  False negative (FN)
Non-match (U) False match True non-match

False positive (FP)  True negative (TN)

of classified record pairs). While the number of truly matched record pairs is
the same as the number of truly matched entities, |M| = |M| (as each truly
matched record pair corresponds to one entity), there is however no correspon-
dence between the number of truly non-matched record pairs and non-matched
entities. Each non-matched record pair contains two records that correspond
to two different entities, and so it not possible to easily calculate a number of
non-matched entities.

The maximum number of truly matched entities is given by Equation 4.
From this follows the maximum number of record pairs a linkage algorithm
should classify as matches is |[M| < |[M.| < min(|A|,|Be|). As the number
of classified matches M = TP + FP, it follows that |TP + FP| < [M,|. And
with M = TP + F'N, it also follows that both the numbers of FP and FN will
be small compared to the number of TN, and they will not be influenced by
the multiplicative increase between the entity and the comparison space. The
number of TN will dominate, however, as, in the comparison space, the following
equation holds:

[TN|=[A] x B[ = |TP| - |FN| - [FP]|. (6)

This is also illustrated in Figure 2. Therefore, any quality measure used in dedu-
plication or data linkage that uses the number of TN will give deceptive results,
as will be illustrated and discussed further in Sections 4 and 5.

The above discussion assumes no duplicates in the data sets A and B. Thus,
a record in one data set can only be matched to a maximum of one record in the
other data set (often called one-to-one assignment restriction). In practise, how-
ever, one-to-many and many-to-many linkages or deduplications are possible.
Examples include longitudinal studies of administrative health data, where sev-
eral records might correspond to a certain patient over time, or business mailing
lists where several records can relate to the same customer (this happens when
data sets have not been properly deduplicated). While the above analysis would
become more complicated, the issue of having a very large number of TN stills
hold in one-to-many and many-to-many linkage situations, as the number of
matches for a single record will be small compared to the full number of record
pair comparisons.
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Table 2. Quality measures used in recent deduplication and data linkage publications

Measure Formula / Description Used in
Accuracy acc = % [21, 35, 36]
Precision prec = % [1,2,10,11,14,27]
Recall rec = TPZQ% [1,11, 14,21, 27
F-measure f-measure = 2(2re=re2) [1,11,27]

False positive rate for = % 2]
Precision-Recall graph ~ Plot precision on vertical and 3,6, 28]

recall on horizontal axis

4 Quality Measures

Given that deduplication and data linkage are classification problems, vari-
ous quality measures are available to the data linkage researcher and practi-
tioner [15]. With many recent approaches being based on supervised learning,
no clerical review process (i.e. no possible matches) is often assumed and the
problem becomes a binary classification, with record pairs being classified as
either matches or non-matches, as shown in Table 1. A summary of the qual-
ity measures used in recent publications is given in Table 2 (a more detailed
discussion can be found in [8]).

As presented in Section 2.2, a linkage algorithm is assumed to have a thresh-
old parameter ¢ (with no possible matches tipwer = tupper), which determines
the cut-off between classifying record pairs as matches (with matching weight
R > t) or as non-matches (R < t). Increasing the value of ¢ results in an in-
creased number of TN and FP and in a reduction in the number of TP and FN,
while lowering ¢t reduces the number of TN and FP and increases the number of
TP and FN. Most of the quality measures presented here can be calculated for
different values of such a threshold (often only the quality measure values for an
optimal threshold are reported in empirical studies). Alternatively, quality mea-
sures can be visualised in a graph over a range of threshold values, as illustrated
by the examples in Section 5.

Taking the example from Section 3, assume that for a given threshold a
linkage algorithm has classified |M | = 900,000 record pairs as matches and the
rest (|U] = 5 x 10'% — 900,000) as non-matches. Of these 900,000 classified
matches 650, 000 were true matches (TP), and 250, 000 were false matches (FP).
The number of false non-matched record pairs (FN) was 50, 000, and the number
of true non-matched record pairs (TN) was 5 x 102 — 950, 000. When looking at
the entity space, the number of non-matched entities is 4,600,000 — 250, 000 =
4,350,000. Table 3 shows the resulting quality measures for this example in
both the comparison and the entity spaces, and as discussed, any measure that
includes the number of TN depends upon whether entities or record pairs are
counted. As can be seen, the results for accuracy and the false positive rate
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Table 3. Quality results for the simple example

Measure Entity space Comparison space
Accuracy 94.340% 99.999994%
Precision 72.222% 72.222000%
Recall 92.857% 92.857000%
F-measure 81.250% 81.250000%
False positive rate 5.435% 0.000005%

all show misleading results when based on record pairs (i.e. measured in the
comparison space). This issue will be illustrated further in Sections 5 and 6.

The authors of [4] discuss the topic of evaluating deduplication and data
linkage systems. They advocate the use of precision-recall graphs over the use of
single value measures like accuracy or maximum F-measure, on the grounds that
such single value measures assume that an optimal threshold has been found. A
single value can also hide the fact that one classifier might perform better for
lower threshold values, while another better for higher thresholds.

5 Experimental Examples

In this section the previously discussed issues on quality measures are illustrated
using a real-world administrative health data set, the New South Wales Midwives
Data Collection (MDC) [31]. 175,211 records from the years 1999 and 2000 were
extracted, containing names, addresses and dates of birth of mothers giving
birth in these two years. This data set has previously been deduplicated (and
manually clerically reviewed) using the commercial probabilistic data linkage
system AutoMatch [25]. According to this deduplication, the data set contains
166, 555 unique mothers, with 158, 081 having one, 8,295 having two, 176 having
three, and 3 having four records (births). The AutoMatch deduplication decision
was used as the true match (or deduplication) status for this example

A deduplication was then performed using the Febrl (Freely extensible biomed-
ical record linkage) [7] data linkage system. Fourteen attributes in the MDC were
compared using various comparison functions (like exact and approximate string
comparisons), and the resulting comparison values were summed into a match-
ing weight (as discussed in Section 2.2) ranging from —43 (disagreement on all
fourteen comparisons) to 115 (agreement on all comparisons). As can be seen
in the density plot in Figure 3, almost all true matches (record pairs classified
as true duplicates) have positive matching weights, while the majority of non-
matches have negative weights. There are, however, non-matches with rather
large positive matching weights, which is due to the differences in calculating
the weights between AutoMatch and Febrl.

The full comparison space for this data set with 175,211 records would re-
sult in 175,211 x 175,210/2 = 15,349, 359, 655 record pairs, which is infeasible
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Fig. 3. The density plot of the matching weights for a real-world administrative health
data set. This plot is based on record pair comparison weights in a blocked comparison
space. The lowest weight is -43 (disagreement on all comparisons), and the highest 115
(agreement on all comparisons). Note that the vertical axis with frequency counts is
on a logarithmic scale

to process even with today’s powerful computers. Standard blocking was used
to reduce the number of comparisons, resulting in 759,773 record pairs (this
corresponds to only around 0.005% of all record pairs in the full comparison
space). The total number of truly classified matches (duplicates) was 8,841 (for
all the duplicates as described above), with 8,808 of the 759,773 record pairs
in the blocked comparison space corresponding to true duplicates (thus, 33 true
matches were removed by blocking).

The quality measures discussed in Section 4 applied to this real-world dedu-
plication procedure are shown in Figure 4 for a varying threshold —43 < ¢ < 115.
The aim of this figure is to illustrate how the different measures look for a dedu-
plication example taken from the real world. The measurements were done in
the blocked comparisons space as described above. The full comparison space
(15,349, 359, 655 record pairs) was simulated by assuming that blocking removed
mainly record pairs with negative comparison weights (normally distributed be-
tween -43 and -10). As discussed previously, this resulted in different numbers
of TN between the blocked and the (simulated) full comparison spaces. As can
be seen, the precision-recall graph is not affected by the blocking process, and
the F-measure differs only slightly. The two other measures, however, resulted
in graphs of different shape.

48


simeon
Australiasian  Data  Mining  Conference  AusDM05

simeon
48


Accuarcy

F-Measure

0.8

0.6

0.4

0.2

Australiasian Data Mining Conference AusDM05

Accuracy

Full comparison space

Blocked comparison space —

-60

0.8

0.6

0.4

0.2

20 40 60 80
Matching weights

F-measure

100 120

Full comparison space

Blocked comparison space

-60

-40

-20

]

20 40 60 80
Matching weights

100 120

Precision

False positive rate

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Precision-Recall

, Blocked comparison space

Full comparison space

0

0.2

0.4 0.6
Recall

False positive rate

Full comparison space

Blocked comparison space

]

20 40 60 80
Matching weights

100 120

Fig. 4. Quality measurements of a real-world administrative health data set

6 Recommendations

Based on the above discussions, several recommendations for measuring dedu-
plication and data linkage quality can be given. Their aim is to provide both
researchers and practitioners with guidelines on how to perform empirical stud-
ies on different algorithms, or production deduplication or linkage projects, as
well as on how to properly assess and describe the outcome of such linkages.

Record Pair Classification Due to the problem of the number of true nega-
tives in any comparison, quality measures which use that number (for example
accuracy or the false positive rate) should not be used. The variation in the
quality of a technique against particular types of data means that results should
be reported for particular data sets. Also, given that the nature of some data
sets may not be known in advance, the average quality across all data sets used
in a certain study should be reported. When comparing techniques, precision-
recall or F-measure graphs provide an additional dimension to the results. For
example, if a small number of highly accurate links is required, the technique
with higher precision for low recall would be chosen [4].
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Blocking The aim of blocking is to cheaply remove obvious non-matches be-
fore the more detailed, expensive record pair comparisons are made. Working
perfectly, blocking would only remove record pairs that are true non-matches,
thus affecting the number of true negatives, and possibly the number of false
positives. To the extent that, in reality, blocking also removes record pairs from
the set of true matches, it will also affect the number of true positives and false
negatives. Blocking can thus be seen to be a confounding factor in quality mea-
surement — the types of blocking procedures and the parameters chosen will
potentially affect the results obtained for a given linkage procedure. If compu-
tationally feasible, for example in an empirical study using small data sets, it is
strongly recommended that all quality measurement results be obtained without
the use of blocking. It is recognised that it may not be possible to do this with
larger data sets. A compromise would be to publish the blocking approach and
resulting number of removed pairs of records, and to make the blocked data set
available for analysis and comparison by other researchers. At the very least,
the blocking procedure and parameters should be specified in a form that can
enable other researchers to repeat it.!

7 Conclusions

Deduplication and data linkage are important tasks in the pre-processing step of
many data mining projects, and also important for improving data quality before
data is loaded into data warehouses. An overview of data linkage techniques has
been presented, and the issues involved in measuring the quality of deduplication
and data linkage algorithms have been discussed. It is recommended that data
linkage quality be measured using the precision-recall or F-measure graphs rather
than single numerical values, and measures that include the number of true
negative matches should not be used due to their large number in the space of
record pair comparisons. When publishing empirical studies, researchers should
alm to use non-blocked data sets if possible, or otherwise at least detail the
blocking approach taken, and report on the number of record pairs being removed
by the blocking process.
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Abstract. Addresses are a key part of many records containing infor-
mation about people and organisations, and it is therefore important
that accurate address information is available before such data is mined
or stored in data warehouses. Unfortunately, addresses are often cap-
tured in non-standard and free-text formats, usually with some degree
of spelling and typographical errors. Additionally, addresses change over
time, for example when people move, when streets are renamed, or when
new suburbs are built. Cleaning and standardising addresses, as well as
verifying if they really exist, are therefore important steps in data min-
ing pre-processing. In this paper we present an automated probabilistic
approach based on a hidden Markov model (HMM), which uses national
address guidelines and a comprehensive national address database to
clean, standardise and verify raw input addresses. Initial experiments
show that our system can correctly standardise even complex and un-
usual addresses.

Keywords: Data mining pre-processing, address cleaning and standard-
isation, hidden Markov model, G-NAF, postal address guidelines.

1 Introduction

Most real world data collections contain noisy, incomplete, incorrectly formatted,
or even out-of-date data. Cleaning and standardising such data are therefore
important first steps in data pre-processing, and before such data can be stored
in data warehouses or used for further data analysis or mining [11,16]. In most
settings it is desirable to be able to detect and remove duplicate records from
a data set, in order to reduce costs for business mailings or to improve the
accuracy of a data analysis task. The cleaning and standardisation of personal
information (like addresses and names) is especially important for data linkage
and integration, to make sure that no misleading or redundant information is
introduced. Data linkage (also called record linkage) [10] is important in many
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application areas, such as compilation of longitudinal epidemiological studies,
census related statistics, or fraud and crime detection systems.

The main tasks of data cleaning [16] are the conversion of the raw input
data into well defined, consistent forms, and the resolution of inconsistencies in
the way information is represented or encoded. Personal information is often
captured and stored with typographical and phonetical variations, parts can be
missing or recorded in different (possibly obsolete) formats, or be out-of-order.
Addresses and names can change over time, and are often reported differently
by the same person depending upon the organisation they are in contact with.
Moreover, while for many regular words there is only one correct spelling, there
are often different written forms for proper names (which are commonly used as
street, locality or institution names), for example ‘Dickson’ and ‘Dizon’. For ad-
dresses to be useful and valuable, they need to be cleaned and standardised into
a well defined format. For example, various abbreviations should be converted
into standardised forms, nicknames should be expanded into their full names,
and postcodes should be validated using official postcode lists.

In this paper we report on a project that aims to develop techniques for
fully automated cleaning, standardisation, as well as verification, of raw input
addresses. In Section 2 we introduce the task of address cleaning and standard-
isation in more detail and present other work that has been done in this area.
While traditional approaches have been based on either rules that need to be
customised by the user according to her or his data, or manually prepared train-
ing data, our system is based on a mainly unsupervised approach. The main
contribution of our work is the automated training of a probabilistic address
standardisation system using national address guidelines and a comprehensive
national address database. We present our approach in Section 3, and discuss the
methods used to automatically train our system in Section 4. First experimental
results are then presented and discussed in Section 5, and an outlook to future
work is given in Section 6.

2 Address Cleaning and Standardisation

The aim of the cleaning and standardisation process is to transform the raw in-
put address records into a well defined and consistent form, as shown in Figure 1.
Addresses can be separated into three components, corresponding to the address
site (containing flat and street number details), street (containing street name
and type), and locality (with locality, state and postcode information). As can
be seen from Figure 1, these components are further split into several output
fields, each containing a basic piece of information. The standardisation pro-
cess also replaces different spellings and abbreviations with standard versions.
Look-up tables of such standard spellings are often published by national postal
services, together with guidelines of how addresses should be written properly on
letters or parcels. This information can be used to build an automated address
standardiser, as presented in more details in Sections 3 and 4.
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Fig. 1. Example address standardisation. The left four output fields relate to the ad-
dress site level, the middle two to street level, and the right three fields to locality
level

The terms data cleaning (or data cleansing), data standardisation, data
scrubbing, data pre-processing, and ETL (extraction, transformation and load-
ing) are used synonymously to refer to the general tasks of transforming source
data into clean and consistent sets of records suitable for loading into a data
warehouse, or for linking with other data sets. A number of commercial software
products are available which address this task. A complete review is beyond the
scope of this paper (an overview can be found in [16]). Address (and name)
standardisation is also closely related to the more general problem of extracting
structured data, such as bibliographic references or name entities, from unstruc-
tured or variably structured texts, such as scientific papers or Web pages.

The most common approach for address standardisation is the manual spec-
ification of parsing and transformation rules. A well-known example of this
approach in biomedical research is AutoStan [12], the companion product to
the widely-used AutoMatch probabilistic record linkage software. AutoStan first
parses the input string into individual words, and using a re-entrant regular
expression parser each word is then mapped to a token of a particular class (de-
termined by the presence of that word in user-supplied look-up tables, or by the
type of characters found in the word). This approach requires both an initial and
ongoing investment in rule programming by skilled staff. More recent rule-based
approaches, which aim at automatically induce rules for information extraction
from unstructured text, include Rapier [5], which is based on inductive logic
programming; Whisk [18], which can handle both free and highly structured
text; and Nodose [1], which is an interactive graphical tool for determining the
structure of text documents and for extracting their data.

An alternative to these rule-based, deterministic approaches are probabilis-
tic methods. Statistical models, especially hidden Markov models (HMMs), have
widely been used in the areas of speech recognition and natural language process-
ing to help solve problems such as word-sense disambiguation and part-of-speech
tagging [15]. More recently, HMMSs and related models have been applied to the
problem of extracting structured information from unstructured text. An ap-
proach using HMMs to find names and other non-recursive entities in free text
is described in [3], where word features are used similar to the ones implemented
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in our system, and experimental results of high accuracy are presented using
both English and Spanish test data. HMMs are also used for information extrac-
tion by [9], which addresses the problem of lack of training data by applying the
statistical techniques of shrinkage to improve HMM parameter estimations (dif-
ferent hierarchies of expected similarities are built from a model). The issue of
learning the structure of HMMSs for information extraction is discussed in [17],
where both labelled and un-labelled data is used, and good accuracy results
are presented. A supervised approach for segmenting text (including US and
Indian addresses) is presented by [4]. Their system Datamold uses hierarchical
features and nested HMMs, and does allow the integration of external hierarchi-
cal databases for improved segmentation. Their results indicate that Datamold
consistently performs better than the rule-base system Rapier. An automatic
system that only uses external databases is presented in [2]. The authors de-
scribe attribute recognition models (ARMs), based on HMMs, which capture the
characteristics of the values stored in large reference tables. The topology for
an ARM consists of the three states Beginning, Middle, and Trailing. Feature
hierarchies are then used to learn the HMM topology as well as transition and
emission probabilities. Results presented on various data sets show an up to 50%
reduction in segmentation errors compared to Datamold.

Earlier work [8] by one of the authors of this paper describes a supervised
name and address standardisation approach that uses a lexicon-based tokeni-
sation in combination with HMMs, work that was strongly influenced by [4].
Instead of directly using the elements of the input records for HMM segmenta-
tion, a tagging step allocates one or more tags (based on user definable look-up
tables and some hard coded rules) to each input element, and sequences of tags
are then given to a previously trained (using manually prepared tag sequences)
HMM. Results on real world administrative health data showed better accuracy
than the rule-based system AutoStan for addresses [8]. Training of this system
is facilitated by a boot-strapping approach, allowing a reasonable amount of
training data to be manually created within a couple of hours.

In this paper we present work which is mainly based on [2] and [8]. The main
contribution of our work is the combination of techniques used in these two
approaches, with specific application (but not limited) to Australian postal ad-
dresses. We use national address guidelines and a large national address database
to automatically train a HMM, without the need of any manual preparation of
training data. Our system is part of a free, open source data linkage system
known as Febrl (Freely extensible biomedical record linkage) [6], which is writ-
ten in the free, open source object-oriented programming language Python.

3 Probabilistic Address Standardisation

Our method is based on a probabilistic HMM which is automatically trained
using information taken from national address guidelines (which are available in
many countries) as well as a comprehensive national address database. The de-
tailed approach on how this HMM is trained using these two sources is discussed
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in Section 4. Here we present the actual steps involved in the standardisation of
raw input addresses, assuming such a trained HMM is available.

We assume that the raw input address records are stored as text files or
database tables, and are made of one or more text strings. The task is then to
allocate the words and numbers from the raw input into the appropriate output
fields, to clean and standardise the values in these output fields, and to verify
if an address (or parts of it) really exist (i.e. is available in the national address
database). Our approach is based on the following four steps, which will be
discussed in more detail in the four sections given below.

1. The raw input addresses are cleaned.

2. They are each split into a list of words, numbers and characters, which are
then tagged using features and look-up tables that were generated using the
national address database.

3. These tagged lists are then segmented into output fields using a probabilistic
HMM.

4. Finally, the segmented addresses are werified using the national address
database.

3.1 Cleaning

The cleaning step involves converting all letters into lower case, followed by vari-
ous general corrections of sub-strings using correction lists. These lists are stored
in text files that can be modified by the user. For example, variations of nursing
home, such as ‘n-home’ or ‘n/home’ are all replaced with the string ‘nursing
home’. Various kinds of brackets and quoting characters are replaced with a ver-
tical bar ¢|’, which facilitates tagging and segmenting in the subsequent steps.
Correction lists also allow the definition of strings that are to be removed from
the input, for example ‘n/a’ or ‘locked’. The output of this first step is a
cleaned address string ready to be tagged in the next step.

3.2 Tagging

After an address string has been cleaned, it is split at white-space boundaries
into a list of words, numbers, punctuation marks and other possible characters.
Each of the list elements is assigned one or more tags. These tags are based on
look-up tables generated using the values in the national address database, as
well as more general features. For example, a list element ‘road’ is assigned the
tag ‘ST’ (for street type, as ‘road’ was found in the street type attribute in
the database), as well as the tag ‘L4’ (as it is a value of length four characters
containing only letters). The tagging does not depend upon the position of a
value in the list. The number ‘2371, for example, will be tagged with ‘PC’ (as
it is a known postcode) and ‘N4’ (as it is also a four digit number), even if it
appears at the beginning of an address (where it likely corresponds to a street
number). The segmentation step (described below) then assigns this element to
the appropriate output field.
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Table 1. Example values from the national address database for features used for stan-
dardisation. Empty table entries indicate no such values are available in the database

Length Numbers Letters  Alpha-numeric Others
1 3 a

2 42 se bl .
3 127 lot 33a 1/7
4 1642 road 672a 3/1a
5 13576 place lot12 1/23b
6to8 2230229 street rmb1622 lot 1760
9to 11 jindabyne coleville2 anderson’s
12 to 15 dondingalong  bundanoon305 house no: 2/41
16 or more stonequarrycreek armidale-kempsey

Look-up tags specify to the HMM in which attribute(s) of the national ad-
dress database a list element appears. If it appears in several attributes, more
than one look-up tag will be assigned to it. However, if a list element in an input
address contains a typographical error, or does otherwise not exactly correspond
to any look-up table value, no tag would be assigned to it. Therefore, the features
are a more general way of representing the content of the different attributes in
the national address database. Features characterise the lengths of an attribute
value, as well as its content (if it is made of letters only, numbers only, if it is
alpha-numeric, or if it also contains other characters). For example, an attribute
value that only contains letters and has a length between 12 and 15 (feature tag
‘L12.15°) is in 73% a locality name, in 26% a street name, and in 1% a building
name, as this is the distribution of values with letters only and a length between
12 and 15 in the national address database. A feature tag ‘N6.8’, as another
example, corresponds to a number value with length between 6 and 8 digits.
Table 1 gives example attribute values from the national address database.

In the tagging step, the look-up tables are searched using a greedy matching
algorithm, which searches for the longest tuple of list elements that match an en-
try in the look-up tables. For example, the tuple (‘macquarie’, ‘fields’) will
be matched with an entry in a look-up table with the locality name ‘macquarie
fields’, rather than with the single-word entry ‘macquarie’ from the same
look-up table.

The output of the tagging step is a list of words, numbers and separators,
and a corresponding list of look-up and feature tags (as shown in the example
given below). As more than one tag can be assigned to a list element (as in the
street type example above), different combinations of tag sequences are possible,
and the question is which tag sequence is the most likely one, and how should
the list elements be assigned to the appropriate output fields? This problem is
solved using a probabilistic HMM in the segmentation step as discussed next.
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3.3 Segmenting

Having a list of elements (words, numbers and separators) and one or more
corresponding tag lists, the task is to assign these elements to the appropriate
output fields. Traditional approaches have used rules (such as ”if an element
has a tag ‘ST’ then the corresponding word is assigned to the ‘street_type’
output field.”). Instead, we use a HMM [15], which has the advantages of being
robustness with respect to previously unseen input sequences, and that it can
be automatically trained as will be detailed in Section 4.

Hidden Markov models [15] (HMMs) were developed in the 1960s and 1970s
and are widely used in speech and natural language processing. They are a
powerful machine learning technique, able to handle new forms of data in a
robust fashion. They are computationally efficient to develop and evaluate. Only
recently have HMMs been used for address standardisation [4,8,17].

A HMM is a probabilistic finite state machine made of a set of states, tran-
sition edges between these states and a finite dictionary of discrete observation
(output) symbols. Each edge is associated with a transition probability, and each
state emits observation symbols from the dictionary with a certain probability
distribution. Two special states are the ‘Start” and ‘End’ state. Beginning from
the ‘Start’ state, a HMM generates a sequence of length k£ of observation sym-
bols O = 01,09,...,0r by making & — 1 transitions from one state to another
until the ‘End’ state is reached. Observation symbol 0;,1 <1 < k is generated in
state i based on this state’s probability distribution of the observation symbols.
The same output sequence can be generated by many different paths through a
HMM with different probabilities. Given an observation sequence, one is often
interested in the most likely path through a given HMM that generated this se-
quence. This path can effectively be calculated for a given observation sequence
using the Viterbi [15] algorithm, which is a dynamic programming approach.
Figure 3 shows a HMM generated by our system for address standardisation.

Instead of using the original words, numbers and other elements from the ad-
dress records directly, the tag sequences (as discussed in Section 3.2) are used as
HMM observation symbols in order to make the derived HMM more general and
more robust. Using tags also limits the size of the observation dictionary. Once
a HMM is trained, sequences of tags (one tag per input element) as generated in
the tagging step can be given as input to the Viterb: algorithm, which returns
the most likely path (i.e. state sequence) of the given tag sequence through the
HMM, plus the corresponding probability. The path with the highest probability
is then taken and the corresponding state sequence will be used to assign the
elements of the input list to the appropriate output fields.

Example: Let’s assume we have the following (randomly created) input address
‘42 meyer Rd COOMA 2371’°, which is cleaned and tagged (using both look-up
and feature tags) into the following word list and tag sequence:

[“42’, ‘meyer’, ‘road’, ‘cooma’, 23717 ]
[‘N2’, ‘SN/L5’, ‘ST/L4’, ‘LN/SN/L5’, ‘PC/N4’ ]
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with look-up tags ‘SN’ for street name, ‘ST’ for street type, ‘LN’ for locality
name, and ‘PC’ for postcode; and feature tags for numbers (‘N2’ and ‘N4’) and
letter values (‘L4’ and ‘L5’). The number of combinations of the tag sequences
is1x2x2x3x2=24, for example [‘N2’, ‘SN’, ‘ST’, ‘LN’, ‘PC’] or
[‘N2°, ‘L5?, ST’, ‘SN’, ‘N4’]. These 24 tag sequences are given to the
Viterbi algorithm, and using the HMM from Figure 3, the tag sequence with
the highest probability that is returned is [‘N2’, ‘SN’, ‘ST’, ‘LN’, ‘PC’].
It corresponds to the following path through the HMM (with the corresponding
observation symbols — the output fields — in brackets).

Start — number_first (N2) — street_name (SN) — street_type (ST)
— locality._name (LN) — postcode (PC) — End

The values of the input address will be assigned to the output fields as follows.

number_first: ‘42’
Street_name: ‘meyer’
street_type: ‘road’

locality_name: ‘cooma’

postcode: ‘2371’

3.4 Verification

Once segmented an input address can be easily compared to the existing ad-
dresses in the national address database. Different techniques can be used for this
task, for example inverted indices as described in [7], which allow approximate
matching (for example if parts of an address are missing or wrong). Alternatively,
hash encodings (like MD5 or SHA) can be used to create a unique signature for
each address in the national database, allowing to efficiently compare a hash
encoded input address with the full database. Similarly, hash encodings of the
locality and street (and their combinations) allow the verification of only these
parts of an address. This component of our system is currently under develop-
ment, and more details will be published elsewhere.

4 Automated Hidden Markov Model Training

The automated HMM training approach is based on national address guidelines
and a large national address database, and only needs minimal initial manual
efforts. Guidelines for correctly addressing letters and parcels are increasingly
becoming important as mail is being processed (sorted and distributed) auto-
matically. Many national postal services therefore publish such guidelines!. Our
system uses these guidelines to build the initial HMM structure, as shown in
Figure 2. This is currently done manually, but in the future it is likely that elec-
tronic versions of such guidelines (for example as XML schemes) will become
available, making the initial manual building of the HMM structure automated

1 See for example: http://www.auspost.com.au/correctaddress
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Start (hidden)

building_nanE/ \
_— BN
flat_type / level_type lot_number_prefix
N _—
flat_number / / postal_type
\
level_number lot_number
\
number_first
A
number_|ast
\
street_name
Al
street_type
v
street_wffi\
\
Iocdlty name
state abbrev
postcode
End (hidden)

Fig. 2. Initial HMM topology manually constructed from postal address guidelines to
support the automated HMM training

as well. The structure is built with the national address database in mind, i.e.
the HMM states correspond to the database attributes, and aims to facilitate
the automated training process which uses the clean and segmented records in
such an address database.

A comprehensive, parcel based national address database has recently be-
come available in Australia: G-NAF (the Geocoded National Address File) [13].
Developed mainly for geocoding applications in mind, approximately 32 million
address records from several organisations were used in a five-phase cleaning and
integration process, resulting in a database consisting of 22 normalised tables.
G-NAF is based on a hierarchical model, which stores information about address
sites (properties) separately from streets and locations [14]. For our purpose, we
extracted 26 address attributes (or output fields) as listed in Table 2. The aim of
the standardisation process is to assign each element of a raw user input address
to one of these 26 output fields, as shown in the example in Figure 1. Only the
G-NAF records covering the Australian state of New South Wales (NSW) were
available to us, in total 4,585,707 addresses. There are two main steps in the
set-up and training phase of our address standardisation system as follows.
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Table 2. G-NAF address attributes (or fields) used in the standardisation process

G-NAF fields

Address site flat number_prefix, flat_number, flat number_suffix, flat_type,
level _number_prefix, level number, level number_suffix,
level_type, building name, location_description, private_road,
number _first_prefix, number_first, number_first_suffix,
number_last_prefix, number_last, number_last_suffix,
lot_number_prefix, lot_number, lot_number_suffix

Street street_name, street_type, street_suffix

Locality locality_name, postcode, state_abbrev

4.1 Generation of Look-up Tables

The look-up tables are generated by extracting all the discrete (string) values
for locality name, street_name and building name into tables and then com-
bining those tables with manually generated tables containing typographical
variations (like common misspellings of suburb names), as well as the complete
listing of postcodes and locality names from the national postal services. Other
look-up tables are generated using the official G-NAF data dictionary tables
(for fields such as street_type, street_suffix, flat_type, or level_type).
The resulting look-up tables are then cleaned using the same approach as de-
scribed in Section 3.1, and used in the tagging step to assign look-up tags to
address elements.

4.2 HMM Training

The required input data for the training are (1) the initial HMM structure as
built using the postal address guidelines and as shown in Figure 2, and (2) the
G-NAF database containing cleaned and segmented address records. The dis-
tribution of both transition and observation probabilities are learned based on
frequency counts of the occurrences of attribute values in the G-NAF database.
Each G-NAF record is an example path and observation sequence. Due to minor
deficiencies in the data contained in G-NAF, such as the lack of postal addresses,
postcodes, or the character slash ¢/’ (which is often used to separate flat from
street numbers), manually added tweaks must be automatically applied where
appropriate to the model during training to account for the lack of observations
and transitions, and to account for unusual but legitimate address types, such
as corner addresses. A HMM trained using G-NAF is shown in Figure 3. Be-
cause training data often does not cover all possible combinations of transitions
and observations, during application of a HMM unseen and unknown data is
encountered. To be able to deal with such cases, smoothing techniques [4] (such
as Laplace or absolute discount smoothing) need to be applied, which enable un-
seen data to be handled more efficiently. These techniques basically assign small
probabilities to all unseen transitions and observations symbols in all states.
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postal_number

[0.0001

number_first 70.091

0.979

Street_name,0.128

Fig. 3. HMM (simplified) after automated training using the G-NAF national address
database (but before smoothing is applied)

5 Experimental Results and Discussion

Special care must be taken when evaluating HMM based systems. If the records
used to train a HMM are from the same or similar data set as the records used to
evaluate the performance of the same HMM, the model may become over-fitted
to the training data and may not accurately reflect the real performance of the
HMM. To test the accuracy of our probabilistic standardisation approach raw
addresses from three data sets were used. The first contained 500 records with
addresses taken from a midwives data collection, the second 600 nursing home
addresses, and the third a 150 record sample of unusual and difficult addresses
from a large administrative health data set. There are three major variations
possible in our system for standardising addresses:

1. Features and look-up tables (F&LT)
During the tagging step of standardisation, each element in the address is
assigned one or more tags depending if it can be found in one or more look-
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up tables. Once all tables have been checked, the element will also be given
a feature tag as described in Section 3.2. However, elements of one character
length are only given a feature tag and look-up tables are not searched.

2. Look-up tables only (LT)
This is similar to the supervised system [8] as previously implemented in
Febrl [6]. An address element is given one or more look-up tags, depending
if it can be found in the look-up tables. If it is not assigned any tags, it is
given a feature tag. Again, elements of one character length are only given
feature tags.

3. Features only (F)
Single address elements are only given feature tags and look-up tables are
not used. Any sequence the greedy matching algorithm finds of length two
or more elements is assigned a tag from the look-up tables as normal. Unlike
the other two options, elements were not placed into their canonical form,
since there is no look-up table used to check for original forms.

While HMM’s were trained using all three options of smoothing (no smoothing,
absolute discount, and Laplace), no smoothing was not tested as it is deemed to
be highly inflexible and unable to cope with unseen input data. Laplace smooth-
ing was tested, but not analysed extensively as initial tests showed a quite poor
performance. All results, unless specified, are therefore assumed to be from a
HMM with absolute discount smoothing applied. Comparison test were also per-
formed using the supervised Febr! address standardiser [6, 8].

Records were judged to be accurately standardised if all elements of an input
address string were placed into the correct output fields. It was not appropriate
to check for correct canonical correction, since feature based tagging will not
transform any words. Addresses not fully correct were judged on an individual
basis for level of correctness, either ‘close’ or ‘not close’, depending upon the
criticality of the error. For example, numbers being classified as number_last
instead of number first were considered ‘close’, whereas street types being
judged localities are considered ‘not close’. A second measure of accuracy, called
‘could be accuracy’, was used to show the level of accuracy of the HMM when
including ‘close’ (but incorrectly standardised) records as correct.

In many data sets the majority of input addresses are of fairly simple struc-
ture. We therefore counted the frequency of the following three sequences and
included their numbers (labelled as ‘Fasy addresses’) in Table 3.

(number _first,number_last,street_name,street_type,locality_name,postcode)
(number _first,street_name,street_type,locality_name,postcode)
(street_name,street_type,locality_name,postcode)

As expected, the data set with unusual addresses contained much less easy ad-
dresses, while for the other two data sets around 90% were easy addresses.

Performance was averaged over 10 runs of the system for each category of
execution. All standardisation runs were performed on a moderately loaded Intel
Pentium M Centrino 2.0 GHz with 512 MBytes of RAM.
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Table 3. Experimental accuracy and standardisation timing results on three test data
sets using absolute discount HMM smoothing. See text for discussion what easy ad-
dresses are

Midwives Nursing homes  Unusual

Total number of addresses 500 600 150
Easy addresses (F&LT) 446 542 31
Easy addresses (LT) 438 538 27
Easy addresses (F) 445 542 31
Easy addresses Febrl 410 529 22
Accuracy (F&LT) 97.40% 96.67% 92.67%
Accuracy (LT) 95.40% 98.50% 72.67%
Accuracy (F) 96.60% 92.67% 79.33%
Accuracy Febrl 96.80% 96.00% 96.00%
‘Could be’ accuracy (F&LT) 98.00% 97.80% 94.67%
‘Could be’ accuracy (LT) 97.40% 98.50% 80.00%
‘Could be’ accuracy (F) 97.00% 96.50% 80.67%
‘Could be’ accuracy Febrl 97.60% 98.30% 96.00%
Milli-seconds per record (F&LT) 92 445 720
Milli-seconds per record (LT) 11 18 37
Milli-seconds per record (F') 6 7 7
Milli-seconds per record Febrl 7 9 10

5.1 Discussion

As can be seen by the difference between actual accuracy and ‘could be’ accuracy
in Table 3, not only is the accuracy of the new system quite high, especially when
using the (F&LT) variation, but quite a large number of the incorrect records
were only marginally incorrect in non-critical parts of an address. Perhaps half
of the remaining errors were caused by a known deficiency in the greedy tagging
system, which has to do with the value ‘st’ being a known abbreviation both
for ‘Saint’ and ‘Street’. Most remaining errors were examined in depth, but in
general it was impossible even for a human to determine the exact correct output.
Accuracy using our automatically trained system versus a manually trained Febrl
HMM is equal to or better than in all cases tested. Quite surprisingly, accuracy
using the (F) HMM was quite comparable to the (LT) based HMM.

Also, the Febrl address HMM failed on almost all non NSW addresses given,
due to them generally being outside the scope of its look-up tables, thus the
tagging was ineffective. However the (F&LT) and (F) HMM’s both success-
fully standardised most non NSW addresses by using the feature information
where the look-up tables came up blank. This has promising possibilities for
using the HMM to standardise addresses outside the domain of G-NAF without
any retraining necessary. There are also possible applications where licensing or
other reasons are non permissive for distribution of the G-NAF national address
database and corresponding look-up tables generated.
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Timing performance using the (F&LT) HMM is relatively poor due to the
large number of possible combinations of tag sequences, however still quite ac-
ceptable, especially since accuracy is generally more highly valued than time
taken, and the fact that addresses can be easily standardised in parallel.

6 Outlook and Future Work

In this paper we have presented an automated approach to address cleaning and
standardisation based on national postal address guidelines and a comprehensive
national address database (G-NAF), and using a probabilistic hidden Markov
model (HMM) which can be trained without manual interaction. Standardising
addresses is not only an important first step before address data can be loaded
into databases or data warehouses, or be used for data mining, but it is also
necessary before address data can be linked or integrated with other data.

There are still various improvements possible to our system. Currently corner
addresses are implicitly supported, but explicitly creating HMM states such as
a second street name and type is a more complete solution. Characters such as
dash, brackets, commas, etc. are currently processed in the cleaning step, but
handling them in the HMM could improve accuracy. Other minor improvements
include training the HMM using corrected G-NAF data, and ways to minimise
the number and size of manual tweaks to the HMM. The look-up tables contain
some common typographical error correction data, drawn from manually created
lists. It should be possible to build far more comprehensive lists automatically by
matching between the G-NAF address data and correctly standardised example
addresses, in order to find typographical variations.

Each distinct tag sequence given to the HMM will always have the same
output states and Viterbi probability. This can be used to advantage by caching
the set of input tags and the resulting probability during execution. Since up
to 90% of addresses in some data sets have the same output fields, it is highly
likely that there will be a considerable number of addresses with the same tag
sequence. These redundant calculations can be eliminated by checking the tag
sequence against a cache of sequences. If found in the cache, directly return the
probability, otherwise the sequence will be run through the HMM and the result-
ing probability and input tags will be added to the cache. Using the (F&LT)
variation, addresses can have dozens of possible tag sequences, thus the caching
of results should give considerable performance improvements.

While developed with and using Australian address data, our approach can
easily be modified to other countries, or even other domains (for examples names,
medical data, etc.) as long as standardisation guidelines and a comprehensive
database with standardised records are available.
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Abstract. Stream data analysis differs significantly from traditional
data processing. To process the data online the algorithm has to work
in one pass, incorporating new data into a model maintained in main
memory. Categorical stream clustering is especially difficult because of
the lack of order and “closeness” properties. We propose a differential
categorical stream mining algorithm and demonstrate their good accu-
racy and fast speed on synthetic and real categorical data. A major step
of the algorithm is “data compression”, i.e. to store a model or synopsis
of processed data in the memory. We propose several data compression
schemes that can efficiently generate compact representations of original
data, so as to enable the algorithm to process streams at high speed and
detect the changes in underlying data.

Keywords: Stream, clustering, categorical, differential, compression schemes

1 Introduction

Stream data is becoming a new and important type of data source. A data stream
is a sequence of data points which usually can only be read once and does not
support random access. Examples are the observations by distributed sensors,
security alarm logs, and events in large-scale scientific computations.

Traditional data clustering tends to get a model from the whole data set,
and the order of the data points is often not relevant. However, with stream
data, we often want to see the evolution of models. Suppose that we want to
see with new data coming in, how the clusters of the data change. What if the
data cannot fit in the memory buffer any more after some time? We need to
accomodate new data so earlier data have to be moved out of memory. Since
we are dealing with stream data, we cannot retrieve those earlier data later,
although the clustering algorithm needs them. A stream processing algorithm
needs to address this problem. It has to compress the old data in some way and
keep the compressed format in memory.

Even if we want to focus on “recent data”, or rather, the data falling in a
“current window” from some point of time in the past until the current time,
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as shown in figure 1, it is still possible that the “current window” is too big
for the buffer. What’s more, if those “windows” are overlapping, compression
may be more useful since it will save the effort of processing the overlapped part
repeatedly. Suppose that the “current window” slides on the data stream and
each step it moves is called a “differential unit”. For example, in practice, the
current window could be five hours long and each differential unit could be one
hour. Every hour we want to obtain the clustering result for the last 5 hours.
Without compression we can have to process the overlapped data repeatedly,
which is obviously expensive, and if the 5 hour’s data cannot fit in memory we
are in trouble.

An algorithm that can process data incrementally and decrementally is called
a “differential algorithm”. It not only can process the data very efficiently, but
also can extract models from current data, and compare the models from different
time intervals in order to discover the underlying changes.

data stream |<—buffer—>

Differential current window ——

unit now

Fig. 1. Data stream, current window and differential unit

Although in the real world most of the data sets contain categorical features,
there is less related work on clustering categorical data than on numerical data.
However in real life applications, many data features are categorical by nature,
such as network protocols/host domains/types of accessed files in network ac-
cess logs, and color/shape of objects in scientific observations. The clustering of
categorical streaming data is even less studied. We address the categorical data
clustering algorithm in this paper and use this as a tool to study the evolution
of categorical data.

This paper is organized as follows: in section 2, we review the related work.
In section 3 we discuss our differential clustering algorithm. Then we present the
details of our compression schemes in section 4. In section 5 we provide some
experimental results. Section 6 is future work and section 7 concludes the paper.

2 Related Work

More and more attention has been paid to stream data processing [6, 7, 14], such
as clustering [11], maintaining histograms [10], approximating certain queries [6],
or building decision trees [7,14] in a stream environment.

Work has been done to cluster data incrementally in one pass [5, 8], which
is ideal in the data stream environment. One-pass algorithms often store some
model information to represent processed data points or their models. In the
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case of numerical data, people use “representative points” [12] (a set of well-
scattered points in each cluster that could capture the shape and extent of
the cluster) or “sufficient statistics” [5] (sums or mean of the points in each
cluster, sums of squares of the points in each cluster, standard deviation of
each dimension, cardinality of the cluster, and so forth) as a synopsis of the
data. Similar mechanism is needed for handling categorical data, and we use our
“compression schemes” for this task (see section 4).

Some novel categorical clustering algorithms have been proposed [4, 3]. Huang
[13] presented the k-modes algorithm, an extension to the well-known k-means
algorithm. The COOLCAT [4] algorithm is an entropy-based algorithm. It incre-
mentally puts the next point into one of the existing clusters where the overall
expected entropy of clusters can be minimized.

Recently more and more attention has been put on mining the evolution of
the data [1,2,17, 15]. For example, Aggarwal [1] uses velocity density estimation
concept to diagnose the changes in an evolving stream. Some other research
[17] uses an ensemble method to detect concept drift. However, similar to the
stream clustering problem, much research work focuses on numerical data, while
the evolution of categorical data clusters has not been thoroughly studied. Our
algorithm, by clustering categorical data stream differentially, can be used to
keep states of data streams and detect the evolution of the data clusters.

3 Differential Categorical Data Clustering
3.1 The Differential Clustering Algorithm

In order to cluster a data stream differentially, our stream clustering algorithm
follows the steps in figure 2. The algorithm will make use of a regular categor-
ical clustering algorithm C (in our paper we use the k-modes algorithm), and
maintain a data buffer.

In our discussion, we use k to denote the number of clusters, n as the number
of points, d as the number of dimensions, |w| as the current window size, |u| as
the differential unit size, and D as a data set.

The fourth step, “data compression”, stores a representation of data in the
buffer. Different compression methods are also called “compression schemes”.
They only take a small chunk of memory, and are interchangeable by design,
i.e., when time and space allow, we can use a more complicated scheme (which
implies better accuracy), and when the stream comes in a burst or memory runs
short, it is possible to switch to a simpler scheme. This feature is especially useful
in practical stream applications.

This algorithm can produce clusters efficiently. If we don’t do step 5, then
it’s essentially an incremental algorithm that can generate model for the whole
data set. Also, by periodically storing D, to secondary storage, we can easily go
back to a previous time point and do further analysis.

Sometimes, a data set contains both categorical and numerical data. How
to combine these two types of data is a domain-related problem. We can use a
distance metric which is a linear combination of the distance computed only with

7


simeon
Australiasian  Data  Mining  Conference  AusDM05

simeon
71


Australiasian Data Mining Conference AusDM05

1. Fill the buffer, or put all the available points in the buffer. The set of points in
the buffer is D.

2. Choose k starting points from D.

3. Apply the clustering algorithm C to D and generate a set of clusters cls.

4. Compress D based on cls, get a new representation D. of data D, Depending
on the compression scheme, part of or the entire buffer is freed.

5. If needed, remove the representation of stale data from D,.

6. Put new data points into the buffer for a new D (it may contain some points
from a prior D). D, is also incorporated into this new D. The modes of the
clusters in cls are used as the starting points.

7. Go to step 3, until no new points are available.

Fig. 2. The differential algorithm

categorical values and the distance computed only using numerical values [13],
or to convert the numerical values by discretizing them according to some rules
and to consider the converted values as categorical ones. Provided that we do
not have much knowledge about the data set itself, we favor the latter method.

If some of the clusters become empty due to the removal of points, we choose
a data point in the buffer which is the farthest from the current non-empty
clusters, and then make it the mode of a new cluster.

3.2 The K-modes Algorithm

We take the k-modes algorithm [13](see figure 3) as the C in figure 2 because it
works directly on categorical data efficiently. However, we do not see any reason
to restrict our approach to this algorithm.

In the k-modes algorithm, since “mode” (with respect to the “mean” in the
numerical scenario) is defined as a vector in which each element is the “most
frequently occurring value” (MOV for short) of the corresponding dimension in
the cluster, what we are interested in is the MOV of each dimension. Formally, for
each dimension d of the data, with respect to a data set D, the MOV mov(d, D)
is defined as

mov(d, D) = argmaz, freqq(v, D)

freqa(v, D) = countyep (g = v)
D]
From statistics’ point of view MOV is essentially the mode of dimension d.
However here we use mov(d, D) to distinguish from the multi-dimensional mode
of a cluster. The data set D can be the whole data set D or any subset of it. And
countzep(zq = v) is the number of occurrences of value v along dimension d for
the points in D. For the sake of simplicity, sometimes freqq(v, D) is simplified
to freq(v).

One important thing about categorical data clustering is to choose the dis-
similarity measure, or the distance metric. Assume we are looking at a data set
D, with n data points, m dimensions. One metric proposed by Huang [13] is the
Hamming distance: the distance between two data points & = (21,22, "+, Zm)
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1. Select k initial modes.

Allocate every object to the cluster with the nearest mode. Update the modes.

3. After the allocation of all the objects, recompute the distance from each ob-
ject to the current modes. If an object’s nearest cluster changes, reallocate
the object to the cluster with the nearest current mode. Update the modes if
reallocation happens.

4. Repeat 3 until no object has changed clusters after a full cycle test of the whole

N

data set.
Fig. 3. The k-modes algorithm
and y = (y1,¥2, " ,Ym) € D is defined as the number of dimensions along which
two points have different values:
d
. 0 (z; =y, )
dist(z,y) = Y 6(zj,y;), where &(zj,y;) = 7o 1
(@9) =Y 00z @ ={102W W

=1

It is similar to the Jaccard similarity coefficient [16] that is widely used in in-
formation retrieval context. This metric is simple and effective, meaningful in
the unsupervised learning scenario since we do not have much knowledge about
individual dimensions. Hence we adopted it in our study.

Entropy is a good metric when processing categoricdal data, and it is used
widely in many algorithms and applications. In our research, we mainly focus
on processing high speed streams (since these streams are difficult to buffer and
static data processing algorithms cannot be directly applied to them), where
processing rate (number of data points processed in unit time) is a major consid-
eration. We notice that entropy related methods usually incur more computation
cost than mode/histogram based methods, so we choose the k-mode algorithm.
In section 5 we compared our result with an entropy based algorithm.

To an arbitrary point @ = (z1,%a, -+, Zm) € D, the cluster it belongs to
at time t is cl(x,t). For simplicity, we use cl(x) to denote the cluster that x
belongs to at the time of clustering quality evaluation. The mode of a cluster ¢l
is denoted as mode(cl). The quality of a clustering solution cls can be measured
by its deviation, which is defined as:

dev(cls) = % * Z dist(x, mode(cl(x))) (2)

x€D

3.3 Initialization of Clusters

Initialization of clusters can be done by randomly selecting points from the first
“current window”. It is simple to implement but to some extent arbitrary. We
use a heuristic called “dissimilarity rings” to find the starting points. We first
find out the mode of the data and compute the Hamming distance from each
point to the mode. Then the points with same distance are grouped together.
We can have at most d + 1 groups (these groups are like concentric rings with
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mode as the center). If number of clusters is smaller than the number of groups,
we can select most dissimilar modes of these “rings” as our initial modes.

4 Data Compression

In clustering step we do not ignore any point. Then the compression is imple-
mented by choosing some seed points, assigning rest of the points to them so
as to form small groups (subclusters), and for each group recording the group
size, mode and histogram for each dimension. The mode of the subcluster may
or may not be the initial seed.

We want to record the values present in the cluster for each dimension and
the number of times they appeared. This results in a set of histograms: for each
dimension, a list of pairs (value, freq(value)) has to be recorded. Naturally, we
can use “mode” and dimensions’ histograms as the “sufficient statistics”, and
mode can be deduced from dimension’s histograms. Usually the domain for each
categorical dimension is small (i.e., the number of possible values is not very
big). Therefore we assume that the length of the list of pairs is not too long, or
rather, the histograms will not take a lot of space and can be efficiently accessed.
If this is not the case, we can trim the histogram to a certain length, i.e., keep
the high-biased histograms [9] of the old data. If a cluster is “tight”, then a small
number of most frequently occurring values should be sufficient to represent the
histogram fairly well. Our experiments show that 5 most frequently occurring
values provide reasonable accuracy.

The compressed data (in the form of subclusters) can be used later with new
data points to form a new D (see figure 2). It is equivalent to add data in groups
into D, only these groups cannot be split later in clustering step.

However, in the differential case, we need to remove the effect of a stale block.
Obviously, it is difficult to know the contribution of an arbitrary block. We may
even have to go back to the original data and repeat the process to generate the
“stored models” contributed by the stale block, which is not feasible. In fact, a
reasonable assumption could simplify this effort:

Assumption: The starting and ending points of a differential unit can be
predicted, and the size of a differential unit is comparable with the size of the
“current window”.

This assumption implies that the boundary of a data block can be decided by
length, time, or some other criteria. Therefore, when we compress the data, we
not only need to do this for the clusters, but also for each differential unit. For
example, given a live event stream generating events every day, it is rational to
set “one day” as a unit of data to remove. Therefore, when we store the models
for the clusters, we already know that “one day” will be a unit, so we can store
models for the points in each day for each cluster. Since the size of a “differential
unit” is comparable with the “current window” we are looking at (which means
the “current window” will not contain a large number of differential units), the
space required for storing extra information for each differential unit should be
reasonable.
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Hence, when a differential unit is to be removed, we could simply traverse
the clusters, subtract its effect from the stored model of each cluster, to remove
its contribution.

4.1 Compression Schemes

We explore several categorical compression schemes in our experiments.

Naive compression In naive compression, cluster modes are the seeds.
Hence each cluster is a subcluster.

Sampling based compression The seeds are sampled from the buffer. In
order not to miss some small clusters, we choose to sample seeds from every
cluster. That is, we use these clusters as strata, and do stratified sampling.
We can give each cluster equal sample size (we call this “equal-size sampling”,
or “E-sampling”); or we can allocate sample sizes based on different criteria,
say, according to cluster size (cluster with higher cardinality gets more space),
according to area (cluster with larger radius gets more space), or according to
the inverse of density (tighter cluster gets less space). We’ve also tried a “D-
sampling” scheme by first grouping points in each cluster by their distance to
the mode, then using these distance groups as strata, and allocating spaces
according to the inverse of their density.

Dynamic tightness compression In this scheme, we evaluate the “tight-
ness” of each cluster before compression. A cluster’s “tightness” is decided by the
frequency of most occurring value(MOV) for each dimension and the distances
from its members to its mode.

A cluster cl is tight given threshold (f, r) iff for each dimension, freq(MOV) >
f and radius(cl) < r. The radius of a cluster ¢l is the maximum distance between
any point in the cluster and its mode.

radius(cl) = rmnélgl((dist(m, mode(cl))) (3)

The “tightness” threshold has to be dynamically changed to free up space for
new points. This is done according to two heuristic rules: (1) when the buffer is
about 90% full, we compress all the points just like naive compression does, and
loosen the tightness threshold; (2) if the buffer is less than 30% full, we tighten
the threshold.

Secondary clustering We’ve also tried another scheme, which involves sec-
ondary clustering of the points in the buffer, and compressing the tight secondary
clusters. For the data set we used, the number of secondary clusters is about 4
or 5 times the number of final clusters desired. In terms of accuracy this scheme
also works, but the computation overhead is significant and in some extreme
cases it runs even slower than the regular k-modes. Therefore we did not report
details of its results.

4.2 Accuracy Comparison
The error of compression is caused by merging points into subclusters, while
they belong to different clusters later.

Suppose two points  and y are compressed into one subcluster, we would like
to measure the possibility that  and y belong to different clusters in the future.
Intuitively, if their distance is bigger, then the possibility that they should belong
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to different clusters is also bigger. Therefore, for each subcluster generated by
a compression scheme, we can use the sum of distances between any of the two
points to measure if it is “good” or not. To avoid computing too many pairwise
distances, we can use the sum of distances from each point to its subcluster’s
seed as an approximated indicator of a scheme’s goodness.

Given a data set D, if D, is the set of seeds for D using a certain compression
scheme, then define set deviation

SDEV(D,D.) = Z dist(z,vmap(x,D.)),
z€D
while “value mapping” vmap(x, S) is the point in S that is closest to x, given a
data set S and a data point x:
vmap(z,S) = argminycs(dist(z,y)).

Hence if the set of seeds is D., then SDEV (D, D,) is our measurement: the
smaller it is, the better the compression scheme.
Theorem 1. If S1, Sy are two seed sets for compressing a data set D, And S;
is a subset of Sa. Then the SDEV caused by compressing using Sa is no greater
than using St .
Proof: For any point z in data set D, vmap(x,S1) and vmap(x,S2) can be same
or different. If they are the same, then dist(x, vmap(x,S1)) = dist(x,vmap(x,S2));
if they are different, since S; is a subset of Sy and the subclusters are formed by
nearest neighbor search, dist(x,vmap(xz,S2)) must always be no greater than
dist(x,vmap(x,S1)). Therefore,

Z dist(x,vmap(x,S2)) < Z dist(x, vmap(z,S1))

xeCED €D

This implies that, with high possibility, a scheme with more subclusters
should get less compression error than one with less subclusters. Similarly dy-
namic tightness compression should achieve at least as good accuracy as the
naive compression.

4.3 Time Complexity Comparison

Different compression schemes may produce different number of subclusters.
This phase involves a pass of nearest neighbor search, which is one of the ma-
jor components of the execution time. Therefore intuitively naive compression
should be the fastest. However, for some data, if we do not trim the histograms,
naive compression may take more time than sampling based schemes, although
the latter keeps more points in the memory. This happens when some attributes
have a relatively big domain. The sampling based schemes keep more points,
but the “subclusters” formed around them are tighter, therefore the histogram
information kept in each sample can be much less than in a cluster mode in
naive compression. However, once histograms are trimmed into fixed length (say,
containing 5 most occurring values), the naive scheme always takes less time.
Although these compression schemes are based on different heuristics, from the
implementation point of view it is not difficult to dynamically switch from one
to another. This makes the stream clustering algorithm more flexible so that it
can handle the variation of the stream speed or buffer space.
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5 Experimental Results

In this section, we discuss our experiments on both real and synthetic data
using the differential algorithm, so as to compare the performance of different
compression schemes. The results in section 5.1, 5.2 are produced on a Pentium
IV 1.5GHz PC with 1GB memory. The operating system is Redhat 7.2. The
experiments in section 5.3 are done on a Pentium IV 2.80GHz 1GB memory PC
with cygwin® on Windows XP, since the COOLCAT algorithm we use runs on
Windows platforms.

First we demonstrate the efficiency, accuracy and scalability of the algorithm
by doing incremental clustering and comparing with the regular k-modes al-
gorithm (our own implementation). In the second suite of experiments we do
differential clustering, by sliding the “current window” along the data stream to
produce clusters for each window. At last we compare our incremental results
with the COOLCAT algorithm.

If not specified, we run each algorithm 5 times (4 times using randomly
selected initial points, one time using the most dissimilar ring modes as initial
clusters) for each parameter setting and compare average value.

5.1 Incremental Clustering

In this section our algorithm runs in incremental mode(step 5 of the algorithm
is omitted). We use the 10% KDD Cup 1999 data*, an ascii data set with 494021
points and 41 features (continuous features are discretized).

To compare with K-mode we set k=8. The sampling based schemes both use
200 points as the sample size. The D-sampling scheme divides each cluster into
3 groups.

Figure 4 shows the performance of different compression schemes. Because
even the optimal clustering result will have a positive dev(cls),we use dev(cls) —
dev(optimal) to measure compression error(it may still contain errors due to
other reasons such as a bad initialization, but it is a reasonable approxima-
tion). Since we do not know the optimal modes, we use the best result by
regular k-modes to approximate them. We can see in the upper plot that E-
sampling scheme achieves least average compression error since more subclusters
keep more information. D-sampling has same number of subclusters, but during
clustering the ever-changing densities cause the redistribution of sample spaces.
Some dissimilar points may have to be merged at one time, and when the cluster
gets more space, they cannot be split so the usage of the space is not optimal.
Therefore, in some cases, the smallest space a cluster gets in the whole process
decides the accuracy. The error for 5k (points) buffer is smaller than the 10k
case in that the number of subclusters is the same (e.g., 200 for E-sampling) for
both cases, so 10k buffer implies larger compression ratio.

Also important in stream processing is the rate at which points are processed.
In our experiments we are able to process more than 60000 points per second.
From figure 4 we can see that the naive compression achieves faster processing

3 Available at http://www.cygwin.com
* Available at hittp://kdd.ics.uci.edu/databases /kddcup99/kddcup99.html
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rate, but larger error. This matches our analysis in section 4.2 and 4.3. Accuracy
and processing rate are a trade-off. Therefore when data flow rate is high we can
switch to naive scheme to process all the data, and when flow rate drops we
can switch back to more complicated schemes for better accuracy. The figure
does not show the effect of compression spaces (the sample size is the same for
10k and 5k buffer). However our other experiments shows that for equal-size
sampling, larger buffer space tends to get better accuracy.

Hl naive

Avg. ompression error

Hl naive
Il espl
[ dtight
[ dspl
[ regular

Buffer size

Fig. 4. Incremental clustering, comparison for kdd data: compression error and pro-
cessing rates (records per second).

With this data set, our stream-based algorithm finds clusters with good qual-
ity in much less time than the regular k-modes algorithm. The accuracy mea-
surement of best result achieved by the equal-size sampling is only 0.7% worse
than that achieved by the regular k-modes. Naive and sampling based schemes
all achieve significant speedup. The dynamic tightness scheme doesn’t provide
much speedup. One reason is that the scheme is probing for an appropriate
tightness threshold (0.60 initially, which means the frequency of the MOV value
for each dimension is greater than 40%), and that it might need to do compres-
sion multiple times. Also, testing if each cluster is tight and picking points to
compress introduces additional overhead.

5.2 Differential Clustering

Although the data sets reside on local disk, we treat them as if they come from
a stream. To do differential clustering, we divide the data into many differential
units, and set the size of one “current window” as five differential units. We slide
the window by removing the effect of one oldest differential unit and adding a
new differential unit.
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Synthetic Data To show that our compression schemes and algorithm can
detect the changes in a data stream, we apply our differential algorithm to a
synthetic data set.

The synthetic data generator we use is similar to the one in [5] and [8], but
it outputs categorical data. The generator first chooses a set of means and vari-
ances from the given range, then randomly draws points from multiple Gaussian
distributions, and finally rounds numerical values to closest integers, so as to
make a “categorical” data set. We also convert the original means of the distri-
butions into integer values and use them as the “true” modes. Because of the
conversion, these modes may not be the optimal modes of the data set. However,
they should give us guidance.

Obviously, our stream based algorithm will perform well on uniformly dis-
tributed data. However, in real life, a stream data source may not be uniformly
distributed, so we created a “skewed” data set. Basically we generated 4 data
sets with 4 sets of means and variances. The ranges of these 4 sets of means
partly overlap. Then we concatenate the 4 data sets together to get a “hybrid”
data set. This data set contains 100000 points and the number of features is 20.
Each sub data set has 10 clusters. And we set the number of clusters as 10 when
we do clustering. The current window size is 10000 points, and each differential
unit contains 2000 points. The two sampling based schemes uses 200 points as
sample pool size.

Our algorithm outputs a set of modes for each current window (first window’s
result is generated after processed 10000 points. After that, a result is generated
when the next 2000 points are received). Since it is very difficult to visualize the
20-dimensional modes S, we take the four sets of “true” modes S, Ss, S3 and
S4, and compute SDEV (S,S;),i = 1,2,3,4. Figure 5 (left) shows four curves
generated by one run of the algorithm based on the D-size sampling scheme,
and each curve is a SDEV(S,S;) w.r.t. the end of the current window. Figure
5 (right)shows a different presentation of the generated results: each point in
the plot is the average distance from a current window’s modes to its previous
window’s modes. For other compression schemes, we get similar results.

2s5f —— SDEV(S,S1) 8
© SDEV(S,S2)
-4 - SDEV(S,S3) 7
- SDEV(S.S4)
20
g 6
- Sk
- 19 oo 0200000
101 3
1 2
st Sog
1
o o *
o 5 10 2 a 6 8 10
End of current window , ;o4 End of current window , g+

Fig. 5. Evolution detection using D-size sampling. (Left) comparing result modes with
predefined modes; (Right) pairwise distance from current modes to previous modes
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We can see that in the left figure, from 10000th point position to about
24000th point position, the clusters generated are pretty close to S, while
SDEV(S,S2), SDEV(S,S3) and SDEV (S,S4) are much larger. Then there
is a “mixed phase” where the current window contains data from both the first
and the second distribution. The clusters become dissimilar to both “true” mode
sets, and then gradually go close to S,. Similarly, the clusters become close to
S3 and S in later phases. In the right plot, the peaks approximates the position
where a window containing data purely from a new set of modes. It is obvious
that our algorithm can detect the evolution in underlying data and generate
clusters based on the current window. Plots like the one to the right can visual-
ize the changes of modes and are more useful in practical applications (while we
do not know the “true” modes). We can also generates plots on modes changes
with longer steps (say, distance across 10 current windows), changes of tightness
of clusters, changes of the sizes of clusters, and so forth.

Kdd Data For the KDD 10% data set, the differential unit size is set to 4000
points, and the current window size is 20000 points. Number of clusters is 10,
and sample size is 200 points.

In figure 6, the regular k-modes algorithm only runs on the last current win-
dow of the data set and chooses initial points from it, while the differential
algorithm has to use modes from previous current window. The differential al-
gorithm based on our compression schemes achieves worse accuracy compared
with the regular k-modes algorithm, however, the regular k-modes algorithm has
to select starting points from each current window and uses multiple iterations,
hence is not practical in a stream environment.

B e e
o R N ®

Avg. distance to mode

o o N © ©

naive  espl  dtight dsize  regular
Compression schemes

Fig. 6. Differential clustering error comparison, kdd %10 data. Compression schemes
(from left to right): naive; equal-size sampling; dynamic tightness; D-size sampling;
regular k-modes

5.3 Comparison with COOLCAT

COOLCAT [4] is an entropy-based algorithm. It is similar to the LIMBO al-
gorithm [3] in that they optimize the same objective function, and it “exhibits
average clustering quality that is close to that of LIMBO” [3], although LIMBO is
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more stable. In this section we compare our incremental algorithm with COOL-
CAT.

Interestingly, although the k-modes algorithm and COOLCAT both tend to
put “similar” points into the same clusters, their assignment of new points into
existing clusters can be different. In brief, the reason for the disagreement is
that k-modes only compares new point with the MOV, while entropy is also
affected by the distribution of other possible values. This makes COOLCAT to
incur much heavier computation cost than the k-modes. On the other hand, k-
modes guarantees that most dimensions’ MOV occurrences get increased, which
decrease the part of entropy generated from these dimensions. Our experiment
shows that k-modes can generate pretty good expected entropy of all the clusters.

We adopted the error measurements used in [4]. In brief, the expected entropy
of the clusters is defined as oy 471

E(cls) = Z %(Z Z PyjilogPyji)
k

Jj=0ledomain(j)

where Pyj; is the probability in cluster k that jt* dimension takes value 1. The
smaller E(cls) is, the better the clustering results.

Table 1. Results on kdd 10% data (avg. of 5 runs)

Setting Coolcat E-spl

m 0% |20% |40% | 40% |N/A

buffer (points) | 10k | 300 | 300 | 10k | 10k
sample (points)| 100 | 100 | 100 | 100 | 200
Time(seconds) |4913 | 337 | 411 |15282| 89

Entropy 9.039(9.039|9.208(4.129 [4.183

Table 1 shows the results on a binary version of KDD 10% data. Our al-
gorithm uses the equal-size sampling scheme. Due to the entropy computation
overhead, COOLCAT runs more efficiently with binary data. Therefore we con-
vert the numerical values into binary categorical values according to [4]: for each
numerical attribute, a median value (across the whole data set) is taken and
any value lower than average is recorded as 0, otherwise as 1. The number of
clusters is 2. The COOLCAT executable randomly reorders the points in its each
run, and each run of our algorithm processes the points according to the order
generated by COOLCAT setting one (first data column in table 1). To be fair
to COOLCAT, the time to compute the expected entropy at the end is included
in the execution time of our algorithm. We use the dissimilarity ring model to
initialize the clusters. All the starting points are selected from the first window of
data. The parameter m from the COOLCAT algorithm is the percentage of re-
processed points. The sample used by COOLCAT is for initialization: it draws a
sample from the whole dataset, and the most dissimilar points are selected from
this sample as the initial modes (so it scans the data twice).

Since we only have the COOLCAT executable, we can only measure the
execution time of COOLCAT by recording the process running time, and it may
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not be completely accurate. However, from the table we can see our algorithm
uses significantly less time to process the data set (the timer error thus can be
ignored). The COOLCAT algorithm seems to be faster when buffer size is small
rather than big. Hence we present results for different settings.

The COOLCAT algorithm runs significantly slower than our algorithm in
all the settings. Although the goal of our algorithm is to minimize the average
distance from each point to the corresponding mode, it does achieve pretty good
expected entropy compared with the COOLCAT algorithm. For COOLCAT,
bigger m and larger buffer size make cluster quality better, but the execution
time is longer. Only in the last setting does the COOLCAT algorithm achieve
an entropy slightly better than ours, but the execution time is about 170 times
longer than ours. We believe that speed is very important in processing data
streams. Since our algorithm runs in much shorter time, it can be used to process
data arriving at a much higher rate.

6 Future Work

We plan to use the differential algorithm to analyze real data sets and try to
find the time-related changes of models in an efficient way.

Another interesting problem is how a stream mining algorithm should react
when a stream gets turned “off” and “on”, or rather, when there is a long period
of time that no data arrive. The old model (compressed before this long pause)
may get less important, or have different meanings, or expire completely. A
stream mining algorithm should be able to handle these situations.

The stream processing also requires DBMS level supports for stream query-
ing, data caching, incoming rate variance flattening, and so forth.

7 Conclusion

This paper proposes a differential categorical stream clustering algorithm based
on several compression schemes. Categorical data stream clustering is a chal-
lenging problem due to the inherent complexity of categorical data processing.
To process high speed streams, algorithms need to achieve high processing rate.
Our algorithm can generate an approximate clustering result on the fly with
reasonable accuracy. The differential clustering function is very effective in the
periodic monitoring of a stream containing a large amount of data. Accuracy and
processing rate are a trade-off to our compression schemes and one can switch
among them to satisfy the application’s requirements.
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Abstract. Change detection in continuous data streams is very useful
in today’s computing environment. However, high computation overhead
prevents many data mining algorithms from being used for online mon-
itoring. We formalize the change detection problem and propose several
metrics to evaluate change detection algorithms. We then present a novel
low-cost approach to detect changes of models in streams and demon-
strate the advantages of this approach using subspace cluster monitoring
as an example. Our experiments on both synthetic and real world data
show that this approach can catch more changes in a more timely manner
with lower cost. The same approach can be applied to different models
in various applications, such as monitoring live weather/environmental
data, stock market fluctuations and network traffic streams.

Keywords: Stream, change detection, low-cost, s-monitor

1 Introduction

With the development of network, data management and ubiquitous computing
technology, data streams have become an important type of data source and
attracted many people’s attention [2,6,9,8,11]. A data stream is a sequence of
data points which usually can only be read once and does not support random
access. Generally the data points are time ordered. Change detection in data
streams has become a popular research topic in the data mining community [10,
12,13, 3,4, 16]. Weather changes monitoring and stock quotes watching are ob-
vious examples.

Although stream data change detection is very useful, very often its difficulty
prevents it from being widely used. Change detection usually involves two steps:
model generation and model comparison. We call this a “compute-and-compare”
approach, or “C&C” for short. This approach repeatedly generates models from
the data stream and then compares them to see if there is any change among
these models. This process incurs more effort than mining one model. In some
cases, because of the inherent complexity of the models, the algorithms to gen-
erate them cannot process data at a sufficiently high rate. Every time we check
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the stream for a possible change, we have to first call the algorithm (possibly
with the help of a huge buffer) and then do the model comparison. Therefore
we may fail to detect any short-lasting change, and even if we do discover the
change, it may be too late.

In this paper, we propose a new approach to tackle this difficult problem. By
putting ”monitors” into the stream of the data, we try to avoid the expensive
step of model generation as much as possible.

An analog of our approach is the deployment of sensors for environmental re-
search. People put sensors in a river to monitor the water temperature. Although
it might be interesting to know the temperature changes in any location, only
a few sensors are placed in the most representative locations. Hopefully, these
sensors can reveal most of the knowledge people want to discover, although they
do not cover all the locations in the river.

Our approach treats a data stream like a river. We make use of any knowledge
to put “monitors” at the locations that most likely reflect the change. We call
this type of “monitor” stream-monitor, or s-monitor. An s-monitor with respect
to an expensive data model is a simple model that costs much less to compute,
and its change reflects the change of the expensive model.

In brief, our contribution in this paper includes the following:

1. We define the concept of change and propose metrics for the evaluation of
change detection algorithms.

2. We propose a low-cost approach for change detection for expensive models:
putting s-monitors into data streams, i.e., when model generation is expen-
sive, we can limit our focus to “important” aspects of data only and avoid
frequently generating new models for all the data.

3. As an example, we argue that subspace clustering can provide essential in-
sight to the data and is a good tool to analyze streams; and we can place
s-monitors into the data stream to handle the complexity issue.

4. We provide the data structure and the algorithm to efficiently detect the
subspace cluster changes.

5. Our experiments show the effectiveness of our algorithm for real world data.

This paper is organized as follows. Section 2 reviews the related work on
change detection. In section 3 we define the problem of change detection and
propose the framework of our method. Section 4 discusses our approach in detail
using subspace change detection as an example. Section 5 presents experimental
results on synthetic and real world data. Section 6 addresses the future work
and section 7 concludes the paper.

2 Related Work

Recently more and more attention has been paid on mining the evolution of
the data [13,3,4,16]. Aggarwal [3] uses the velocity density estimation concept
to diagnose the changes in an evolving stream. Wang et al. [16] use ensemble
methods to detect concept drift. Aggarwal et al. [4] also propose a framework
for clustering evolving numerical data streams with the use of both an on-line
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algorithm and an off-line processing component. Kifer et al [13] lay theoretical
foundation by designing statistical tests for one dimensional data. Our approach
is different from previous research in that we try to tackle the complexity problem
by strategically choosing part of data to process and/or doing low-cost model
processing.

Subspace clustering algorithms [5,14,15] are very effective in high dimen-
sional data sets. The MAFIA algorithm is one such algorithm. Like many other
subspace clustering algorithms, it divides each dimension into bins and find dense
1-D bins first, then uses them to generate 2-D grids and find dense ones, then
goes up to three dimensions, and so forth. This process requires multiple passes
of data. Theoretical results [7] show that in high dimensional space (could be as
few as 10-15 dimensions) “nearest neighbor” can be meaningless, which causing
difficulties for many clustering algorithms. High dimensional data sets often con-
tain many outliers, which can result in poor accuracy for partitional clustering
algorithms. Also, in many cases it is unrealistic to assume a certain shape for the
clusters, which some algorithms do. Subspace clustering algorithms can capture
arbitrary shapes of clusters, and the results do not depend on the initialization
of the clusters. The generated model is easy to interpret.

For stream analysis, subspace clustering’s high complexity is a major prob-
lem. We use subspace cluster monitoring as an example to demonstrate how to
integrate low-cost s-monitors with expensive model generation algorithms.

Aggarwal et al. [1] propose a framework to maintain “fading cluster struc-
tures” for data streams and compute projected clusters for current and historical
data. This work examines subsets of dimensions as we do, but it is different from
our research. We focus on detecting changes from sliding windows of data, rather
than designing a clustering algorithm. Our subspace clustering example uses low-
cost s-monitors together with an off-the-shelf algorithm to detect the changes in
the data.

3 Detecting Changes without Model Generation

3.1 Definitions and Metrics for Change Detection

Although there has been some interesting work on change detection, basic ques-
tions, such as what is a change and how to measure a change, have not been
formally addressed by previous work. We believe that the effort of formalizing
the problem and proposing corresponding metrics to evaluate change detection
algorithms are very important for the long term development of this domain.
We discuss this problem in the context of a data stream with a sliding win-
dow (figure 1). A “current window” (the shaded rectangle in the figure) slides on
the data stream. Here a window is the portion of data in the stream that enters
the system within a certain range. This range can be defined by a time interval,
or a certain number of points. As time goes by, the current window is changing,
and any two windows W; and W; may or may not overlap. The C&C approach
generates models for different windows and if they are different, then the mon-
itoring system will report a change and invoke change handling routines. The
end of each current window is essentially the point where the stream is being
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checked (i.e., checkpoint). To be general, we do not require the set of “current
windows” to cover the whole stream. The models to be compared do not have to
be models generated from consecutive windows — models from any two windows
can be compared as long as the application requires. However in the rest of the
paper we assume that we always compare a model with the one generated from
its previous window. We call the distance between the end of these two windows
as the “check interval”.
Check

l——— Tnterval ——— |

<—Wi—> <—wj—>

OO Oo
o &)

Fig. 1. Data stream, current window and check interval
When we talk about changes, we refer to the difference between an earlier
state and a later state. In data mining applications, the state is essentially the
model people are interested in. Therefore, a change is always associated with a
type of model.

Definition 1. Change: A change is defined with respect to a certain model. A
change of model implies that there are sufficient differences in the model before
the change and the one after the change, so that the descriptions of these two
models are different.

The “model” in the definition includes not only the type of the model but
also the corresponding parameters, which decide the accuracy, error bounds, and
so forth.

Definition 2. Detection Delay: the time from the point when change happens
to the point when the change detection algorithm recognizes the change.

Definition 3. Detection Rate: the percentage of changes that are actually cap-
tured by the change detection algorithm.

Check interval, detection delay and detection rate are correlated. A long check
interval results in long detection delay, and possibility of missing some changes.
Obviously, a good change detection algorithm should have short detection delay
and high detection rate.

Definition 4. Sensitivity: The minimal size of change that can be captured by
the algorithm.

While change, detection delay and detection rate can be defined for general
problems, sensitivity is an application specific concept. The exact meaning of
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sensitivity varies with the applications even for the same model. Let’s consider
change of two-dimensional clusters. If we are more interested in the area of the
clusters, then can define the size of change as the sum of non-overlapped areas
between old clusters and new clusters; if what we are interested is the location
of clusters, the size of change can be defined as the sum of distances between
old cluster centers to their closest new cluster centers.

Once the metric of change has been decided, we can use the correspond-
ing sensitivity metric to evaluate change detection algorithms. For instance, we
can tellthat an algorithm A is superior to algorithm B if it guarantees shorter
detection delay with same performance on other metrics.

There are many problems to study in the change detection domain. Here we
did not consider the “false positive” case, i.e., we assumed that all the changes
reported by an algorithm are actually changes. What we discussed above are
the “first order” concepts, such as the metric of change. There are higher order
concepts such as the velocity of the changes, or even the acceleration of the
changes. These higher order concepts can be defined in many different ways, but
are beyond the scope of this paper.

3.2 Change Detection without Knowing Current Model

Table 1 contains some notations that are used in the rest of the paper.

M |the expensive model

ms |the set of s-monitors
C1I, [the check interval for M
C1I; the check interval for ms
C\u |the cost of generating model M and check it for changes
Coms |the cost of checking s-monitors.

C. |the cost of creating monitors.

C |the algorithm to generate M for a window

Table 1. Notations

[

While a stream is flowing, our change detection approach analyzes the sliding
windows in the following steps. We use variable nms to denote the number of
s-monitor checkpoints since last generation of M. Here CI;, CI; and r are user-
adjustable parameters. Their functions will be explained later in this section.

1. Run C to the current window and get its corresponding model M.

2. If there is a previous value of M, compare the current M with the old one.
If there is a significant change (meaning the difference between two models
reaches a threshold), go to step 6.

3. With the insights provided by M, define s-monitors and deploy them into
the data stream. These s-monitors are easy to compute, and the change of
ms will reflect the change of M (however, a change of M may not necessarily
cause the change of ms). Set nms = 0.

4. If nms > r and the time since last M checkpoint reaches CI;, go to step 1.
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5. If the time since last checkpoint (either M or ms) reaches CI,, recompute ms
and compare with the previous s-monitor model. If a significant change of ms
is detected, report the change and go to step 7; otherwise set nms = nms+1
and go to step 4.

6. Execute change handling routine and then go to step 3.

7. Execute change handling routine and then go to step 1.

In the last step, when a change is detected, some predefined steps are taken to
handle the change. These steps can include starting C as early as possible (since
the system resource may not allow the immediate launch of the algorithm) to
generate new models, or other diagnostic routines.

Figure 2 shows two example scenarios in which we can benefit from our ap-
proach. Suppose we are watching a one-dimensional data stream. The C&C ap-
proach generates expensive models M1 and M2, but our approach can check the
stream more frequently using ms. The arrows in figure 2 indicate the checkpoints
for both models. In figure 2(b), after getting M2, the C&C approach detects the
change, while we can do after ms3. In figure 2(a), because the stream changes
back to the initial state before M2 is obtained, no changes can be detected by
C&C, while we can still report a change after ms3.

(a)

T I i A 1 g
| | | i
M1 msl ms2 ms3 Alarm M2 time

(b)

g

1 time
msl ms2 ms3 Alarm M2 Alarm

»

Fig. 2. Change detection examples

Obviously, to best discover the underlying changes, the third step is very
important. What are the requirements of ms? To what extent can we benefit
from those s-monitors? Below we show some analysis.

3.3 Detection Delay
Assume that changes can happen at any time point, with uniform probabilities.
We test ms for r times after run C once. For the sake of simplicity we assume that
there is no “failure to detect”, i.e., if a change happens, the following checkpoint
(no matter ms or M) will capture it. We will discuss “failure to detect” a little
later. Obviously, CI; >= Cjy.

For the C&C approach, let’s look at the period of time CI; starting from
right after one checkpoint (figure 3(a)). A change can happen any time within
this period and it will be captured at the end of the period. Thus the average

detection delay is
e 1
—(CI — = _(OTF, 1
| C’I,(Cl z)dz 5Ol (1)
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(a) Change

— cr, —

Check, Alarm

Change
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Fig. 3. Detection Delay

For the s-monitor approach, let’s look at the time interval of length C, 4+ rCI, +
Cw, starting from right after one checkpoint, as shown in figure 3(b). First C.
time is to create the s-monitors. A change will be captured at the end of the
next sub-intervals of length C'I;. On the other hand, if it happens after the
r*" s-monitor checkpoint, then it cannot be detected until a new model M is
generated. Therefore the average detection delay is

OACL 4+ CI, —x ol Cl, —x
——dr + (r 1) —dx
0 rCl; + C. + Cyy rCl; + C. + Cyp

C
M CM - X
——— __d
+/0 rCL +Cot Cn "
_(Ce+CL?*+ (r—1)CI2Z+C%,
N 2(rCI; + C. + Cur)

2)

Now we show that by choosing appropriate » and CI,, we can achieve much
smaller average detection delay than the C&C approach.

Our pre-condition is that it costs a lot less to create or check a set of s-
monitors than to compute M. Based on this it is safe to say C. << %CM and
Cm << CM Then we can set CI; = maz(C.,Cp) and it satisfies CI; <<
—CM Now if we choose r > 3, then we can have CI;(1 + %) << Cpr. We can
use this conclusion in equation 2 and get:

(Ce+ CI)? + (r —1)CI? + C3% < (2CL)% + (r—1)CI? + C3,
2(rCI; + C. + Cyup) 2(rCI; + C. + Cyp)
(r+3)CI2 +C.Cu +C%;
2(rCI, + C. + Cur)
rCuCI, + C.Cy + C%
2(rCI; + C. + Cur)

1 1

<<

Therefore, the average detection delay of the s-monitor approach is significantly
less than the C&C' approach.
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3.4 Detection Rate

In the detection delay analysis we assume that every change (once happened)
can be captured by the following checkpoint. This ideal case will not happen in
most of the applications. Sometimes it is difficult to find all the possible changes
using s-monitors, and the C&C approach may also miss a lot of changes due to
the effect shown in figure 2(a). We can only say that in some cases the s-monitor
approach will have a guaranteed high detection rate, while in some other cases
the C&C approach can have superior detection rate.

The scenario we describe is as follows. The average change rate is z. Here the
“change” is with respect to the state at the last M checkpoint. And the average
lifetime for a change is p. Assume that at the checkpoint, if there is a change
present (meaning it happened and its lifetime did not expire), M can definitely
capture it, while ms has 6% probability of detecting it. Here 6% <= 1.

Consider the situation when pu < Cyr and p > 2C1T,(although generally Cs
can be either time cost or space cost, here we consider it as a time cost). Then
the performance of the s-monitor approach will depend on §%. When 6% > ﬁ,
we can prove that the s-monitor approach can capture at least as many changes
as the C&C approach.

Detectable
Range

Check, Alarm
Partially Detectable
Detectahle Range Range (b)

M| s I

c i

T

c . e . Ll
Check  Check, Alarm Check

e C 1201, ——]

Fig. 4. Detection Rate

For the C&C approach, as in figure 4(a), if a change (change 4 for instance)
happens too early, it cannot be detected at the end of the CI; interval. Therefore
the detectable range for the C&C approach is of length p. While in the period
of time C1I;, there should be altogether xCI; changes that happened. Therefore

the detection rate is
T p

.’ECII h C_Il

For the s-monitor approach, we can say that during the first C, 4+ rC1I; time,
0% changes can be detected, while at the last p time, 100% of the changes can
be detected. Therefore the detection rate is

z(Ce + rCIL)6% + zp S (C. + TCIs)ﬁ +p
2(C. + rCIs; + Cur) C.+rCI, +Cuy
_ C.+1CL+Cy
M Cu(C.+1CT, + Cur)
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1 1
T Twn Ol @
This analysis shows us that when the changes are relatively short-lived, the
s-monitor approach has a better chance to achieve a higher detection rate than
the C&C approach. This is consistent with our intuition.
Detection delay, detection rate and sensitivity are three important metrics.
In practice we need to find good instances of these metrics with respect to the
application, so as to evaluate change detection algorithms.

3.5 Define S-monitors from Expensive Models

The relationship between s-monitors and expensive models is similar to the re-
lationship between a sample set and the original data population. However,
defining s-monitors with respect to an expensive model is not trivial. Below we
provide several starting points to define s-monitors.

Define s-monitors from the building blocks of the model. Some ex-
pensive models are generated layer by layer through multiple iterations. A layer
at a low level, or the intermediate result in an earlier iteration can be a set of
s-monitors.

Define s-monitors from attributes of the model. Although some models
are expensive to compute, they may have some attributes that are easy to check
and a changed attribute implies a changed model. This kind of attribute may
serve as s-monitors.

Define s-monitors from statistics/summary of data. There are some
well-known statistics that are often used to describe the data distribution, such
as mean, standard deviation, and histograms. If such simple statistics can reflect
the change of the model, then they can be candidate s-monitors.

Use domain knowledge or historical results. Domain knowledge or
historical information can often tell us where changes are most likely to happen,
and what kind of changes are more important. The analog of the former case
is that people usually place surveillance cameras in the doorway where people
usually enter/exit the building, while few like to watch solid walls.

4 Detecting the Changes of Subspace Clusters

In this section, we demonstrate our approach by applying it to change detection
for subspace clusters.

4.1 Sensitivity Definition

We first want to define what sensitivity is in our application scenario. We are
looking for dense subspaces in data windows (a subspace with density higher than
threshold is called “dense”, otherwise “sparse”). If between two checkpoints, a
subspace turns from dense to sparse or vice versa, then it is a change.Therefore
the sensitivity of the change can be defined using the size of the smallest sub-
space. For example, for a d-dimensional data set, if a subspace clustering algo-
rithm divides each dimension into bins so that it divides the whole data space
into d-dimensional grids, then the change within one d-dimensional unit is the
smallest change the algorithm can detect.
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4.2 Monitor Selection

We use the MAFIA algorithm [14] as the model generation algorithm C. The
subspace clusters make up the high cost model M.

Our goal is to discover a change, even though there may be 10 changes
happening altogether. As long as we can detect one, our goal is achieved, because
it will cause the change handling routines to be executed. Therefore we focus
on the building blocks of subspace clustering — the candidate subspaces, and
choose some of them as our s-monitors. Dimensions and bins essentially divide
the whole data spaces into multidimensional grids and subspaces are no more
than grid cells or a collection of grid cells. In the extreme, if we can set each
grid cell as an s-monitor and watch each s-monitor in time, then we can detect
any change. However, that could be more expensive than C itself. We need to do
things fast, and also with limited system resources (such as memory). Therefore
we only choose a subset of the grids/collection of grids, and try to choose the
ones that are most likely to change.

Our heuristic is that changes of the subspace clusters are most likely
to happen around previous clusters. This assumption implies that changes
gradually happen, i.e. it is more likely to see clusters moving a short distance, or
expanding/shrinking from original size, than emerging from a totally sparse area.
This assumption is often true in the real world, especially when the check interval
is short. Based on this assumption, when we define s-monitors for subspace
clustering, we keep track of the candidate subspaces generated by MAFIA and
record their density counts. When the number of such spaces is too large, we
sample them. When we do the sampling, we allocate more spaces to highest
dimensional subspaces (so that the sensitivity of the detection can be higher)
and lowest dimensional subspaces (so as to catch more “big” changes), while the
subspaces whose dimensionality is in the middle get less space. We call this the
“two-ends” strategy. By doing so, the detection sensitivity of our approach is
bounded by the highest number of dimensions that M has checked last time. We
also tried other sampling strategies such as random sampling, sampling in favor
of high or low dimensional subspaces, and choosing subspaces whose density are
the closest to the threshold. Our experiments show that the “two-ends” strategy
works the best to the data sets we used. Due to page limitations we do not report
the results for other strategies.

For the selected subspaces, we record how far their densities are from the
threshold. Then for the next window, we can see whether there is an s-monitor
density change by scanning the data once.

Since we know the candidate subspaces in every dimension, we use a prefix
tree to accelerate counting. Each node’s key is a pair of values, i.e. dimension
number and bin number. Each node has two pointers, descendant and sibling,.
Figure 5 shows an example. This prefix tree contains two 4-dimensional subspaces
{(1,3) (8,4) (15,4) (18,1)}, {(1,3) (9,2) (15,4) (18,1)} and one 5-dimensional
subspace {(1,3) (8,4) (9,2) (15,4) (18,1)}. Dashed lines point to sibling and the
solid lines point to descendants. Each path from root to leaf is an s-monitor.
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Fig. 5. Prefix tree containing three subspaces

4.3 Complexity Analysis

Using a prefix tree can substantially reduce the number of comparisons in the
counting process. In the above example, without the prefix tree, the given sub-
spaces require 26 comparisons altogether (for each bin we have to compare the
two boundaries to know if the point falls within it). With the prefix tree, since
the nodes are sorted by the order of dimension number and bin number, we
usually do not have to reach the leaf level of the tree to know that a point does
not fit in any of the subspaces. Therefore, suppose that a point can stop at any
node in the tree with equal chance, the average number of comparisons is only
10. This is a luxury MAFIA or other exhaustive subspace clustering algorithms
do not have since they do not know a priori what subspaces they are watching.
Another reason our s-monitors can save a lot of time is that they only need to
scan the data once, while MAFTA has to run multiple iterations and scan data
multiple times.

In our experiments (results reported below), the number of s-monitors is set
to 50. The number of s-monitors is essentially bounded by the time and space
the end user wants to spend on s-monitors. For a window with n d-dimensional
points and m s-monitors, the time cost of s-monitor is O(nmd), and the space
cost is bounded by md,,qs, Where d, 4, is the maximum number of dimensions
an s-monitor has. The maximum number of s-monitors is thus bounded by the
resources, and users can choose a number they feel is sufficient. In our exper-
iments, we choose 50 s-monitors because they work well in terms of detecting
changes, and they incur little cost. When necessary the number of s-monitors
may be dynamic.

5 Experiments

We use the MAFIA algorithm as our subspace clustering algorithm. The only
change we made is to let it record some intermediate results generated by MAFIA
and use those to help our processing.

Here we apply our subspace change detection algorithm to a synthetic data
set and a real data set to demonstrate its performance. The experiments are
performed on a Pentium IV 2.80GHz PC with 1GB memory, running Redhat
7.2. Both data sets are in binary format.

5.1 Synthetic Data

We create a synthetic data set to demonstrate the effectiveness of our approach.
We fix a density threshold 7 = 10% and set the number of dimensions to 20.
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Then we create 10 subsets of data with the following predefined subspace cluster
sets (we call them “seed sets”):

1. Base set: seed set 1 contains 4 5-dimensional clusters Cly to Cly.

2. Change of one dimension: seed set 2 contains Cls to Cly from set 1, and
another cluster Cl] obtained by changing one dimension of Cl;.

3. New cluster: seed set 3 contains all the four clusters from seed set 2, and a
new cluster Cls.

4. New cluster with higher dimensionality: seed set 4 contains all the five clus-
ters from seed set 3, and a 6-dimensional cluster Clg.

5. Removing a cluster: seed set 5 contains Cl;,Cl2,Cly and Clg.

We use each seed set to generate 2 data subsets, each with 100000 points. The
number of points in each predefined clusters is above 15%. Within each subset,
data points in subspace clusters and not in clusters are randomly mixed together.
Then we concatenate these 10 subsets into a data set and use it to simulate a
stream.

In practice we need to set the check interval according to the stream rate.
One extreme is to check the stream whenever it is possible, that is, once a check
is done immediately start the next one. But in many cases, the check is done
with certain idle time — i.e., the check interval CI is larger than the execution
time of the check process and there is some delay between every two checkpoints.
Therefore the performance value of the algorithm depends on the value of CI;
and CI;. We arrange an M checkpoint at the end of each of the 10 subsets,
both for the C&C approach and our s-monitor approach; and we also set r=4,
so that we can put 4 s-monitor checkpoints before generating and checking M,
and the distance between two consecutive checkpoints is 20000 points. Once an
ms detects a change, we will not perform the next ms checks; instead we just
wait until it is time to run M and generate the models. We do so because we
want to fix the position of those checkpoints so that the comparison between
the s-monitor approach and the C&C approach is fair. Even with the same data
set, different checkpoint positions may cause an algorithm to detect different
number of changes. If we arrange an M checkpoint immediately after one s-
monitor detects a change, then the rest of the M checkpoints are moved and
it is unfair to compare the number of changes our algorithm detected with the
number obtained by C'&C, because they did not check the same windows of the
data. We report the processing time Cys, Cps and C.,.

Table 2 shows the result of one execution of our algorithm. The first column
shows the range of points within which each window begins. For example, in the
first row of the table, M is generated from window 0-100k and ms; is generated
from window 20k-120k, and msy4 is from window 80k-180k. Therefore according
to the creation of the synthetic data, we expect changes to happen in the intervals
described by the 100-200k, 300-400k, 500-600k and 700-800k rows in the table.
The MAFTA algorithm confirms this, i.e., the corresponding M checkpoints of
both s-monitor and C&C approaches detect those changes. The right 5 columns
in the table show whether each checkpoint has detected changes. A “-” in the
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table means that no check is done. The first entry is “-” because there is nothing
to compare with.

The data points in each window have been randomly reordered, so that clus-
tered data and non-clustered data are mixed. This allows, for a change from
sparse to dense in subspace A, A’s density count to reach the threshold at any
time during this window. As we mentioned earlier, we consider the time that A’s
density count reaches the threshold as the time when the change happens. Ta-
ble 2 shows that s-monitors have successfully detected 3 out of 4 changes before
M does. In the row of “300-400k”, none of the s-monitor checkpoints report the
“new cluster” change. A closer look reveals that it is because the location of the
change is not covered by the s-monitors.

Multiple runs of our algorithm shows similar results to that reported in ta-
ble 2.

Points range| M {ms1|ms2|ms3|mss||Points range|M [ms1|ms2|ms3|msa
0-100k -|N|N|N|N 500-600k |[N| N | N [Y | -
100-200k [N| N | Y | - | - 600-700k |Y| N | N | N | N
200-300k |Y| N | N | N | N 700-800k |[N| N | Y | - | -
300-400k |[N|N | N | N | N 800-900k |Y| N | N | N | N
400-500k |Y| N | N | N [N 900k-end |[N| N | N | N | N

Table 2. Effectiveness: one execution of the s-monitor algorithm

Now let’s look at how much extra cost the s-monitor approach incurs (ta-
ble 3). We run our algorithms 5 times and compute the average Cps, Cps, and
C.. The column “No. M” contains the number of times M is executed in each
run, and “No. ms” is the number of times s-monitors are checked. For example,
in the first row, 0.00122 is the total time in the first run spent on 10 times of
s-monitor creation. Y C) is obtained by Y (Cp + C.) — >~ C.. Since we fix the
number of s-monitors, Cy,s has relatively small variation.

Runs S (Cu +C)|No. M| S C. | Y Cum | D> Cms |[Noms
1 14.157401 10 0.00122 (14.156181| 3.988114 34
2 14.294491 10 ]0.001212|14.293279| 4.172361 36
3 14.076228 10 10.001223|14.075005| 4.093249 36
4 14.03696 10 {0.001204|14.035756| 3.72233 33
5 14.089386 10 10.001193|14.088193| 3.711843 33
Total - 50 10.006052|70.648414|19.687897| 172
Avg. time(s) ; - |o.000121| 1.4130 | 0.1145 | -

Table 3. Cost of s-monitor (average of 5 runs)

We can see that the average running time of ms is only 8% of the cost of
M, and the space requirement is also much smaller. By adding » = 4 s-monitor
checkpoints before each M checkpoints, we only increased the processing time
by 28%, while we can detect changes much earlier. Therefore it is beneficial to
use s-monitors.
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5.2 Real Data
For the experiment with real data we use the sea surface time series data from
the TAO project ® of the Pacific Marine Environmental Laboratory (PMEL).
We selected data for the year 2003, from 17 sensors located between 155 and 180
degrees west longitude, and 8 degrees north and 8 degrees south latitude. The
data are sampled every 10 minutes (the highest frequency PMEL now provides).
This data set is not a very large data set and our algorithm can handle a much
higher data rate. We use this data set to demonstrate that our algorithm can
work well under real world situations.

We put every two months’ data into one current window and apply our al-
gorithm. We choose 50 s-monitors and set r = 4. It turns out that the subspace
clusters in this data set are rapidly changing and the changes are big. Therefore

MAFTA). Table 4 shows the average execution time of 5 runs of this experiment.
Each row corresponds to a two-month window. The “No. spaces” column shows
the number of subspaces (2-dimensional and above) checked by MAFIA (while
our algorithm checks 50 subspaces every time). For example, the first row means
that to process the data from January to February, MAFTA checks 4891 sub-
spaces, and it takes 1.2011 seconds in average, while s-monitor creation takes
0.0009 seconds and to check s-monitors takes 0.00382 seconds. Our s-monitor cre-
ation step selects subspaces from all the subspaces checked by MAFIA. Therefore
C. increases when MAFTA checks more subspaces. As shown by the table, C,
and C,,, are significantly less than the execution time of MAFTA. Hence we can
detect changes early with little overhead.

Cum(8) | Ce(8) | Cms(s) |No. spaces|Crr/Cms
1.2011 (0.0009|0.00382| 4891 314
5.186 [0.0025|0.00276| 14657 1879
0.92512|0.0007|0.00354| 3863 261
1.56046|0.0010{0.00298| 5720 524
0.89138]0.0007| 0.0032 3769 279
1.02864|0.0008|0.00412| 4290 250

Table 4. Two-month window experiment

6 Future Work

The idea of deploying low-cost s-monitors into the data space can be applied to
various applications. People often think of sampling when large amounts of data
need to be processed, similarly, s-monitors can help in many occasions when
expensive models are needed for stream change detection. We intend to apply
our approach to other types of models and to look for good s-monitors with
theoretically guaranteed accuracy.

7 Conclusion

In this paper, we first propose metrics for evaluating change detection algo-
rithms, and then present a new approach for data stream change detection, with

3 http://www.pmel.noaa.gov/tao/index.shtml
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respect to the widely used “compute-and-compare” approach. When the stream
monitoring task requires the repeated generation of complicated models, we can
interleave the model generation with low-cost s-monitor checking, so that we
can detect more changes in a more timely manner. We take subspace cluster
monitoring as an example and demonstrate the effectiveness and performance of
our approach.

8
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Abstract. Traditional data mining is a data-driven trial-and-error process. The
patterns discovered via predefined models in the above process are generic patterns.
Generally, they are often not really interesting to constraint-based real business. In
order to work out patterns that are of interest and actionable to the real world, in-
depth patterns are often essential. This type of pattern discovery is more likely to be
a business or industry domain-driven human-machine-cooperated process. The use
of in-depth patterns requires the development of a more practical methodology, than
is presently available for guiding real-world data mining. This paper proposes such a
practical data mining methodology, referred to as domain-driven in-depth pattern
discovery (DDID-PD). The main idea of the DDID-PD methodology is to mine in-
depth patterns through domain-driven iterative human-machine interaction in a
constraint-based context. Using this methodology as a basis, we demonstrate some
of our work in mining in-depth correlations in Australian Stock Exchange (ASX)
data and preliminary research on developing a quality knowledge base for
Centrelink interventions. The deployment of DDID-PD to ASX data mining tasks
has shown that the methodology is practical and has potential for further improving
the analysis of large quantities of data to identify patterns for practical use by
industry and business.

Keywords. Data mining methodology, domain-driven, constraint, interactive
mining.

1 Introduction

Traditional data mining is a data-driven trial-and-error process [1] where data mining
algorithms extract patterns from data via some predefined models. It targets fully
automated mining processes, algorithms and tools [1]. A data mining system is
expected to be an automated tool without human involvement and the capability to
adapt to external environment constraints.

However, data mining in the real world, for instance, financial data mining and
data mining in Centrelink, is highly constraint-based [2]. The constraints on real-
world data mining are represented in terms of data constraints, domain constraints,
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interestingness constraints, and rule constraints. Real-world patterns that are
interesting to business are often hidden in a large quantity of data with complex data
structures and source distribution (data constraints). The real-world business process,
problems and requirements are often tightly embedded in domain-specific information
and expertise (domain constraints). Often mined patterns are not interesting or
actionable to business even though they are sensible to research, or there exists
interestingness conflicts between academia and business (interestingness constraints).
Furthermore, the rules automatically discovered from domain-specific data often do
not make sense to business process or regulations, or they must be integrated with
other business rules so that they can be deployed into real life (rule constraints).

To deal with the above-mentioned constraints in the real world, it is essential to
cast off the superficial and capture the essential information from the data mining.
Some real experience and lessons learned in artificial intelligence and pattern
recognition [3], and integrated business intelligence for Telecom customer
relationship management and fraud control [4, 14] have taught us the involvement of
domain knowledge and even domain experts can assist with filtering subtle concerns
while capturing incisive issues and driving a practical design. Similarly, in order to
effectively mine and deploy interesting patterns from the aforementioned constraint-
based context, the involvement of domain knowledge and experts and the
consideration of constraints are essential for knowledge discovery on a neatly
definable domain problem. Combining these aspects together, a sleek data mining
methodology can be developed to find the distilled core of a problem and build a deep
domain model for advising the process of real-world data analysis and preparation, the
selection of features, the design and fine-tuning of algorithms, and the evaluation and
refinement of mining results in a more effective way. This leads to the domain-driven
in-depth pattern discovery (DDID-PD) framework.

The key ideas of the DDID-PD framework include:

(i)  dealing with constraint-based context;

(i) mining in-depth patterns;

(iii) supporting human-machine-cooperated interactive knowledge discovery; and

(iv) viewing data mining as a loop-closed iterative refinement process.

Dealing with the constraint-based context can improve the quality and
effectiveness of data mining by extracting and transforming the domain-specific
datasets in terms of guides taken from domain experts and their knowledge. In-depth
pattern mining can discover more interesting and actionable patterns from a domain-
specific perspective. In this framework, data mining and domain experts complement
each other in regard to in-depth granularity via an interactive interface.

The involvement of domain experts and knowledge can assist in developing highly
effective data mining techniques and reduce the complexity of the knowledge
producing process in the real world. A system following the DDID-PD framework can
embed effective supports for domain knowledge and expert feedback, and refine the
lifecycle of data mining in an iterative manner. Therefore, DDID-PD can benefit the
real-world knowledge discovery in a more effective and efficient manner, and support
the discovery of more interesting and actionable patterns compared with a current
data-driven data mining methodologies such as CRISP-DM [5].

Taking data mining in stock markets and Centrelink as instances, this paper
introduces some preliminary work for mining deep correlations in stock markets and
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developing a quality knowledge base on interventions for Centrelink through the
application of the DDID-PD methodology. These real-world in-depth analyses further
show that the DDID-PD methodology has potential for discovering a deep-core
domain model that adapts to complex and dynamic business processes and
requirements.

The remainder of this paper is organised as follows. Section 2 outlines the DDIP-
PD framework. Section 3 demonstrates some examples on mining in-depth
correlations in real stock markets. Section 4 explains the development of a quality
knowledge base for compliance purposes. It includes the articulation of a possible
deployment of the DDIP-PD framework within Centrelink to undertake in-depth
analysis on compliance related customer interventions. Section 5 concludes this paper
and presents future work.

2 Related Work

Many data mining methodologies have been developed in academia and industry.
They generally advocate the idea of directly mining patterns from data. Typical
theories include constraint-based data mining [2], human-centered data mining [1,7],
human-involved or guided data mining [6], and interactive mining [10, 1], and so
forth. These theories to varying degree highlight different aspects and factors, for
instance, the role of human being, in the pattern discovery process. In industry, a
typical standard is the CRISP-DM [5]. It basically views data mining as an
autonomous pattern discovery process directly from data. Its beauty is the
introduction of domain knowledge and business understanding.

DDID-PD, on the other hand, discovers knowledge from data via the involvement
and assistance of business, domain experts and their knowledge, and the interaction
between mining system and experts. It takes data mining as a kind of human-machine-
cooperated interaction in an iterative loop-closed manner. In this interaction, domain
knowledge and the involvement of business experts are essential in the overall mining
process rather than only in the steps of business and data understanding and/or mining
result evaluation. It highlights the significance of mining in-depth patterns which are
not only interesting to technicians but also business decision-makers. To make the
domain-driven data mining effective, some friendly and intelligent human-machine
interaction interfaces are essential for human-machine cooperation. In addition,
appropriate system support mechanisms are required for dealing with multiform
constraints and domain knowledge.

3 DDID-PD Framework

3.1 Fundamental concepts

In the DDID-PD framework, a collection of concepts are proposed in terms of
practical requirements from the real world. These concepts attempt to bring new ideas
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and deep thinking into the existing data mining framework, and enhance the
efficiency and effectiveness of real-world data mining.

DEFINITION 1: Generic Pattern. Refers to patterns automatically discovered by data
mining models while taking little consideration of business requirements and
interestingness.

For instance, in association rule mining, a large number of rules are often found
while most of them might not make sense to business. These rules are called generic
patterns. Another instance is stock trading strategies (also called trading rules), for
example, Moving Average (MA), discovered by financial experts. MA actually
represents a huge quantities of trading strategies. These strategies are generic rules
since they are neither specifically developed for handling certain cases nor as
effective as possible for daily trading decisions. Generic patterns may be interesting to
data miners while not generally interesting to business for taking action.

DEFINITION 2: In-depth Pattern — Refers to patterns which are highly interesting
and actionable in business decision-making. These patterns are created through
refining models or tuning parameters to optimise generic patterns. They may also be
directly discovered from data with sufficient consideration of business requirements
and constraints.

In-depth patterns are not only interesting to data miners, but also to business
decision-makers. For instance, in the afore-mentioned trading strategies, more
actionable trading strategies can be found via model refinement or parameter tuning.
We also call them optimised strategies compared with underlying strategies.

DEFINITION 3: Human-Machine Cooperation [3] — This is the in-depth pattern
discovery conducted with the cooperation of business analysts and data analysts.
Section 3.5 fits the human-machine cooperation concept into the data mining context.

DEFINITION 4: Domain-Driven Data Mining — In-depth pattern discovery is not
only a data-driven trial-and-error process, rather it is highly domain-dependent.
Domain-dependent doesn’t mean that a pattern is specific to a domain. Rather it
indicates that the in-depth pattern discovery process highlights the involvement of
domain expertise and constraints in a human-machine cooperation context.

3.2 DDID-PD process model

The components of the DDID-PD framework are shown in Figure 1. The lifecycle of
DDID-PD is as follows, but be aware the sequence is not rigid, some phases may be
bypassed or moved back and forth in solving a real problem.

P1. Problem understanding and definition;

P2. Data understanding;

P3. Data preprocessing;

P4. Modeling;

P5. Results evaluation;

P6. Based on feedback and progress of the phases from P2 to P5, it is quite possible
that each phase may be iteratively reviewed starting from P1 via the interaction
with domain experts in a back-and-forth manner for the refinement of mining
results;

P7. Results post-processing; or

P7a.: In-depth modeling on the mined results where applicable; then going to P7;
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P8. Going back and reviewing phases from P1 may be required;

P9. Deployment;
P10. Knowledge and report delivery.
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Fig. 1. DDID-PD process model

The DDID-PD process highlights four highly correlated ideas that are critical for
the success of a data mining process in the real world. They are:

(1)
(i)

(iii)

(iv)

constraint-based context, multiple types of constraints widely exist in the
domain problem and its analysis objectives,

in-depth pattern mining, it could be through another round of modeling on
the first-round results for mining patterns really interesting and actionable to
business,

human-machine-cooperated  interactive  knowledge  discovery, the
involvement of domain experts and their knowledge and the interaction
between experts and mining system in the whole process are important for
effective execution of the mining, and

a loop-closed iterative refinement process, patterns that can be deployed and
adopted for smart business decision-making are the outcome of iterative
refinement.

The following sub-sections outline them individually.

3.3 Constraint-based context

In human society, everyone is constrained by either social (environmental) regulations
or personal situations. Similarly, advanced knowledge discovery and smart decision-
making need to consider real-world aspects such as environmental reality,
expectations and constraints in the whole process. More specifically, the following
four kinds of constraints play important roles in building effective and efficient data

mining

from requirements engineering to evaluation and refinement engineering.

They consist of domain-specific, functional and environmental constraints, and form a
constraint-based data mining context [2].
e Domain Constraints: it involves domain type, characteristics (eg privacy),
business process and workflow, domain knowledge, human capability and role,
qualitative and quantitative hypothesis and conditions, etc;
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o Data Constraints: this is related to data quantity, data structures, data distribution,
data semantic complexity, etc;

o Interestingness Constraints: this is driven either by academic objectives or
business goals, or interestingness metrics covering both aspects, as well as
problem requirements and analytical goals, etc;

e Rule Constraints: involved in rule representation, rule interestingness to
analytical goals, rule explanation, rule deployment in the integration with real-
world business process and environment, etc.

All the above constraints must be, to varying degrees, considered in real-world data
mining. They are involved in the whole process of domain-specific data mining. In the
development of data mining process and algorithms, we need to think of what they
will bring to the improvement of traditional data mining, and what techniques or
system supports can be used for utilising, analysing and avoiding these constraints.
They must be closely connected to specific modeling methods, business environment,
and analytical objectives in a systematic manner, i.e., constraint-based data mining.

3.4 Mining in-depth patterns

Existing data mining methods, for example association rule mining, often generate a
huge number of patterns (or rules), but a majority of them are either redundant or do
not reflect true interestingness from a business perspective. This has hindered the
deployment and adoption of data mining in real applications. Taking trading rules in
finance as an instance, a trading rule, for example MA(sr, Ir, o), usually implies
millions of parameter combinations, i.e., rules. However, most of them are not
actionable for a specific business environment. Therefore it is essential to further
refine these rules so that more interesting and actionable rules can be discovered and
recommended for smarter and more effective decision-making. To overcome this
obstacle in deploying data mining into the real world, we need to discover more
interesting and actionable rules highlighting business requirements and objectives.
This leads to in-depth mining.

In-depth mining leads to deep models either through a further-round mining on
existing (mined) patterns/rules or in selected/refined datasets. Obviously, the
involvement of domain knowledge and constraints is often necessary for conducting
in-depth mining. More importantly, some appropriate in-depth mining techniques
should be developed in response to both technical and business objectives. For
instance, in Section 4, we illustrate some of our work results in mining in-depth
correlated patterns in the stock market environment.

3.5 Human-machine-cooperated interactive knowledge discovery

Real-world data mining should be a human-machine-cooperated interactive
knowledge discovery process rather than an autonomous system. Domain experts are
the centre of and an essential constituent of the data mining process via dynamic
expert-model interaction. In fact, they and their knowledge play significant role in the
whole data mining process such as business and data understanding, features
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selection, hypotheses proposal, model selection and learning, the evaluation and
refinement of algorithms and resulting outcomes. For instance, domain experts can
narrow down the selection of features and models, and create high quality hypotheses
and efficient constraints based on their domain knowledge (especially their experience
and imaginary thinking), which will effectively accelerate the mining process.

Instead of producing patterns or knowledge directly from data, the domain-driven
data mining methodology allows domain experts and/or their knowledge to be at the
front and centre of the mining process, and to interact with data and business via
friendly interfaces and system supports to maximize the power of domain expert
knowledge and capability in complex problem solving. For instance, domain experts
can incorporate their knowledge (especially their qualitative experience and imaginary
thinking) into data and feature selection, model analysis and building by generating
effective qualitative hypothesis and constraints on business data and problems. This
point may also be called human-centered [1, 7], human-involved, supervised or
guided [6] data mining.

As discussed above, domain-driven in-depth data mining supports in-depth analysis
with the assistance of domain knowledge. Furthermore, the mining is actually an
interaction between domain-experts and the mining system. To support the dynamic
interaction, user-friendly human-machine interfaces are necessary. The interface
needs to support domain expert-mining system dialogue, so that knowledge from
domain experts can be online and instantly embedded into the mining system and
knowledge base on demand. This will allow for the refinement, fine tuning and
improvement to the quality of the final mined rules. This makes the data mining
process and tool highly interactive and dynamic rather than fully automated as
previously imagined. For this commitment, the knowledge base including Expert
Systems, Artificial Intelligence, Pattern Recognition and Cognitive Science needs to
be involved. A good option would be to build an intelligent agents-based data mining
platform [8, 9] to support user modeling, user interaction, and the like. This is similar
to interactive mining [10, 1]. Essentially, issues such as how to support business-
oriented user-friendly and personalized interaction, knowledge representation should
be investigated in the interface and knowledge base design.

3.6 Loop-closed iterative refinement

The data mining process and its system is closed rather than open because it encloses
iterative refinement and feedback of hypotheses, features, models, evaluation and
explanations in a human-involved context. This real-world mining process is iterative
because the evaluation and refinement of features, models and outcomes cannot be
completed once, rather it is based on iterative feedback and interaction during the
whole process. It iteratively evaluates and tunes features and models based on
feedback from and the involvement of domain experts and their knowledge, and the
interaction with the domain problem.

To support the loop-closed iterative refinement, some appropriate human-
computer interaction interfaces and system supports should be designed. Again, to this
end intelligent agents [8] can play a competitive role.
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4 Mining in-depth correlations in real stock markets

Financial data mining [11] is practical but challenging in the business world, for
example stock markets are very complex. Taking the ASX as an example, there are
more than 1000 listed companies in this small market. Even though financial data
analysis has been researched for decades, more actionable data mining on this data is
still a research challenge with increasing interests from industry.

In the Data Mining Program (DMP) of Australian Capital Markets Cooperative
Research Center (CMCRC) [12], the DDID-PD framework has been developed for
mining in-depth correlations of Stock Market data. Its main function consisted of:

(i) high dimension reductions to generate a small quantity of data or rule

representatives from a huge data set or rule combinations,

(i1)) human-machine-cooperated interactive refinement to refine correlation

coefficients based on domain-specific knowledge and objectives, and

(iii) in-depth pattern discovery to obtain the interesting correlations.

The correlation pattern mining in the stock order stream targets patterned
interesting and actionable information for stock traders. Specially, we observer the in-
depth correlation mining in stock market data to aim at finding correlations between
stocks, searching correlated patterns from existing trading rules developed by
financial experts in order to develop more actionable trading rules, and discovering
correlated relations between trading rules and stocks.

In the following, we will present some results in utilising the DDID-PD framework
to mine correlated stocks, in-depth trading rules, and trading rule-stock correlations
based on ASX stock data.

4.1 Mining correlated stocks

In stock markets, for instance the ASX, brokers and retailers trade hundreds of stocks
every trading day. It is a common hypothesis that there may be some form of
correlation existing among stocks from the same or similar sectors, or belonging to a
shared production chain. A typical example is pairs trading strategy. Pairs trading
involves the purchase of one security while simultaneously selling (or selling short)
another security when a pair of highly correlated securities deviates from the normal
relationship between them. Correlation metrics as well as business constraints are
considered in analyzing finding the paired stocks in a stock market. The following
outlines the basic idea of the correlated stock mining algorithm.

ALGORITHM: Mining Correlated Stocks

C1. Calculating the coefficient p of two stock;

C2. Determining the scope of p interesting to real trading through cooperation
between miners and traders via considering other domain-specific aspects;

C3. Evaluating the correlation between stocks via some additional domain-specific
elements;

C4. Recommending correlated stocks.

In order to testify to the effectiveness of mined correlated stock pairs, a Pairs
Trading strategy was developed and used to trade in the historical market orderbook.
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Using the ASX as instance, we targeted 32 stocks with quality data from January 1997
to June 2002. 13 stocks were found to be highly correlated. In 78 pairs of
combinations, nine pairs are found to be actionable to real trading. For instance, it was
found that there was a high correlation in the pair of stock CBA and GMF. Without
considering the market impact, the return on the pair CBA-GMF was 40.51% in
average on historical data from 1 January 1997 to 19 June 2002.

In this exercise, we found the following interesting points:

e The analytics showed that the correlated stocks actionable to traders cannot just
be specified by the coefficient;

e The correlated stocks mined in the ASX market all come from different sectors,
meaning that correlated stocks are not necessary from the same industry as
assumed by financial researchers; and

e The analytical results showed that the profit of trading a correlated pair is
greatly affected by the liquidity and the volatility of stocks. Therefore, an
actionable (profitable) stock pair is based on correlation, liquidity and volatility
of the parties.

4.2 Mining in-depth trading rules

In stock markets, since a long time ago, both data mining and financial researchers
have developed many trading rules to support traders’ decision-making. These rules
actually indicate possible patterns hidden in stock markets. For instance, the trading
strategy MA actually indicates a correlated pattern between two features namely
short-run moving average (sr) and long-run moving average (Ir). The pattern MA (sr,
Ir, 8) is defined as follows (wheredis the fix band for the difference between sr and
Ir):

IF sr *(1-06) >= 1r THEN Buy
IF sr *(14+4d) <= 1r THEN Sell

This pattern actually consists of a large number of rules (we call them generic
patterns) from a finance perspective, for instance MA(2, 50, 0.1) and MA(10, 50, 0.1)
represent two different MA rules. However, traders do not know which rule is
actionable for their specific trading decision.

The in-depth pattern mining on existing trading rules aims to mine more actionable
rules (i.e., in-depth patterns) which can better serve traders’ objectives.

To discover in-depth rules from generic rules, a robust genetic algorithm [13] and a
human-machine interaction interface were developed so that financial experts could
dynamically and iteratively supervise and evaluate the training. Interfaces are
developed so that business analysts can supervise the construction of some features,
fine tune the parameters, and set evaluation criteria for the business requirements and
objectives. Technical analysts can advise the above process as well as refining
technical factors to narrow down the search space. Taking the MA as an instance, an
in-depth rule MA(4, 19, 0.033) is found in the training data from 1 January 2000 to
31 December 2000 and testing set between 1 January 2001 and 31 December 2001.
The number of trading signals generated by this rule is much more than other generic
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rules. Its Sharpe Ratioz, as shown in Figure 2 (b), has a greatly improved positive
scope compared with (a) the generic results. This demonstrates that the in-depth
correlation mining with the involvement of domain knowledge can lead to more
interesting and actionable rules for trading support.
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Fig.2. Improved business objective by in-depth rules
(a) Sharpe ratio with generic MA rules (b) Sharpe ratio with in-depth MA rules

4.3 Mining in-depth rule-stock correlations

It is assumed that some trading rules are suitable for a class of stock, while others are
more effective to guide the trading of other stocks in the market. This hypothesis
actually indicates whether there are correlations between trading rules and stocks. If
yes, and if we can discover the correlation, then it would be very helpful for guiding
the trading.

Based on this hypothesis, algorithms can be developed to search for the in-depth
correlations between trading rules and stocks in stock market data. The basic ideas of
the rule-stock correlation mining algorithms are as follows.

1)  Mining in-depth rules for individual stock

For each ASX security, a set of in-depth rules are discovered for each class of

trading rules by the algorithm described in Section 4.1. Furthermore, in-depth

patterns can be discovered from all classes of rules for all stocks respectively. As a

result, a rule-stock set is found in which a trading rule is matched with one or

multiple stocks.

2) Mining the highly correlated rule-stock pairs

In the above step, multiple in-depth rules from different rule classes may be found

suitable for one stock. It is necessary to discover a highly correlated rule for a

specific stock from the above resulting set. This leads to the most suitable rule for a

stock, and forms a correlated rule-stock pair.

3) Refining and evaluating the rule-stock pairs

In order to find the interesting and profitable rule-stock pair, the assistance of

domain experts and their suggestions are essential for the refinement and

evaluation of pairs found in the above steps.

2Tt is taken as a business interestingness benchmark for evaluating the performance of a trading
rule in the real world.
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Fig.3. Return on investment with in-depth rule-stock pairs

In the analysis of the rule-stock correlations in ASX markets, three classes of
trading rules were identified. They were: MA, Filter Rule and Channel Breakout [6].
26 ASX stocks were chosen for the experiments. The data for training was from 1
January 2001 to 31 January 2001, and the testing set was from 1 February 2001 to 28
February 2001. Five different investment plans were conducted on these rules and
stocks. In order to organize the pairs, we ranked them based on return, and generated
5% pairs, 10% pairs, and so forth from the whole pair population. The 5% pair means
that the pairs are the top 5% based on the return.

Figure 3 illustrates returns we have found for different investment plans on
different pairs. These graphs are interesting to traders, allowing them to make smarter
trading decision using these mined rule-stock pairs.

5 Developing quality knowledge base for compliance purposes

The DDIP-PD can be deployed to develop a quality knowledge base on interventions,
such as for Telecom fraud control [14] and Centrelink compliance. This would allow
for more targeted customer interventions and less debt to the customer and debt
holding to the organisation. The following illustrates two possible scenarios for
developing a quality knowledge base on compliance.

o Correlation analysis of customer and interventions; and

e Developing and evaluating a smart knowledge base.

Obviously, DDIP-PD could be deployed against many other industry and business

interests.
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5.1 Correlation analysis of customer and interventions

This study could investigate the existence and potential association and correlation
between specific customers and interventions such as in Centrelink. It would lead to
finding some interesting relationships between customer characteristics or behaviour
and associated interventions, and answering business questions, such as “Which
customer characteristics are more likely to be associated with non-compliance”. It
would help understand the impact of and improve current customer contacts
(interventions). It could also allow Centrelink to reduce the number of lesser impact
interventions thereby allowing resources to be diverted to higher impact and more
useful interventions. It could also inform more targeted proactive measures to
improve prevention and deterrence (front end) as opposed detection driven (back end)
compliance.

To discover association, both positive and negative association mining techniques
can be investigated. Existing association rule mining may find a lot of rules but a
majority of them are not informative and would not discover the true correlation
relationship. Therefore, new correlation mining methods and measures such as those
based on all-confidence and coherence [15], and confidence-closed correlated patterns
[16] can be developed to mine strongly correlated patterns that are informative and
interesting to business without information loss. Additionally, negative and
independent correlated patterns can also be investigated.

High dimensional data mining techniques can be studied to reduce the number of
dimensions and to efficiently search correlations from a customer-intervention pair
space. Taking the customer contacts and interventions as sequences, we may divide
them into segments, and develop a dimension reduction technique to every segment,
and then keep higher coefficients for more recent data. Effective generic algorithm
techniques may also be built for the reduction of search space and dimensions in
selecting strongly correlated rules.

5.2 Developing and evaluating a smart knowledge base

Knowledge, such as behaviour patterns predictors and evidences, which inform
interventions, need to be interpreted and integrated to build a quality knowledge base
and predictive models for improved interventions. An interactive system can provide
the capability of deploying smart knowledge, and aid the testing of a knowledge base
using live and large-scale data for the activities in an organisation. Feedback from this
system could allow for further refining of the knowledge base and consolidate the
domain-driven data mining methodology. This could be conducted by:

e interpretation and visualisation of knowledge, including evidences, rules, models,
predicators, indicators, etc.;

e building a quality knowledge base and user-friendly interactive interface, and
building predictive models for improved interventions based on the quality
knowledge base;

o testing and deploying the smart knowledge on real data and business; and
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o feedback and refinement on the knowledge base. The resulting outputs would
encompass a practical knowledge base with a set of effective evidences and
predictors for certain real-world decision-support systems.

This knowledge base would be very useful to improve the quality of data mining
for an organisation. For instance, in studying Telecom fraud control [14], the features
were iteratively fine-tuned for classifying fraudulent customers, and a feature base
was built to effectively detect and predict customers who would be more likely to
dishonestly interact with Telecom. In this feature base, some attributes which were
originally presumed to be necessary, for instance, the number of suspending services
requested by a customer, were found unnecessary for this specific analysis.

6 Conclusions and future work

In the real world, correlated patterns that are interesting to business are often hidden
in constraint-based context. This often leads to the scenario where many rules are
mined while few of them are interesting to business. Therefore, to improve data
mining outcomes, in-depth pattern discovery should be conducted within a constraint-
based context. To this end, the domain-driven in-depth pattern discovery (DDID-PD)
framework has been developed to guide improved real-world data mining. The DDID-
PD framework has been outlined in this paper, which provides methodology for
dealing with constraint-based context, mining in-depth patterns and supporting
interactive mining in a loop-closed iterative refinement process.

The main phases and components of the DDID-PD framework (as shown in Figure
1) include almost all phases of the well-known industrial data mining methodology
CRISP-DM. There are three main differentiations from the CRISP-DM:

(i) some new essential components highlighted by thick rims, such as results
post-processing and in-depth modeling, are taken into account in designing
the lifecycle of the DDID-PD process;

(ii)) in the DDID-PD, the phases of CRISP-DM highlighted by shadow are
enhanced via dynamic interaction with domain experts and the consideration
of constraints and domain knowledge; and

(iii) the lifecycle of the DDID-PD is actually different from that of CRISP-DM.
These differences are key to mine in-depth patterns in the real world.

In real DDID-PD deployments, we have demonstrated some of our work such as
mining in-depth correlations in stock markets, and developing a quality knowledge
base for compliance. The experiments on real data have shown that the mined in-
depth results guided by the DDID-PD framework are more interesting and actionable
to business after considering constraints and domain expert cooperation. Finally, the
DDID-PD has potential in mining real-world patterns that are interesting and
actionable to business in an effective and efficient manner.

Our further work will include developing detailed data mining process
management supports and interfaces for real-world data mining on top of DDID-PD.
We are developing a specification as well so that business people can easily follow
this methodology.
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Abstract. Modeling multiclass gene expression datasets for the purpose of clas-
sification is still largely an unexplored area of research. In this paper, we pro-
pose two approaches that can be used to model such microarray datasets. We
established the usefulness of the artificially generated datasets by demonstrating
how they can improve the efficiency of a known feature selection technique. In
this study, the proposed models enable predetermination of parameters in fea-
ture selection based on characteristics of the dataset alone. This precludes the
need for parameter tuning in inner cross-validation loops, radically reducing the
computational costs of the predictor set search. Our microarray dataset simula-
tor can also be used with any other supervised machine learning techniques for
microarray data analysis.

Keywords. molecular classification, microarray data analysis, feature selection,
artificial datasets

1 Introduction

Compared to datasets in other domains, real-life microarray datasets can be consid-
ered scarce in view of the complexities and costs involved in conducting large-scale
microarray experiments. Therefore, in the area of microarray data analysis, artificial
datasets present an attractive solution to this problem. Practical considerations aside,
the use of artificial datasets to more precisely test the strengths and weaknesses of an
algorithm has also been recommended in [1].

The most palpable advantage of artificial datasets over real-life datasets is that they
can be easily mass-produced requiring considerably less cost and amount of time than
those involved in generating real-life datasets. Another important advantage is the
control the researcher exercises over parameters governing dataset characteristics
such as number of classes and noise levels. Moreover, unlike the case of real-life
datasets, the amount of noise in artificial datasets is always a known quantity, since
noise level is a parameter fed into the microarray dataset simulator. This can facilitate
the task of determining how dataset characteristics influence the optimal values of pa-
rameters in the data analysis techniques used.

Although not fully explored for simulating microarray datasets so far, artificial
datasets have been widely used in traditional machine learning and data mining areas.
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The most well-known are the MONK dataset and the artificial characters database [2].
More recently, in a feature selection challenge, four semi-artificial and one artificial
datasets have been made publicly available [3]. Here it is to be noted that datasets are
considered semi-artificial in the sense that randomly perturbed features are added to
the original features in the dataset. The limitation presented by these extant artificial
datasets is that none of these simultaneously possesses the following two traits com-
mon to multiclass microarray datasets: 1) more than two classes, and 2) large number
of features (high dimensionality).

An adequate microarray dataset simulator should be able to produce artificial data-
sets with the aforementioned traits since these are the common characteristics of any
multiclass microarray datasets. Although several microarray dataset simulators have
been proposed previously, all of them are for use with one or combinations of the fol-
lowing: clustering, normalization or noise-elimination techniques [4, 5, 6]. None of
these are devised specifically for use with feature selection or classifier techniques.
Therefore, to address these inadequacies, we have devised a novel method for gener-
ating artificial datasets to best simulate microarray datasets. The two models behind
our microarray dataset simulator are the one-vs.-all (OVA) and the pairwise (PW)
models. The ability of each model to realistically simulate microarray datasets is in-
vestigated in this paper.

The two objectives of the study reported in this paper are as follows:

1. Establish a suitable model for representing microarray datasets for use with feature
selection or classifier techniques.
2. Provide support to the hypothesis regarding the influence dataset characteristics
have on the optimal value of the parameter(s) in a feature selection technique.
The impact of the first objective is wide-reaching. Although there are plenty of mi-
croarray datasets available publicly, many are the results of microarray experiments
conducted for the purpose of class discovery. This means that the class labels for
samples in this kind of datasets are derived from the information in the datasets them-
selves. This type of datasets will be useful for testing the performance of clustering
and other unsupervised machine learning techniques, but not that of supervised tech-
niques such as classification and feature selection — the focus of our study. Therefore,
establishing a model which represents multiclass microarray datasets accurately will
assist researchers in those two fields in overcoming the hurdle currently faced (i.e. the
small number of available datasets), at least until the microarray technology catches
up and the microarray version of the UCI repository is made possible. Even then, the
use of artificial datasets will still continue to be highly attractive because of the con-
trol over dataset characteristics (noise levels, number of features, samples or classes
and class sizes) it affords researchers.

The most likely of researchers to benefit from our microarray dataset simulator are
those in the field of feature selection or classification, who, having tested their meth-
ods on various (but limited) real-life microarray datasets, have come to the conclusion
that dataset characteristics are influencing the optimal parameters in their methods,
and the ability to predict those optimal parameters based on the dataset characteristics
will improve the performance of their feature selection or classifier techniques.

The outcome of the second objective will add great value to any feature selection
or classifier technique. Instead of testing for the whole range of possible values (for
example, 0 to 1) for a parameter of the feature selection or classifier technique during
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internal cross-validation or tuning stage, knowing how (and which) dataset character-
istics influence the optimal value of the parameter will make it possible for us to pre-
dict a much narrower range for the parameter (e.g. 0.2 to 0.3) to focus on. This will
bring about definite savings in terms of computational power and time.

Starting with a detailed presentation of the modeling method, we then provide a
brief background regarding feature selection for microarray datasets and an overview
of the degree of differential prioritization-based (DDP-based) feature selection tech-
nique that will be applied to study the viability of the microarray dataset simulator.
This is then followed by classification results from real-life and artificial datasets.
The paper ends with model validation, discussion regarding the strengths and short-
comings of the study, and the conclusion.

2 Modeling Microarray Datasets

It is widely accepted that over-expression or under-expression (suppression) of genes
causes the difference in phenotype among samples of different classes. The categori-
zation of gene expression is given as follows.

e A gene is over-expressed: if its expression value is above baseline.

o A gene is under-expressed: if its expression value is below baseline.

e Baseline interval: the normal range of expression value.

Usually the mean of the expression of a gene across samples is taken as the middle of
the baseline interval. Multiples of the standard deviation (SD) of expression across
samples are used as boundaries of the baseline interval. For example, expression val-
ues between —1.5SD and 1.5SD may be considered as baseline values. With this
categorization we next employ two well-known paradigms (OVA and PW) leading to
the OVA and PW models respectively, which are then used to generate two different
sets of artificial microarray datasets.

Table 1. The OVA Model (*OX = over-expressed, "UX = under-expressed, °BL = baseline)

Groups of Samples of class

marker genes 1 2 K

Group 1 ox® BL° BL
Group 2 BL 0X BL
Group K BL BL (00,4
Group K+1 Ux® BL BL
Group K+2 BL UX BL
Group 2K BL BL UX

1. OVA model: The crux of the OVA concept has gained wide, albeit tacit, acceptance
among microarray and tumor gene expression researchers. The fact that particular
marker genes are only over-expressed in tissues of certain type of cancer, and not
any other types of cancer or normal tissues [7], is part of the entrenched domain
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knowledge. Hence the term ‘marker’ — for genes that mark the particular cancer
associated with them. We develop this concept into a model for use with the mi-
croarray dataset simulator. In the OVA model (Table 1), certain groups of genes,
also called the ‘marker genes’ are only over-expressed (or under-expressed) in
samples belonging to a particular class and never in all samples of other classes.
This model emphasizes that a group of marker genes is specific to one class.
Therefore for a K-class dataset, there will be 2K different groups of marker genes.

2. PW Model: In the PW model (Table 2), for a given pair of classes, a group of
marker genes is over-expressed (or under-expressed) in samples of one class of the
pair but under-expressed (or over-expressed) in samples of the other class. As im-
plied by its name, this model represents the 1-vs.-1 paradigm as opposed to the 1-
vs.-others of the OVA model. For a K-class dataset, there are 2(“C,) different
groups of marker genes in the PW model.

Table 2. The PW Model (*OX = over-expressed, "UX = under-expressed, “BL = baseline)

Samples of class

G f mark

roups of marker genes 1 5 3 — %
Group 1 (Classes 1 vs. 2) (0),¢ UXx BL ... BL BL
Group 2 (Classes 1 vs. 3) (0):¢ BL UxX ... BL BL
Group ke, (Classes K — 1 vs. K) BL BL BL ... OX UX
Group “C, + 1 (Classes 1 vs. 2) Ux (0),:¢ BL ... BL BL
Group XC, + 2 (Classes 1 vs. 3) UX BL OX ... BL BL
Group 2(“C,) (Classes K — 1 vs. K) | BL BL BL ... UX OX

Due to the high-throughput nature of microarray experiments and the hybridization
tendencies of certain mRNA probe-target pairs, microarray datasets are inherently
noisy, although the level of noise differs from dataset to dataset. Hence, noise needs
to be added to make the artificial datasets more realistic. Following [5, 6], we use
Gaussian noise to simulate hybridization noise in real-life datasets. A percentage of
noise, r,, is added for each data entry. The expression of gene 7 in sample j (x;)) is
perturbed in the following manner.

)?i,j:xi,j'(l+rv) ®

where r, is a random number picked from a Gaussian distribution having a mean 0
and variance v. The variance v is also referred to as the noise level of the dataset.

3 Experiments to Validate the Models

For microarray datasets, the term gene and feature may be used interchangeably. The
objective of feature selection is to form a subset of features (the predictor set), which
would yield the optimal estimate of classification accuracy. The importance of fea-
ture selection prior to classification for microarray datasets has been proven in previ-
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ous studies [8, 9, 10]. From techniques as simple as rank-based techniques [10, 11,
12] to those as sophisticated as wrapper-based methods [13], various feature selection
techniques have been proposed for microarray datasets, with mixed results.

For filter-based feature selection, one or both of two criteria, relevance and redun-
dancy, have often been used in the search for the predictor set. For microarray data-
sets, while relevance alone has been employed early on in rank-based techniques [10,
11, 12, 14], it is only recently that redundancy is included as the second criterion in
forming the predictor set [8, 9]. Extending from here, in [15], we have demonstrated
that aside from relevance and redundancy, a third criterion, called the degree of dif-
ferential prioritization (DDP), is necessary for the optimal performance of filter-based
feature selection for multiclass microarray datasets. During the search for the predic-
tor set, DDP compels the search method to prioritize the optimization of one of the
criteria (of relevance and redundancy) at the cost of the optimization of the other.

In order to validate the models and the usefulness of artificial datasets, any feature
selection or classifier technique can be used. However, in this study the DDP-based
feature selection technique is chosen for the following reason: The empirical results
from this technique suggested that the optimal value of DDP (i.e. the value of DDP
leading to the best estimate of accuracy) is dataset-specific [15], leading us to hy-
pothesize on the superficial characteristics of a dataset most likely to influence the
value of its optimal DDP. Superficial characteristics refer to dataset characteristics
which are discernible through direct inspection, such as the total number of features,
samples or classes. However, due to the limited number of available real-life multi-
class microarray datasets, it is not possible to verify the hypothesis suggested by the
findings in [15] without the use of artificial datasets. Before validating the models,
we briefly review the DDP-based feature selection technique.

3.1 Overview of the DDP-based Feature Selection Technique

The training set upon which feature selection is to be implemented, T, consists of N

genes and M, training samples. Sample j is represented by a vector, X;, containing the

expression of the N genes [xy,..., xN,,-]T and a scalar, y;, representing the class the

sample belongs to. The target class vector y is defined as [y, ..., yaul, y;€[1.K] ina

K-class dataset. From the N genes, the objective is to form the subset of genes, called

the predictor set S, which would give the optimal estimate of classification accuracy.
The relevance of S, Vs, is the average individual relevance of its members.

1 .
Vs :M%’,F(z) )

The score of relevance for gene i, F(i), indicates the correlation of gene i to'y. A
popular parameter for computing F(7) is the BSS/WSS ratios used in [8, 11].
Uy is the measure of the antiredundancy of S.

1
Us =—7 2 1-[R.j)| 3)
|S| i,jes
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R(ij) is the Pearson product moment correlation coefficient between genes i and ;.
Larger Us indicates lower average pairwise similarity among the members of S, and
hence, smaller amount of redundancy in S.

The score of goodness for predictor set S is given as follows.

WA,S = (VS )a ’ (US )lia 4)

where the power factor o € (0,1] denotes the value of the DDP. In other words,
a/(1-a) represents the ratio of the priority in maximizing Vs to the priority in
maximizing Us. The significance of « has been elaborated in [15].

The linear incremental search method is employed, where the first member of S is
chosen by selecting the gene with the highest F(i) score. To find the second and the
subsequent members of the predictor set, the remaining genes are screened one by one
for the gene that would give the maximum W,s. This search method, with a much
lower computational complexity of O(NP..) than that of exhaustive search
(O(N"™)), has been applied in previous feature selection studies [8, 9]. Py is the
upper limit of the predictor set size we wish to search.

The DDP-based feature selection technique is applied to both real-life and artificial
datasets. Results from both categories of datasets are examined to validate the viabil-
ity of the proposed microarray dataset simulator and to then determine the better
model (between OVA and PW models) for realistic simulation of microarray datasets.

Table 3. Descriptions of real-life datasets. N is the number of features after preprocessing

Dataset Type N K Training: Test set size
GCM Affymetrix 10820 14 144:54
NCI60 cDNA 7386 8 40:20
PDL Affymetrix 12011 6 166:82
Lung Affymetrix 1741 5 135:68
SRBC cDNA 2308 4 55:28
MLL Affymetrix 8681 3 48:24
AML/ALL Affymetrix 3571 3 48:24

3.2 Real-life Microarray Datasets

The characteristics of seven real-life microarray datasets: the GCM [7], NCI60 [16],
lung [17], MLL [18], AML/ALL [14], PDL [19] and SRBC [20] datasets, are listed in
Table 3. For NCI60, only 8 tumor classes are analyzed; the 2 samples of the prostate
class are excluded due to the small class size. Datasets are preprocessed and normal-
ized based on the recommended procedures in [11] for Affymetrix and cDNA mi-
croarray data. Details regarding the performance of the DDP-based feature selection
method on the first five datasets are available in [15]. With the exception of the GCM
dataset, where the original ratio of training to test set size used in [7] is maintained to
enable comparison with previous studies, for all other datasets we employ the stan-
dard 2:1 split ratio.
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3.3 Artificial Datasets

Artificial datasets are generated from both OVA and PW models presented in Section
2. For both models, several levels of noise have been incorporated by setting the
value of v ranging from 0 to vy, with equal intervals of 0.05 (vp.x being arbitrarily set
to 0.35 in this study). The range of K is from 3 to 15, producing 13 datasets for each
level of noise. All remaining parameters aside from v and K involved in generating
the artificial datasets are kept fixed. They are described below.

] —— Normalized dataset with 7 .
dnfaset — Neormalizing features and 1 samples Split loop,
i E R
- T T~ Training set with  features___ . \
| [ Feature selection k and J4; samples Split into training
and test sets

I Predictor set
| containing P features
| and 14 samples

Test set with M features and
M —id; samples

Train a classifier

)[ Classify test samples ]

I Induced classifier
Estimate of accuracy
\ .-I-{epeat loop F times for all F splits for the current split §
Estimate of accuracy for the Average all F

classification problem € estimates

Fig. 1. F-splits procedure

The size of each group of marker genes is fixed at 2 genes per group. Therefore,
there is a total of 4K (or 4(*C,)) marker genes in a K-class dataset generated using the
OVA (or the PW) model. N being set to 2000, the remaining features are irrelevant
genes containing random expression values. The class size, 12 samples per class, is
kept equal for all classes. The bounds for over-expression are [0.5,2], for under-
expression [-2,-0.5] and for baseline [-0.5,0.5]. These bounds are in accordance
with the standard microarray dataset preprocessing and normalizing procedures rec-
ommended in [11], where expressions are log-transformed and normalized to have
mean 0 across features; and data entries with values above a maximal threshold or be-
low a minimal threshold are eliminated.

3.4 Evaluation Procedure — Looking for o*

Various values of « have been employed in the experiment, in the range of [0.1,1]
with equal intervals of 0.1. The range of the predictor set size, P, analyzed is from 2
to Pn.x=100. The F-splits procedure (Figure 1) is used to evaluate the classification
performance of a predictor set of a certain size P derived from a particular value of a.
We set F to 10 in this study. The DAGSVM classifier is used for all performance
evaluation. The DAGSVM is an SVM-based multiclassifier which uses substantially
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less training time compared to either the standard algorithm or Max Wins, and has
been shown to produce accuracy comparable to both of these algorithms [21].

Since our feature selection technique does not explicitly predict the best P from the
range of [2, Puax], in order to determine the value of « likely to produce the optimal
accuracy, we use a parameter called size-averaged accuracy, which is computed as
follows. For all predictor sets found using a particular value of «, we plot the esti-
mate of accuracy obtained from the procedure outlined in Figure 1 against the value
of P of the corresponding predictor set (Figure 2). The size-averaged accuracy for
that value of « is the area under the curve in Figure 2 divided by the number of pre-
dictor sets, (Pmax —1). The value of « associated with the highest size-averaged accu-
racy is deemed the empirical estimate of o (the empirical optimal value of the DDP).
If there is a tie in terms of the highest size-averaged accuracy between different val-
ues of ¢, the empirical estimate of ¢ is taken as the average of those values of «.

Estimate of

0 50 100
Predictor Set Size (P)

Fig. 2. Area under the accuracy-predictor set size curve

3.5 Classification Results

Real-life Datasets. The size-averaged accuracy vs. « plots (Figure 3a) leads to the
surmise that o is strongly influenced by K. The peak in the size-averaged accuracy
plot moves towards the left as K increases.

== MLL (K=3) =0 SRBC (K=4)

) 0951 %5 E Q == AML/ALL (K=3) === Lung (K=5)
£ 1
=
S 091 pe (b)
< e e PDL (K=6) 0813
& - 061 0@
) —e—NCI60 (K=8 .
= 085 (K=8) S *
s 4 GCM (K=14) 0.4 - Py
g 0657 () 02
@ P o, PN

0.55 — 0

0 02 04 06 08 1 2 4 6 8 10 12 14
a Number of Classes (K)

Fig. 3. Real-life datasets: (a) Size-averaged accuracy vs. DDP, and (b) & —K scatter plot

To more clearly demonstrate this hypothesis, a scatter plot of & against K is de-
picted in Figure 3b. With just seven points of data, even the best curve-fitting method
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would not be able to give us an equation governing the value of & with sufficiently
high confidence. However, with the proposed microarray dataset simulator, this diffi-
culty can be easily surmounted.

Another observation from Figure 3a is the tendency of accuracy to deteriorate as K
increases. This is not surprising since a 3-class problem is considerably easier than a
15-class problem. What is surprising is the gap between the accuracy from the 8-class
NCI60 dataset and the 6-class PDL dataset (the latter possessing merely two classes
less than the former). However, we will be able to explain this phenomenon with the
aid of artificial datasets.

Artificial Datasets. Results for artificial datasets are divided into 2 sections below,
each section focusing on datasets generated from each of the OVA and PW models.

OVA model. The size-averaged accuracy vs. « plots from datasets with selected K
values (3 to 15, with equal intervals of 3) for 3 out of 8 noise levels tested
(v=0,0.2,0.35) are depicted in Figure 4a. Due to space constraint, we have not

shown all datasets from the complete tested range of K (3 to 15) and v (0 to 0.35).

(a) +66 (b) 0.8 & ®v=20
§0987f el 6% Ov=0.05
5 0.6 @@+ Av=01
g 093 % HXO Xv =015
< ,a 0.4 OB ¢
=0 | SO0
5 02 4
z .
F 0.83 - y
S v=20
@ 0 —

o ‘ ‘ ‘ ‘ ‘ ‘ 2 4 6 8 10 12 14

0 0.5 10 0.5 10 05 1
a a a Number of Classes per Dataset (K)

e Kl K=9=—A—K=12—= 'K=15H<>v:02 v=025 4v=03 Ov=035

Fig. 4. Artificial datasets derived from OVA model: (a) Size-averaged accuracy vs. DDP for 3
different noise levels v =0, 0.2 and 0.35, and (b) & —K scatter plot for various noise levels v

For all noise levels, datasets with larger K produce lower accuracy than datasets
with smaller K (Figure 4a). In irrefutable support of Figure 3b, Figure 4b shows that
the influence of K on ¢ is indubitable. We say ‘irrefutable’, because the experiment
settings are such that all parameters concerning the superficial dataset characteristics
except K have been fixed for all of our artificially generated datasets. Therefore, for
each noise level, the value of & must have been influenced by K alone.

Using Figure 4, we can make some additional observations based on artificial mi-
croarray datasets which are not possible using real-life data sets. Firstly, in terms of
accuracy, datasets with larger K are more susceptible to rising level of noise than
datasets with smaller K (Figure 4a). That is, given the same amount of increase in
noise level, accuracy from datasets with larger K (>6) decreases at a more drastic rate
compared to accuracy from datasets with smaller K. Secondly, while for each value
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of K, minor aberrations in & do occur due to different noise levels (Figure 4b),
clearly the effect of the noise level, v, on & is not as prevailing that of the number of
classes per dataset, K. For the OVA-based artificial datasets, the biggest difference
between @ values for the same K from different v values occur at the smallest K
value, 3. The difference tapers off as K increases. At the largest K values, 14 and 15,
the difference in & due to varying noise levels have actually disappeared.

There are 2 similar trends between Figures 3 (real-life datasets) and 4 (OVA-based
artificial datasets): 1) accuracy decreases as K increases, and 2) o decreases as K in-
creases. Hence, we can say that in terms of the relationships among K, accuracy and
a’, the OVA model portrays real-life microarray datasets satisfactorily at this stage.

PW Model. Figure 5a depicts the size-averaged accuracy vs. « plots from datasets
with selected K values (3 to 15, with intervals of 3) for 3 out of 8 noise levels tested
(v=0,0.2,0.35). The o' —K scatter plot is shown in Figure 5b.

2 () | PRRAAAARL fm A () g =0
g 0.98 - . 1 0.8 1 Ov = 0.05
g /f“’ﬁﬁ%ﬁ m 06 §1 : Av=01
e Xv=0.15
: “\ % ia S‘A‘*‘A \4
£60.93 - . ] 04 1 - BHRGKO -~ HX o
s HHCONe a0 A
z 0.2 1 10}
by v=0 v=0.2
N
= 0.88 ‘ | ‘ ‘ 0 —
0 0.5 10 0.5 10 0.5 1 2 4 6 8 10 12 14
a a a Number of Classes per Dataset (K)
——K -3 —*—K-6—o—K-9—2—K-12—8 K-15/[6,-02 @v-025 +v-03 Ov-035 |

Fig. 5. Artificial datasets derived from PW model (a) Size-averaged accuracy vs. DDP for 3
different noise levels v =0, 0.2 and 0.35, and (b) & —K scatter plot for various noise levels v

The overall trend shown by PW-based artificial datasets is similar to the trend pro-
duced by their OVA-based counterparts, with two important exceptions.

Firstly, in general the resulting size-averaged accuracy is higher in PW-based data-
sets than accuracy from OVA-based datasets. This is especially obvious in datasets
with larger K (Figure 5a). Secondly, for each particular value of K, the aberrations in
the values of & due to varying noise levels are larger for the PW model than the
OVA model (Figure 5b). For the PW-based artificial datasets, the largest noise-
induced difference in " does occur at K =3 as in case of the OVA-based counter-
parts. However, as K increases the aberrations in & do not deteriorate as rapidly as in
case of the OVA-based datasets. Even at K =15, there is still a difference of 0.1 in
o' among the 15-class PW-based datasets with varying noise levels.
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4 Model Validation

We now investigate how satisfactorily artificial datasets from OVA and PW models
represent real-life datasets. Since the DDP-based feature selection technique is cho-
sen as the microarray data analysis technique of interest, we validate the models in
terms of the behavior of o against K. For any technique in general, the models are
validated by investigating how closely the behavior of a parameter in that technique
(against dataset characteristics) in results from artificial datasets resembles its behav-
ior in results from real-life datasets.

4.1 Curve-Fitting

For each level of noise, we fit a curve to the o —K scatter plot from the artificial data-
sets (Figures 4b and 5b). Three equations are considered in describing the 'K rela-
tionship: exponential, power and rational fit of constant numerator and linear poly-
nomial denominator. Based on the average of adjusted R* values from all levels of
noise, for both models, the best fit is the rational function:

* b

¢ :K—i-q )

The values of the constants b and ¢ differ depending on the level of noise.
To investigate how well each model fits real-life datasets in terms of the behavior
of & w.r.t. K, we implemented a deductive fit analysis:

1. For each noise level, v=10, 0.05, ..., Vimax
1.1. Apply curve-fitting to &' —K data points from noise level ranging from v to Vi
(inclusive).
1.2. Using the parameters b and ¢ obtained from 1.1, fit the curve to o —K data
points from the seven real-life datasets (Figure 3b).

1.3. Record the adjusted R? value for this fit as Rz(v—wmax). Larger Rz(v—>vmax) in-
dicates better fit to the real-life datasets.

2. Plot R*(v—vyney) against corresponding values of v.

= A = pW
—8—(0VA

0.9

*._*__*
-

Adjusted
R 2(v_>v max)
o
(o]

W

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Noise Level (v)

Fig. 6. R (v—>Vinay) against v for both OVA and PW models

The results of this analysis (Figure 6) indicate that the OVA model portrays the
real-life datasets more realistically than the PW model. The PW model fits the real-
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life datasets best when zero noise level (v=0) is included in the curve fitting exer-
cise, but as v is increased up to vy, the fit as measured by Rz(v—>vmax) declines. This
is far from convincing, since real-life microarray datasets are not likely to contain
zero noise. Therefore, the initial high R” value in case of the PW model may be dis-
missed as a case of overfitting the real-life datasets. The case against the PW model
is also strengthened by observations in the previous section: namely, the too-
optimistic size-averaged accuracies and the larger noise-induced aberrations in .

Whereas for the OVA model, the best fit occurs when noise levels of v=0.1 up to
Vmax are included in the curve fitting exercise. It is only by eliminating o —K data
points from the lower noise levels (v=0 and v =0.05) that the fit to real-life datasets
is improved. Consequent removal of data points from noise levels higher than
v=0.1 causes deterioration in the fit (as indicated by the decrease in R*(V—>Vmay)).
This is possibly due to the fact that among themselves, the seven real-life datasets ac-
tually contain noise levels equivalent to the noise levels between v=0.1 and v=0.35
of the artificial datasets.

While determining the location of a real-life dataset in K-space is straightforward,
it is not so in case of the v-space. If classification has been performed on the real-life
dataset, as is the case in our study, an alternative is to compare the best size-averaged
accuracy of the real-life dataset to those of artificial datasets of varying noise levels,
but of the same K. However, the purpose of this study is to devise a way to predict a
parameter in a feature selection technique based purely on the characteristics of the
real-life dataset of interest before feature selection or classifier induction is actually
conducted. Hence, classifying test sets from all F-splits in order to determine the
noise level the dataset contains defeats the very purpose of the study itself.

One way to overcome this difficulty is the class variance analysis, where a number
of real-life datasets are ranked in terms of noisiness. This method might be useful in
giving us an idea of the relative noise levels among a group of datasets, despite its
two weaknesses: Firstly, the ranking is only a surmise at best, and secondly, it does
not provide any absolute quantitative information regarding the level of noise in each
dataset. The class variance analysis is conducted as follows:

1. Foreach split, f=1,2, ..., F
1.1. For each of the top 100 genes ranked using BSS/WSS ratio
1.1.1. Foreachclass, k=1,2, ..., K
1.1.1.1. Compute the variance among samples belonging to class 4.
1.1.2. Average the variance for all classes. This is the class-averaged vari-
ance for the gene.
1.2. Pick the largest class-averaged variance from all top 100 genes.
2. Average the largest class-averaged variance from all F splits. This is a measure of
the relative noise level for a dataset.
Based on the class variance analysis, this is how the seven real-life datasets rank in
terms of relative noise level, arranged in order of descending noise level:
AML/ALL—-NCI60—-GCM—Lung—>MLL—PDL—SRBC
Allowing for the influence of K on accuracy, this ranking makes sense — for instance,
the AML/ALL has lower accuracy than the MLL, which has lower noise level, al-
though both comprise of 3 classes. More importantly, this also explains the low accu-
racy rate of the 8-class NCI60 dataset compared to the 14-class GCM dataset, or the
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aforementioned discrepancy between the 8-class NCI60 dataset and the 6-class PDL
dataset. The NCI60 dataset contains higher noise level than the other two datasets.

4.2 Classification Performance from Predicted

According to the best realistic fit of the OVA model to the real-life datasets, the val-
ues of the constants in equation (5), which governs the relationship between a" and K,
are: b =2.8510.253 and ¢ = 0.9334 + 0.4789.

Using the values of o predicted from equation (5) with b and ¢ set to the afore-
mentioned values, we re-run the DDP-based feature selection technique on the seven
real-life datasets and evaluated the resulting predictor sets. We then compare the best
estimate of accuracy obtained from the predicted o to the best accuracy obtained
from the empirical o (Table 4). The greatest difference between accuracies from
predicted @ and empirical ¢ is no larger than 3%. As expected, the biggest devia-
tion of —3% occurs in the dataset with the second highest estimated relative noise
level and the second largest numbers of classes, the NCI60 dataset. Therefore, with-
out having to conduct feature selection for values of & from the full domain of 0 to 1,
by using equation (5) we could simply focus on the much smaller predicted range or
value of & and emerge with similar classification accuracy.

Table 4. Comparing accuracies obtained from empirical and predicted o

Empirical Predicted Bestaccuracy from  Best accuracy

Dataset a a empirical o' from predicted o
GCM 0.2 0.191 0.806 0.802
NCI60 0.3 0.319 0.740 0.710
PDL 0.5 0.411 0.990 0.988
Lung 0.6 0.480 0.953 0.954
SRBC 0.6 0.578 0.996 0.996
MLL 0.7 0.725 0.992 0.992
AML/ALL 0.8 0.725 0.979 0.979

By comparing the best size-averaged accuracy of various datasets, real-life or arti-
ficial, it is clear that the measure of relevance being used in the DDP-based feature se-
lection technique is not efficient enough to capture the relevance of a feature when K
is larger than 6. The subsequent decrease in & as K increases implies that placing
more emphasis on maximizing antiredundancy (rather than relevance) produces better
accuracy for large-K datasets. On a more cautious note, the effect of noise on o'
might be more profound than observed from the results at hand. Extending the noise
levels from the current vy, value of 0.35 to a higher value, or using interval size
smaller than 0.05, will provide better understanding on the influence of noise on the
optimal DDP value. Moreover, candidate models for simulating microarray datasets
are not limited to the two presented in this paper. Other models might emerge that
portray microarray datasets more accurately than the OVA model.

This study demonstrates the usefulness of modeling microarray datasets in helping
reduce the time and computational cost needed to determine the optimal value or
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range of one parameter in one particular feature selection technique. However, the fit
established by the OVA model to the seven real-life datasets proves the robustness of
the modeling technique. Therefore, we believe that this modeling technique will
work as well (as it does for our DDP-based feature selection technique) when applied
to any other feature selection or classifier technique for microarray datasets, regard-
less of the number of parameters involved. Furthermore, instead of the number of
classes in the dataset, there are other dataset characteristics which can be varied — de-
pending on which characteristic(s) the researcher suspects is affecting the optimal
value of the parameter(s) in his own technique.

In cases where the optimal range of multiple parameters in the feature selection or
classifier technique needed to be determined, one experiment will have to be con-
ducted for each parameter. In each experiment, all other parameters are to be fixed
while the optimal range of the parameter in question is being determined.

5 Conclusion

We have presented a novel method for simulating microarray datasets by employing
two models (OVA and PW models), which can be used in conjunction with any fea-
ture selection or classifier technique for the analysis of microarray data. In case of the
DDP-based feature selection, we have demonstrated that the OVA model simulates
real-life microarray datasets better than the PW model in explaining the relationship
between K and o

It would not have been possible to describe in more detail the relationship between
a characteristic of the dataset and a parameter in a feature selection technique without
the use of artificial datasets. The capability to predict a narrow range of the optimal
parameter for the dataset of interest is extremely useful in helping us achieve the op-
timal classification performance. Savings are achieved in terms of computational
costs and time, since with this capability the need to conduct feature selection and pa-
rameter tuning for the whole domain of the parameter is eliminated.
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Predicting Intrinsically Unstructured Proteins
Based on Amino Acid Composition

Abstract. Intrinsically Unstructured or Disordered Proteins (IUPs) ex-
ist in a largely disordered structural state. The automated prediction of
IUPs provides a first step towards high-throughput analysis of IUPs.
The problem of predicting IUPs given training data of ordered proteins
and IUPs can be mapped to the classification problem. In this paper,
we propose to convert the original primary sequence database into an
amino acid composition database and build a decision tree model. The
system derives concise and biologically meaningful amino acid composi-
tion (AAC) classification rules. Cross-validation tests estimate that for
predicting IUPs that contain long disordered regions or are completely
disordered, the AAC-rule classifier achieves a recall of 77.3% and preci-
sion of 81.4%.

1 Introduction

Proteins are linear chains composed of 20 amino acids. The amino acids are linked
together by polypeptide bonds and folded into complex three-dimensional (3D)
structures. The global fold of linear chains has been believed to be essential for
protein function for a long time. Great efforts have been made to determine
the three-dimensional structures of proteins by experimental and computational
methods. Experimental methods such as X-ray diffraction and Nuclear Magnetic
Resonance (NMR) spectroscopy are used to determine the coordinates of all
atoms in a protein and thus its 3D structure.

Recent sequence analysis and experimental data show that a number of pro-
teins contain extended disordered or flexible regions [1]. Such disordered regions
(DRs) have little or no ordered structure under physiological conditions but
nonetheless carry out important functions [2-5]. The flexibility of DRs often
leads to difficulties in protein expression, purification and crystallisation [6].
NMR can provide valuable structural and dynamic information on such proteins
but this technique is complex and time-consuming. As it is known that sequence
determines structure, sequence should determine lack of structure as well. Se-
quence analysis has shown that the amino acid composition (AAC) is biased in
IUPs [7] and it is feasible to predict DRs and TUPs from protein sequences.

Predicting IUPs can be cast as the binary classification problem in machine
learning and data mining. Given unstructured protein sequences and protein
sequences of known structures as training data, the unstructured sequences are
supposedly tagged with the label P and the structured sequences are tagged
with label N. A classification model can be learnt from the training data. The
classification model can then classify an unseen protein sequence as belonging
to class P or N. In other words, it can predict whether a sequence is an IUP.
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There have been 14 published DR predictors. Comparing the predictors is
difficult because of the lack of a precise definition of disordered residues. Several
definitions for disorder have been proposed, including loop/coil regions where
the carbon alpha (C,) on the protein backbone has a high temperature factor
and residues whose coordinates are missing in crystal structures. In this paper,
following the definition of lacking a fixed 3D structure, we build a disordered
database curated from DisProt [8].

Most of the 14 published DR predictors are based on complex models. VL-
XT and XL1 from PONDR [1], RONN [9], VL2, VL3, VL3H and VL3E from
DisProt [10], NORSp [11,12], DISpro [13], and COILS, HOT-LOOPS and RE-
MARK465 from DisEMBL [14] are all based on the neural networks. DISO-
PRED [15] and DISOPRED?2 [16] are based on the support vector machine.
These sophisticated modelling techniques are black box learning systems that
produce models from the input and gives no basis for how such a model is de-
rived.

In this paper, a predictor based on decision tree learning is developed, based
on the amino acid composition information from protein sequences. A set of
rules is produced from our curated IUP database for predicting IUPs. These
rules confirmed that IUPs have low overall hydrophobicity, high net charge and
low sequence complexity [17]. More importantly they present complex amino
acid composition information that is previously unknown. Our work is also dis-
tinguished from previous work in that protein sequences are predicted as IUPs
or otherwise structured proteins.

2 Preliminaries

A protein sequence comprises amino acids or residues. There are big proteins
defined by thousands of residues as well as small peptides of several residues.
Early work in structural biology has established that a protein sequence folds
spontaneously and reproducibly to a unique 3D structure in order to be func-
tional. The Protein Data Bank (PDB) I has over 32,000 proteins with solved
structures and it grows larger every day.

Predicting IUPs from primary sequences is a binary classification problem.
Training instances are presented to classification systems and classification mod-
els or classifiers are developed from the training data. In terms of estimating the
predictive accuracy of a classifier, self-test tends to underestimate the error rate,
as error rate is estimated on the training instances where the classifier is de-
veloped. Cross-validation is a reliable approach. By leaving out some training
instances as the test instances, a classifier is developed on the remaining training
instances and tested on the leave-out test instances. The error rate is estimated
from the misclassified test instances.

Leave-one-out cross-validation test or the jackknife test has been widely used
in evaluating protein structure class prediction [18,19]. Each instance in turn of

! http://www.rcsb.org/pdb/
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the training dataset is singled out and a classifier is developed on the remaining
training instances and tested on the singled-out instance. The error rate of a
classifier is estimated as the misclassified instances out of the whole population
of the training dataset.

Traditionally in machine learning, the performance of classification systems
is measured with overall accuracy. However overall accuracy can be misleading
when class distribution is very unequal. With a two-class problem of the positive
(P) and negative (N) classes, the recall and precision for each class provide a
much clearer description of the performance of a classifier on each class.

The recall for the class P is the percentage of the number of instances cor-
rectly predicted as P (T'P) compared to the number of actual instances of class
P: Recall(P) = 754, where FN denotes the number of false negatives, the
P class instances misclassified as class N. The precision for class P is the per-
centage of the number of instances predicted correctly in relation to the number
of residues predicted as class P: Precision(P) = T]I&-—PFP’ where F'P denotes the
number of false positives, the N class instances misclassified as class P.

The Receiver Operating Characteristics (ROC) curve is a plot of the true
positive rate against the false positive rate for the different parameters of a clas-
sifier. ROC curves have long been used in signal detection theory. They are also
used extensively in medical and biological studies. There has been an increase
in the use of ROC graphs in the machine learning and data mining communi-
ties. In addition to being a generally useful performance graphing method, they
have properties that make them especially useful for domains with skewed class
distribution and unequal classification error costs.

An ROC graph depicts relative trade-offs between benefits (true positives)
and costs (false positives). The horizontal axis of the ROC space is the false
positive rate and the vertical axis of the ROC space is the true positive rate.
The diagonal line y = z represents the strategy of randomly guessing a class.
Generally a good classifier should produce a large area under its ROC curve at
low false positive rate.

3 Predicting IUPs with Amino Acid Composition Rules

We first describe how the amino acid composition training dataset is constructed.
We then show how decision tree learning is applied on the training data, and
then present the classification rules obtained.

3.1 Training Data

The disordered training set in our study was extracted from DisProt (release
2.1), a curated published database of IUPs. DisProt was established by searching
the relevant literature and biological databases. This database is exceptional in
that it includes molten globule-like proteins [8] for the definition of the absence
of a fixed 3D structure. Since the major information in DisProt is based on
literature-derived descriptions of DRs, some observations have certain overlap,
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Fig. 1. The distribution of ordered vs. disordered segments

which enlarges the overall evaluated accuracy. To eliminate this impact, only the
longest DR from all the overlapping DRs was chosen in each case. Furthermore
only DRs of more than 30 residues were extracted in order to reduce the random
noise from protein structure and focus on the AAC features of long disordered
regions or completely disordered proteins. As a result, 176 DRs including 25261
residues were used as our disordered training set, which is designated as D-
DisProt hereafter.

Our ordered training set was extracted from PDB_Select_25, 2 a subset of
structures obtained from PDB [20] that shows less than 25% amino acid sequence
homology. From the 2485 protein sequences from the PDB Select 25, 366 higher
resolution crystal structures ( <2A) that are free from missing backbone or side
chain coordinates, free from non-standard amino acid residues and with sequence
length larger than 80 residues were finally selected, which included 80324 residues
and is designated as O-PDBselect25 hereafter. All the PDB code of our training
sets are available upon request.

The contrasting distribution of disordered and ordered segments of different
lengths is plotted in Fig. 1. We can see that there are more shorter segments
in D-DisProt than in O-PDBselect25. Specifically more than 40% of disordered
segments contain less than 100 residues, of which about 25% contain less than 80
residues. Ordered segments usually contain less than 700 residues. In contrast,
disordered segments can contain thousands residues.

2 ftp://ftp.embl-heidelberg.de/pub/databases/protein_extras/pdb_select/recent.pdb_select.
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subtree subtree

Fig. 2. A decision tree

Each protein sequence in the training data sets was represented by its amino
acid composition (AAC). By a single scan of the given protein sequence database,
the composition database was constructed. With our training data, the IUP
database was converted into a 176 x 20 matrix and the ordered database was
converted into a 366 x 20 matrix. The amino acid composition for each sequence
of the IUP database is tagged with the label P and each sequence of the ordered
sequence database was tagged with the label N.

3.2 Learning amino acid composition rules by decision trees

A decision tree is constructed for the amino acid composition dataset. Each
node of the decision tree is a test on an amino acid X, “freg(X) > a?”. A
sample decision tree formed from our training data is illustrated in Figure 2.
The root node of the tree is on residue E with test “freq(E) > 12.36%7?”: If
“freq(E) > 12.36%” the tree reaches a decision of “disorder”; otherwise the
frequency of P has to be tested.

Every path from the root of an unpruned tree to a leaf gives one initial
rule. The left-hand side of the rule contains all the conditions established by the
path, and the right-hand side specifies the class at the leaf. Each such rule is
simplified by removing conditions that do not seem helpful for discriminating the
nominated class from other classes, using a pessimistic estimate of the accuracy
of the rule. For each class in turn, all the simplified rules for that class are sifted to
remove rules that do not contribute to the accuracy of the set of rules as a whole.
The sets of rules for the classes are then ordered to minimise false positive errors
and a default class is chosen. This process leads to a production rule classifier
that is usually about as accurate as a pruned tree, but more understandable.

Using the popular C4.5 decision tree system [21] with default settings for
parameters, only 12 rules are learned for the D-DisProt, and 4 rules for the
O-PDBselect25. These rules are listed in Tables 1 and 2, respectively. Rules
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Table 1. Disordered rules from D-DisProt

# Rule Accuracy|# Rule Accuracy
1 F<0.013; L<0.118; Y< 0.025 97.6% 7 E>0.124 94.7%
2 F<0.007 97.4% 8 5$>0.090; V<0.034 94.6%
3 H <0.069; K>0.122; Y<0.045 96.6% 9 G>0.093; 1<0.022 90.5%
4 P>0.103 95.9% |10 D>0.101; 1<0.035 89.9%
5 1<0.022; K<0.122; W<0.003 95.5% 11 D>0.101; $S>0.081; V>0.034 89.1%
6 C<0.004; R<0.011; Y<0.039 95.3% |12 C>0.027; H>0.042; K<0.122 79.4%

Table 2. Ordered rules from O-PDBselect25

# Rule Accuracy
1 D<0.101; E<0.124; F>0.013; H<0.042; 1>0.022; K<0.122; P<0.103; V>0.033 95.5%
2 E<O0.124; F>0.013; G<0.104; K<0.122; P<0.103; 5<0.090; W>0.003 94.5%
3 E<O0.124; F>0.013; P<0.103; Y>0.045 94.4%
4 F>0.013; H>0.069 85.7%

are listed in decreasing order of estimated predictive accuracy (the last column
of Tables 1 and 2). All rules are very concise and understandable. The rules
that describe the disordered state are much simpler than those describing the
ordered state. This is a result of the biased composition and lower sequence
complexity of the sequences in D-DisProt dataset. On the other hand, the AAC
in the sequences of the O-PDBselect25 dataset are more uniform and sequence
complexities are much higher. As a result, there are fewer rules and they tend
to be more complicated.

From the biological standpoint, some rules in Table 1 are extremely explicit,
such as rules 2, 4 and 7. They indicate that sequences extremely depleted in
Phe (F < 0.70%) or extremely enriched in Pro (P > 10.3%) or Glu (E > 12.4%)
are very likely to be in a disordered state. Rule 1 shows that if a sequence lacks
Phe(F), Leu(L) and Tyr(Y) at the same time, it most likely is in a disordered
state. Most of the others rules listed in Table 1 are the combination of abundance
in polar or hydrophilic residues and dearth of hydrophobic residues. Interestingly,
positively charged residues His(H), Lys(K), and the sulphur-containing residue
Cys(C) are environment-dependent in their state. For example, the sequence
could be in disordered state if the content of Lys(K) is greater than 12.2%, but
that of His(H) less than 6.9%, and that of Tyr(Y) less than 4.5% at the same
time (rule 3). On the other hand, the sequence could also be in the disordered
state if the content of Lys(K) is less than 12.2% but the content of Ile(I) is less
than 2.2% and that of Trp(W) is less than 0.3% (rule 5), or the content of Cys(C)
is larger than 0.3% and that of His(H) is larger than 2.7% (rule 12).

Our rules not only confirm that residues Phe, Tyr, Trp, Ile, Leu and Val
are ordered promoters and Pro, Glu, Gln, Ser and Gly are disordered promoters
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Table 3. The self- and jackknife- test results

Overall IUP Ordered

accuracy |Recall : Precision|Recall: Precision
Self-test 97.2% 92.6% : 98.8% | 99.5% : 96.6%
Jackknife test| 86.9% 77.3% : 81.4% | 91.5% : 89.3%

as indicated by others [3,7,17], they also describe the detailed and complicated
impact from the combinations of different AACs.

3.3 Predicting IUPs with AAC rules

To predict whether an unseen protein sequence is likely to be an IUP, the AAC
of the sequence is first computed. The AAC of the sequence is then checked
against the classification rules for each class learnt from training data, the rule
with the highest accuracy is used to predict. The estimated accuracy of the rule
is the probability of the prediction.

4 Performance Evaluation

With D-DisProt and O-PDBselect25, the self- and jackknife cross-validation tests
were used to study the overall accuracy, recall, and precision of our AAC-rule pre-
dictor. The results are shown in Table 3. With both the self- and jackknife tests
the recall and precision on the ordered proteins are better than those on IUPs.
This is because of the imbalance distribution of 3:1 for number of residues of
the ordered proteins to those of IUPs for training. The jackknife cross-validation
test is indicating good predictive accuracy of our AAC-rule predictor on IUPs,
with a recall of 77.3% and precision of 81.4%.

The ROC curve of the AAC-rule classifier derived from the jackknife test is
shown in Figure 3. The figure shows that the classifier has good performance.
With the default settings, at the very low false positive rate of 8.5%, the classifier
achieves a true positive rate of 77.3%. This implies that our classifier can achieve
good predictive accuracy at the low cost of not introducing too many errors. On
the other hand, the classifier reaches a high true positive rate of 91.5% at the
cost of a false positive rate of 22.7%.

5 Conclusions

Intrinsically Unstructured Proteins (IUPs) are becoming increasingly interesting
because they are common and functionally important. Experimental studies of
TUPs are expensive and time consuming. An effective computational tool is help-
ful for structural biologists to understand protein structure and related function.
In this paper we have proposed an approach for deriving amino acid composition
(AAC) rules for predicting IUPs. The AAC rules derived are consistent with the
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Fig. 3. The ROC curve of the AAC-rule classifier

biological findings [2, 7,17] and also quantitatively specify the combined effect of
amino acid compositions. Cross-validation tests have shown that the our amino
acid composition rules have high accuracy for predicting IUPs. A user-friendly
interface for our predictor is under development. Further work includes elabo-
rating the system and a complicated tree model for predicting disordered regions
in TUPs.
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Abstract. Numerous techniques have sought to improve the accuracy
of Naive Bayes (NB) by alleviating the attribute interdependence prob-
lem. This paper summarizes these semi-naive Bayesian methods into
two groups: those that apply conventional NB with a new attribute
set, and those that alter NB by allowing inter-dependencies between
attributes. We review eight typical semi-naive Bayesian learning algo-
rithms and perform error analysis using the bias-variance decomposition
on thirty-six natural domains from the UCI Machine Learning Repos-
itory. In analysing the results of these experiments we provide general
recommendations for selection between methods.

Keywords

Naive Bayes, Semi-naive Bayes, attribute independence assumption, bias-variance
decomposition

1 Introduction

Supervised classification is a basic task in data mining, predicting a discrete
class label for a previously unseen instance I = (aj,...,a,) from a labelled
training sample, where a; is the value of the it" attribute A;. There are numerous
approaches to produce classifiers, functions that map an unlabelled instance to
a class label, such as decision trees, neural networks and probabilistic methods.
The Bayesian classifier [1] is a well known probabilistic induction method. It

predicts the class label for I by selecting

argmax (P(c; | a1, ..., ay,)) < argmax (P(c;)P(a1,...,an ), (1)
[ Ci
where ¢; € {c1,...,c} is the it" value of the class variable C.
However, accurate estimation of P(ay,...,a,|¢;) is non-trivial. Naive Bayes

(NB) [2-4] gets round this problem by making the assumption that the attributes
are independent given the class. Although the assumption is unrealistic in many
practical scenarios, NB has exhibited competitive accuracy with other learning
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algorithms, especially in domains without highly related attributes. There are
many attempts to explain NB’s impressive performance, and to develop tech-
niques that further improve its accuracy by alleviating the attribute interdepen-
dence problem [4-19]. Collectively, we call these methods semi-naive Bayesian
methods. Domingos and Pazzani [20] argue that the interdependence between
attributes will not affect NB’s accuracy performance, so long as it can gener-
ate the correct ranks of conditional probabilities for the classes. However, the
success of semi-naive Bayesian methods suggest that weakening the attribute
independence assumption is effective.

Gaining a better understanding of the strengths and limitations of different
semi-naive Bayesian algorithms motivates our comparative study. In this paper,
we broadly classify semi-naive Bayesian algorithms into two groups, and ex-
amine eight representative semi-naive Bayesian algorithms, including a detailed
time and space complexity analysis. We compare these algorithms on thirty-six
natural domains from the UCI Machine Learning Repository [21] by using the
bias-variance decomposition [22], a key tool for understanding machine learning
algorithms. We also give some general recommendations for selecting appropriate
semi-naive Bayesian methods.

2 Naive Bayes (NB)

Naive Bayes (NB) [2—4] simplifies probabilistic induction by making the assump-
tions that the attributes are independent given the class and all the probability
estimations from the training sample are accurate. Hence, NB classifies I by
selecting

n
argmax | P(c;) H P(aj|c) |- (2)
ci j=1

Due to the independence assumption, NB is simple, and computationally
efficient. Although the attribute independence assumption is often violated, pre-
vious research [3,12,20] has shown that NB behaves well across many domains.
As it uses a fixed formula to classify, there is no model selection.

At training time NB generates a one-dimensional table of class probabil-
ity estimates, indexed by the classes, and a two-dimensional table of condi-
tional attribute-value probability estimates, indexed by the classes and attribute-
values. The time complexity of calculating the estimates is O(tn), where t is the
number of training examples. The resulting space complexity is O(km;)7 where
v is the mean number of values per attribute. At classification time, to classify
a single example has time complexity O(k:n) using the tables formed at training
time with space complexity O(km}).

3 Semi-naive Bayes Methods

Previous semi-naive Bayesian methods can be roughly subdivided into two groups.
The first group establishes NB with a new attribute set, which can be gen-

142


simeon
Australiasian  Data  Mining  Conference  AusDM05

simeon
142


Australiasian Data Mining Conference AusDM05

erated by deleting attributes [4,5,9] and joining attributes [6,9]. The second
group adds explicit links between attributes, which represent attribute inter-
dependencies. Sahami [10] introduces the notion of the z-dependence Bayesian
classifier, which allows each attribute to depend on the class and at most x
other attributes. NB is a 0-dependence classifier, and the methods that add
explicit links between attributes can be classified into those that establish 1-
dependence classifiers [12,14, 19] and those that establish z-dependence clas-
sifiers (x > 1) [8,16]. In addition, these methods can be classified into eager
learning methods [4,5,8,9,12,14,19], which perform learning at training time,
and lazy learning methods [16], which defer learning until classification time.
The following Sections present these methods in more details.

3.1 Backwards Sequential Elimination (BSE) and Forward
Sequential Selection (FSS)

In Naive Bayes, all the attributes are utilised for classification. When two at-
tributes are strongly related, NB may overweight the influence from these two
attributes, and reduce the influence of the other attributes, which can result in
prediction bias. Deleting one of these attributes may have the effect of alleviating
the problem.

Backwards Sequential Elimination (BSE) [5] and Forward Sequential Selec-
tion (FSS) [4] select a subset of attributes using leave-one-out cross validation
error as a selection criterion and establish a NB with these attributes. Starting
from the full set of attributes, BSE successively eliminates the attribute whose
elimination most improves accuracy, until there is no further accuracy improve-
ment. F'SS uses the reverse search direction, that is iteratively adding the at-
tribute whose addition most improves accuracy, starting with the empty set of
attributes. The subset of selected attributes is denoted as Atts = {A,,,..., Ay, }.
Independence is assumed among the resulting attributes given the class. Hence,
BSE and FSS classify I by selecting

argmax P(c) H P(aj|c) | - (3)

c J=gq

At training time BSE and FSS generate a one-dimensional table of class
probability estimates and a two-dimensional table of conditional attribute-value
probability estimates, as NB does. As they perform leave-one-out cross validation
to select the subset of attributes, they must also store the training data, with
additional space complexity O(tn). The resulting space complexity is O(tn +
km}). Deleting attributes for BSE and adding attributes for FSS have time
complexity of O(tk‘nZ), as leave-one-out cross validation will be performed at
most O(n?) times. They have identical time and space complexity with NB at
classification time.
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3.2 Backward Sequential Elimination and Joining (BSEJ)

Creating new compound attributes when inter-dependencies between attributes
are detected is another approach to relaxing the attribute independence assump-
tion. Semi-naive Bayesian classifier [6] uses exhaustive search to join attribute
values iteratively based on a statistical method. However, the experimental re-
sults are somewhat disappointing.

Backward Sequential Elimination and Joining (BSEJ) [9] uses predictive ac-
curacy as a merging criterion to create new Cartesian product attributes. The
value set of a new compound attribute is the Cartesian product of the value sets
of the two original attributes. As well as joining attributes, BSEJ also considers
deleting attributes. BSEJ repeatedly joins the pair of attributes or deletes the at-
tribute that most improves predictive accuracy using leave-one-out cross valida-
tion. This process terminates if there is no accuracy improvement. The resulting
Cartesian product attribute set is denoted as JoinAtts = {Joing,, ..., Joing, }.
The remaining original attributes that have not been either deleted or joined are
indicated as {A;,,..., A, }. Hence, BSEJ classifies I by selecting

9h lq
argmax | P(c; P(join;|c; P(a,|c) |, 4
gn ()jgl (Join; | >7~1=_z[1 (ar|ci) (4)

where join; is the value of attribute Join;.

At training time BSEJ generates a one-dimensional table of class probabil-
ity estimates, a two-dimensional table of conditional attribute-value probability
estimates, as NB does. It also generates two-dimensional tables of conditional
joined attribute-value probability estimates, indexed by the classes and com-
pound attribute-values. In the worst case, the new Cartesian product attribute
has v™ values. Therefore, the space complexity is O(tn + kv™). BSEJ considers
at most O(n3) Cartesian product attributes. The time complexity of joining and
deleting attributes is O(tkng). At classification time, to classify a single example
has time complexity O(kn) and space complexity O(kv”).

3.3 Tree Augment Naive Bayes (TAN) and SuperParent TAN
(SP-TAN)

Friedman et al. [12] compared NB with unrestricted Bayesian networks. The ob-
servation that unrestricted Bayesian networks did not usually result in accuracy
improvement and sometimes lead to reduction in accuracy motivated them to
use an intermediate solution that allows each attribute to depend on at most one
non-class attribute, called the parent of the attribute. Based on this representa-
tion, they utilised conditional mutual information to efficiently find a maximum
spanning tree as a classifier. As each attribute depends on at most one other non-
class attribute, TAN is a 1-dependence classifier. The parent of each attribute
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A; is indicated as w(A;). Hence, TAN classifies by selecting

n
argmax | P(c¢;) H P(aj|ci,m(aj)) | - (5)
ci j=1

At training time TAN generates a one-dimensional table of class probabil-
ity estimates, and a three-dimensional table of probability estimates for each
attribute-value, conditioned by each other attribute-value and each class, with
space complexity O(k(nv)2). The time complexity of forming the three dimen-
sional probability table is O(tnz), as it requires each entry for every combination
of the two attribute-values for every instance to be updated. Creating the condi-
tional mutual information matrix requires each pair of attributes, every pairwise
combination of their respective values in conjunction with each class to be consid-
ered, resulting in time complexity O(kn2v2). The parent function is then gener-
ated by establishing a maximal spanning tree, with time complexity O(n2 log n)
At classification time, to classify a single example has time complexity O(kn)
The three dimensional conditional probability table formed at training time can
be compressed by storing probability estimates for each attribute-value condi-
tioned by the parent selected for that attribute and the class. Hence, the space
complexity is O (knv?).

SuperParent TAN (SP-TAN) [14], a variant of TAN, uses a different approach
to construct the parent function. It uses the same representation as TAN, but
utilises leave-one-out cross validation error as a criterion to add a link. The
SuperParent is the attribute that is the parent of all the other orphans, the
attributes without a non-class parent. There are two steps to add a link: first
selecting the best SuperParent that improves accuracy the most, and then se-
lecting the best child of the SuperParent from orphans. SP-TAN stops adding
links when there is no accuracy improvement. As TAN and SP-TAN use dif-
ferent criteria to establish the parent function, TAN tends to add N — 1 links,
while SP-TAN may have fewer links between attributes. Another difference is the
direction of links. TAN chooses the direction randomly, while SP-TAN makes
the direction from SuperParents to their favorite children. SP-TAN also uses
Equation 5 to classify an unseen instance.

At training time SP-TAN needs additional space complexity O (tn) for storing
the training data compared with TAN. The time complexity of forming the
parent function is O(tkn?), as the selection of a single SuperParent is order
O(tkn?), the selection of the favorite child of the SuperParent is order O(tkn),
and parent selection is performed repeatedly at most O(n) times. SP-TAN has
identical classification time complexity and space complexity to TAN.

3.4 NBTree

NBTree [8] is a hybrid approach combining NB and decision tree learning. It
partitions the training data using a tree structure and establishes a local NB
in each leaf. It uses 5-fold cross validation accuracy estimate as the splitting
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criterion. A split is defined to be significant if the relative error reduction is
greater than 5% and the splitting node has at least 30 instances. When there
is no significant improvement, NBTree stops the growth of the tree. As the
number of splitting attributes is greater than or equals one, NBTree is a z-
dependence classifier. The classical decision tree predicts the same class for all
the instances that reach a leaf. In NBTree, these instances are classified using
a local NB in the leaf, which only considers those non-tested attributes. Let
S ={S1,...,5,} be the set of the test attributes on the path leading to the leaf,
and let R = {R1,...,R,_4} be the set of the remaining attributes, we have

P(C,I)=P(S)P(C|S)P(R|C,S) x P(C|S)P(R|C,S). (6)
Therefore, NBTree classifies I by selecting

n—g
argmax | P(c; | s) H P(rjle,s) |, (7)
where s is a value of S and r; is a value of R;.

In NBTree, the number of leaves possible is O(t), and the height of the tree
is O(log,t). Therefore, there are O(t/v) internal nodes in the tree. At the root,
NBTree performs 5-fold cross validation on each attribute to select the best one
to split, time complexity of O(tan). Less time is required for the other internal
nodes. Hence, the time complexity of building the tree is O(t2 kn?/ v). Each leaf
has O(n — logvt) attributes and stores a two-dimensional table of conditional
attribute-value probability estimates. The space complexity is O (tk(n—logvt)v).
At classification time, to classify a single example has time complexity O(kn),
and space complexity O(tk(n — logvt)v).

3.5 Lazy Bayesian Rules (LBR)

Zheng and Webb [16] developed Lazy Bayesian Rules (LBR), which adopts a
lazy approach, and generates a new Bayesian rule for each test example. The
antecedent of a Bayesian rule is a conjunction of attribute-value pairs, and the
consequent of the rule is a local NB, which uses those attributes that do not
appear in the antecedent to classify. LBR stops adding attribute-value pairs
into the antecedent if the outcome of a one-tailed pairwise sign test of error
difference is not better than 0.05. As the number of the attribute-value pairs in
the antecedent is greater than or equals one, LBR is a x-dependence classifier.

Let s = {s1,...,84} be the set of attribute values in the antecedent, and let
r={ri,...,rn_g} be the set of remaining attribute values, LBR classifies I by
selecting
n—g
argmax [ P(c;|s) H P(rj|ci,s) | - (8)
Cq .
T ]=1
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The Bayesian rule generated by LBR can be described as a branch of a tree
built by NBTree. LBR generates a rule for each unseen instance, while NBtree
builds a single model according to all the examples in the training data. If
examples are not evenly distributed among branches in NBTree, small disjuncts,
which cover only few training samples, will result in poor prediction performance.
As LBR uses lazy learning, it may avoid this problem. LBR is efficient when few
examples are to be classified. However, the computational overhead of LBR may
be excessive when large numbers of examples are to be classified.

At training time, the time and space complexity of LBR are O(tn), as it
only stores the training data. At classification time, LBR adds attribute-value
pairs to the antecedent with time complexity of O(tkns), as the selection of
an attribute-value pair for the antecedent is order O(tan) and this selection is
performed repeatedly until there is no significant improvement on accuracy. The
space complexity is O(tn + knv).

3.6 Averaged One-Dependence Estimators (AODE)

To avoid model selection and retain the efficiency of 1-dependence classifiers,
Webb et al. [19] proposed AODE, which averages the predictions of all qualified
1-dependence classifiers. In each 1-dependence classifier, all attributes depend
on the class and a single attribute. For any attribute value a;,

P(Ci,[) :P(ci,aj)P(I\ci,aj). (9)
This equality holds for every a;. Therefore,

Plei T) = Zj:1§jgn/\F(aj)2m P(ci,aj)P(I] ¢, a5)
P i1 <i<nAF(g) >m)

(10)

where F(a;) is the frequency of a; in the training sample.
AODE classifies by selecting:

n
argmax Z P(ci,a;) H (an|ci,aj) |- (11)

“ J1<i<nAF (a;)>m

If P(a;) is small, the estimate of P(I|c;, a;) may be unreliable. Hence, AODE
averages models where the frequency of the parent attribute is larger than m =
30, a widely used minimum sample size in statistics.

At training time AODE generates a three-dimensional table of probability
estimates for each attribute-value, conditioned by each other attribute-value and
each class. The resulting space complexity is O(k(nv)?). Forming this table is
of time complexity O(tn?). Classification requires the tables of probability esti-
mates formed at training time of space complexity O(k(nv)?). The time com-
plexity of classifying a single example is O(kn?) as we need to consider each pair
of qualified parent and child attribute within each class.
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4 Algorithm Comparisons

In this study, we compare eight representative semi-naive algorithms and NB.
These semi-naive Bayesian algorithms are BSE, FSS, BSEJ, TAN, SP-TAN,
NBTree, LBR and AODE.

4.1 Experimental Domains and Methodology

The thirty-six data sets from the UCI Machine Learning Repository used in our
experiments are shown in Table 1. The experiments were performed in the Weka
workbench [23] on a dual-processor 1.7 GHz Pentium 4 Linux computer with 2
Gb RAM, and all data were discretized using MDL discretization [24].

Table 1. Data sets

No. Domain Case Att Class No. Domain Case Att Class
1 Adult 48,842 14 2 19 Labor negotiations 57 16 2
2 Annealing 898 38 6 20 LED 1,000 7 10
3 Balance Scale 625 4 3 21 Letter Recognition 20,000 16 26
4 Breast Cancer (Wisconsin) 699 9 2 22 Liver Disorders (bupa) 345 6 2
5 Chess 551 39 2 23 Lung Cancer 32 56 3
6 Credit Screening 690 15 2 24 Mfeat-mor 2,000 6 10
7 Echocardiogram 131 6 2 25 New-Thyroid 215 5 3
8 German 1,000 20 2 26 Pen Digits 10,992 16 10
9 Glass Identification 214 9 3 27 Postoperative Patient 90 8 3
10 Heart 270 13 2 28 Primary Tumor 339 17 22
11 Heart Disease (cleveland) 303 13 2 29 Promoter Gene Sequences 106 57 2
12 Hepatitis 155 19 2 30 Segment 2,310 19 7
13  Horse Colic 368 21 2 31 Sign 12,546 8 3
14 House Votes 84 435 16 2 32 Sonar Classification 208 60 2
15 Hungarian 294 13 2 33 Syncon 600 60 6
16 Hypothyroid 3,163 25 2 34 Tic-Tac-Toe Endgame 958 9 2
17 Ionosphere 351 34 2 35 Vehicle 846 18 4
18 Iris Classification 150 4 3 36 Wine Recognition 178 13 3

As bias-variance decomposition provides a valuable insight into the aspects
that affect the performance of a learning algorithm, we use Weka’s bias-variance
decomposition utility which utilised the experimental method proposed by Ko-
havi and Wolpert [22] to compare the performance of the nine algorithms. Bias
denotes the systematic component of error, and variance describes the compo-
nent of error that stems from sampling [22]. There is a bias-variance tradeoff
such that bias typically increases when variance decreases and vice versa.

In Kohavi and Wolpert’s method, the training data are divided into a training
pool and a test pool randomly. Each pool contains 50% of the data. 50 local
training sets, each containing half of the training pool, are sampled from the
training pool. Classifiers are generated from each local training set, which is 25%
of the full data set. Bias, variance and error are estimated from the performance
of the classifiers on the test set.

4.2 Experimental Results

The mean error, bias and variance across all the thirty-six data sets for the nine
algorithms are shown in Table 2, 3 and 4 respectively. The pairwise win/draw/loss
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Table 2. Error

No. Domain NB AODE NBTree LBR TAN SP-TAN BSEJ BSE FSS
1  Adult 0.168 0.152 0.144 0.140 0.147 0.147 0.141 0.146 0.144
2 Annealing 0.082 0.065 0.085 0.064 0.067 0.067 0.070 0.076 0.123
3 Balance Scale 0.303 0.302 0.304 0.302 0.303 0.300 0.301 0.304 0.319
4 Breast Cancer (Wisconsin) 0.030 0.027  0.031 0.030 0.050 0.030 0.030 0.030 0.050
5 Chess 0.143 0.140 0.151 0.141 0.128 0.137 0.133 0.142 0.186
6 Credit Screening 0.171 0.163 0.174 0.172 0.177 0.172 0.172 0.172 0.167
7 Echocardiogram 0.389 0.382 0.388 0.392 0.388 0.388 0.382 0.386 0.389
8 German 0.268 0.262  0.283 0.269 0.277 0.268 0.270 0.269 0.288
9 Glass Identification 0.300 0.299 0.299 0.303 0.300 0.295 0.298 0.300 0.313
10 Heart 0.215 0.216 0.232 0.215 0.236 0.218 0.224 0.221 0.269
11 Heart Disease (cleveland) 0.174 0.176 0.191 0.174 0.176 0.178 0.185 0.188 0.246
12 Hepatitis 0.139 0.140 0.144 0.140 0.143 0.138 0.138 0.140 0.153
13 Horse Colic 0.221 0.219 0.228 0.210 0.213 0.219 0.222 0.218 0.218
14 House Votes 84 0.086 0.054 0.064 0.069 0.068 0.082 0.082 0.083 0.039
15 Hungarian 0.169 0.173 0.176 0.173 0.179 0.172 0.176 0.172 0.196
16 Hypothyroid 0.024 0.021 0.018 0.016 0.025 0.018 0.015 0.015 0.014
17 Ionosphere 0.119 0.102 0.121 0.119 0.099 0.118 0.114 0.113 0.137
18 Iris Claasification 0.058 0.058 0.061 0.058 0.056 0.058 0.057 0.058 0.060
19 Labor negotiations 0.150 0.150 0.151 0.196 0.168 0.154 0.154 0.150 0.249
20 LED 0.255 0.258  0.272 0.257 0.271 0.259 0.265 0.265 0.271
21 Letter Recognition 0.292 0.193 0.238 0.220 0.212 0.210 0.250 0.287 0.288
22 Liver Disorders (bupa) 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424
23 Lung Cancer 0.556 0.556  0.556 0.557 0.562 0.555 0.556 0.550 0.619
24 mfeat-mor 0.317 0.311 0.320 0.313 0.312 0.314 0.322 0.317 0.322
25 New-Thyroid 0.074 0.074 0.077 0.074 0.077 0.075 0.075 0.075 0.108
26 Pen Digits 0.132 0.037 0.071 0.065 0.066 0.055 0.078 0.124 0.125
27 Postoperative Patient 0.366 0.366 0.366 0.364 0.383 0.386 0.380 0.354 0.319
28 Primary Tumor 0.559 0.572 0.603 0.571 0.593 0.571 0.573 0.567 0.649
29 Promoter Gene Sequences 0.130 0.130 0.130 0.132 0.315 0.134 0.134 0.133 0.248
30 Segment 0.112 0.071 0.081 0.092 0.082 0.090 0.090 0.092 0.084
31 Sign 0.362 0.302 0.279 0.280 0.292 0.297 0.287 0.362 0.364
32 Sonar Classification 0.274 0.275 0.286 0.274 0.293 0.279 0.280 0.282 0.301
33 Syncon 0.069 0.059 0.095 0.069 0.058 0.069 0.068 0.068 0.115
34 Tic-Tac-Toe Endgame 0.296 0.261 0.254 0.291 0.294 0.295 0.265 0.294 0.293
35 Vehicle 0.444 0.383 0.375 0.385 0.382 0.428 0.421 0.433 0.420
36 Wine Recognition 0.040 0.042 0.049 0.040 0.053 0.040 0.044 0.043 0.158

Mean 0.220 0.206 0.214 0.211 0.219 0.212 0.213 0.218 0.241

summary of error, bias and variance for all the algorithms on thirty-six data sets
are presented in Table 5, 6 and 7. The win/draw/loss record in each table entry
compares the algorithm with which the row is labelled (L) against the algorithm
with which the column is labelled (C). The number of wins is the number of
data sets for which L achieved a lower mean value for the metric than C'. Losses
represent higher mean values and draws represent values that are identical for
3 decimal places. The algorithms are sorted in ascending order on the mean
metric in each win/draw/loss table. As no specific prediction about relative per-
formance has been made, the p value is the outcome of a two-tailed binomial
sign test. We assess a difference as significant if p < 0.05.

Considering first the error outcomes, AODE achieves the lowest mean error,
its mean error being substantially (0.010 or more) lower than that of BSE, TAN,
NB and FSS. The mean error of FSS is substantially higher than that of all
the other algorithms. The win/draw/loss record indicates that AODE has a
significant advantage over all the other algorithms, except LBR and SP-TAN.
The advantage of LBR, SP-TAN and BSE is significant compared to NBTree
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Table 3. Bias

No. Domain NB AODE NBTree LBR TAN SP-TAN BSEJ BSE FSS
1  Adult 0.156 0.139 0.123 0.127 0.129 0.119 0.114 0.115 0.122
2 Annealing 0.053 0.045 0.048 0.041 0.043 0.043 0.042 0.046 0.092
3 Balance Scale 0.175 0.172 0.177 0.173 0.172 0.172 0.174 0.172 0.181
4 Breast Cancer (Wisconsin) 0.028 0.025 0.025 0.028 0.027 0.028 0.026 0.026 0.030
5 Chess 0.104 0.101  0.078 0.097 0.062 0.090 0.081 0.095 0.112
6 Credit Screening 0.147 0.138 0.117 0.147 0.130 0.143 0.138 0.172 0.124
7 Echocardiogram 0.249 0.247  0.248 0.253 0.246 0.250 0.248 0.245 0.246
8 German 0.203 0.195 0.183 0.202 0.174 0.196 0.185 0.197 0.217
9 Glass Identification 0.169 0.168 0.160 0.167 0.164 0.166 0.161 0.161 0.153
10 Heart 0.156 0.156  0.153 0.156 0.165 0.154 0.152 0.146 0.143
11 Heart Disease (cleveland) 0.127 0.127 0.119 0.127 0.117 0.126 0.124 0.123 0.124
12 Hepatitis 0.098 0.096 0.082 0.094 0.078 0.095 0.088 0.094 0.083
13 Horse Colic 0.188 0.179  0.158 0.177 0.170 0.183 0.177 0.183 0.174
14 House Votes 84 0.077 0.043 0.028 0.046 0.044 0.071 0.071 0.070 0.028
15 Hungarian 0.156 0.156  0.144 0.157 0.134 0.155 0.151 0.150 0.158
16 Hypothyroid 0.021 0.018 0.012 0.013 0.022 0.014 0.012 0.012 0.013
17 Ionosphere 0.077 0.068 0.070 0.077 0.063 0.076 0.075 0.073 0.075
18 Iris Claasification 0.037 0.037 0.038 0.037 0.034 0.038 0.039 0.039 0.039
19 Labor negotiations 0.046 0.046 0.047 0.068 0.057 0.048 0.045 0.044 0.088
20 LED 0.209 0.211 0.209 0.208 0.221  0.208 0.207 0.211 0.212
21 Letter Recognition 0.230 0.133 0.102 0.103 0.124 0.110 0.142 0.226 0.223
22 Liver Disorders (bupa) 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292 0.292
23 Lung Cancer 0.311 0.311 0.312 0.312 0.375 0.309 0.310 0.306 0.311
24 mfeat-mor 0.246 0.240 0.212 0.231 0.235 0.234 0.218 0.227 0.217
25 New-Thyroid 0.039 0.040 0.037 0.039 0.028 0.039 0.039 0.039 0.039
26 Pen Digits 0.111 0.023 0.025 0.025 0.035 0.025 0.045 0.097 0.094
27 Postoperative Patient 0.299 0.299 0.300 0.300 0.315 0.306 0.307 0.298 0.305
28 Primary Tumor 0.346 0.348 0.330 0.352 0.370 0.342 0.330 0.331 0.354
29 Promoter Gene Sequences 0.043 0.043 0.044 0.044 0.134 0.044 0.045 0.048 0.080
30 Segment 0.075 0.044 0.034 0.047 0.039 0.056 0.053 0.055 0.043
31 Sign 0.324 0.260 0.206 0.218 0.245 0.235 0.214 0.310 0.311
32 Sonar Classification 0.181 0.180 0.172 0.181 0.169 0.182 0.172 0.175 0.178
33 Syncon 0.046 0.037 0.027 0.046 0.027 0.046 0.045 0.045 0.033
34 Tic-Tac-Toe Endgame 0.234 0.191 0.107 0.207 0.195 0.199 0.134 0.214 0.192
35 Vehicle 0.315 0.255 0.225 0.248 0.231 0.300 0.299 0.306 0.267
36 Wine Recognition 0.015 0.016 0.014 0.015 0.017 0.016 0.016 0.016 0.063

Mean 0.155 0.141 0.129 0.140 0.141 0.142 0.138 0.149 0.150

and FSS. All the algorithms, except NB, have a significant advantage over FSS.
It is notable that AODE is the only algorithm to have a significant advantage
in error over NB.

With respect to bias, NBTree exhibits the lowest mean bias, its mean bias
being substantially lower than that of all the remaining algorithms but BSEJ.
The win/draw/loss record shows that NBTree has a significant advantage over
the other algorithms, except TAN. The advantage of BSEJ is significant com-
pared with SP-TAN and NB. All the algorithms except FSS have significant
advantage over NB.

Turning to variance, the mean variance of NB and AODE is substantially
lower than that of BSEJ, TAN, NBTree and FSS. The win/draw /loss record
indicates that NB has a significant advantage over the other algorithms, but
AODE. AODE shares similar levels of variance with NB and LBR, and has
a significant advantage over the other algorithms. LBR and SP-TAN have a
significant advantage over BSEJ, TAN, NBTree and FSS. The advantage of BSE
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Table 4. Variance

No. Domain NB AODE NBTree LBR TAN SP-TAN BSEJ BSE FSS
1 Adult 0.011 0.012 0.020 0.013 0.018 0.027 0.027 0.031 0.021
2 Annealing 0.028 0.020 0.036 0.023 0.023 0.024 0.027 0.030 0.031
3 Balance Scale 0.125 0.128 0.125 0.126 0.128 0.126 0.125 0.129 0.135
4 Breast Cancer (Wisconsin) 0.002 0.002 0.006 0.002 0.023 0.002 0.004 0.004 0.020
5 Chess 0.038 0.038 0.072 0.043 0.065 0.046 0.051 0.046 0.074
6 Credit Screening 0.024 0.025 0.056 0.024 0.047 0.028 0.034 0.037 0.042
7 Echocardiogram 0.137 0.133 0.138 0.137 0.139 0.135 0.131 0.138 0.140
8 German 0.063 0.066  0.098 0.066 0.101 0.071 0.084 0.071 0.070
9 Glass Identification 0.129 0.129 0.136 0.134 0.134 0.127 0.134 0.136 0.156
10 Heart 0.058 0.058 0.078 0.058 0.070 0.063 0.070 0.074 0.123
11 Heart Disease (cleveland) 0.046 0.048 0.071 0.046 0.059 0.051 0.059 0.063 0.119
12 Hepatitis 0.040 0.043 0.061 0.044 0.064 0.043 0.049 0.045 0.069
13 Horse Colic 0.032 0.040 0.068 0.033 0.042 0.035 0.043 0.034 0.043
14 House Votes 84 0.009 0.010 0.035 0.022 0.024 0.011 0.011 0.013 0.011
15 Hungarian 0.013 0.017 0.032 0.016 0.044 0.016 0.025 0.021 0.038
16 Hypothyroid 0.003 0.003 0.006 0.002 0.003 0.004 0.003 0.003 0.002
17 Ionosphere 0.041 0.033 0.050 0.041 0.036 0.041 0.039 0.039 0.061
18 Iris Claasification 0.021 0.021 0.022 0.021 0.021 0.019 0.018 0.019 0.020
19 Labor negotiations 0.102 0.102 0.102 0.126 0.109 0.104 0.107 0.104 0.157
20 LED 0.045 0.046 0.062 0.048 0.049 0.050 0.057 0.052 0.058
21 Letter Recognition 0.061 0.058 0.133 0.114 0.086 0.098 0.106 0.060 0.064
22 Liver Disorders (bupa) 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130 0.130
23 Lung Cancer 0.240 0.240 0.240 0.240 0.184 0.241 0.241 0.239 0.302
24 mfeat-mor 0.070 0.070  0.106 0.081 0.075 0.079 0.101 0.088 0.103
25 New-Thyroid 0.034 0.034 0.038 0.034 0.049 0.035 0.036 0.036 0.068
26 Pen Digits 0.020 0.014 0.045 0.039 0.030 0.029 0.033 0.026 0.031
27 Postoperative Patient 0.065 0.065 0.065 0.064 0.067 0.078 0.071 0.056 0.013
28 Primary Tumor 0.210 0.219 0.268 0.215 0.218 0.225 0.238 0.232 0.290
29 Promoter Gene Sequences 0.085 0.085 0.085 0.086 0.177 0.088 0.088 0.084 0.165
30 Segment 0.036 0.026 0.047 0.044 0.043 0.034 0.036 0.037 0.040
31 Sign 0.037 0.041 0.072 0.060 0.045 0.061 0.072 0.051 0.052
32 Sonar Classification 0.092 0.093 0.112 0.092 0.122 0.095 0.106 0.105 0.120
33 Syncon 0.022 0.022 0.067 0.022 0.030 0.022 0.023 0.023 0.081
34 Tic-Tac-Toe Endgame 0.061 0.068 0.145 0.083 0.097 0.094 0.129 0.079 0.099
35 Vehicle 0.126 0.126 0.147 0.134 0.148 0.125 0.120 0.124 0.149
36 Wine Recognition 0.024 0.025 0.034 0.024 0.036 0.024 0.027 0.026 0.093

Mean 0.063 0.064 0.083 0.069 0.076 0.069 0.074 0.069 0.089

and BSEJ compared with NBTree and FSS is significant. TAN, NBTree and FSS
share similar levels of variance.

4.3 Analysis

Bias describes how closely the learner is able to describe the decision surfaces for
a domain, while variance reflects the sensitivity of the learner to variations in the
training sample. In general, the better the learner is able to fit the training data,
the lower the bias. However, closely fitting the training data may result in greater
changes in the model formed from sample to sample, and hence higher variance.
There is a tension between bias and variance. However, variance is expected
to decrease with increasing training sample size, as the differences between the
different samples decrease [25]. Therefore, bias may come to dominate error for
problems with large training samples.

NB uses a fixed formula to classify, and hence there is no model selection,
which results in relatively low variance. Weakening the attribute independence
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Table 5. Win/Draw/Loss Records of Error on 36 Datasets

W/D/L AODE LBR  SP-TAN BSEJ NBTree BSE TAN NB FSS
p of W/D/L

AODE
LBR 12-6-18
0.3616
SP-TAN 11-3-22 13-7-16
0.0802 0.7110
BSEJ 8-3-25 13-3-20 11-9-16
0.0046 0.2962 0.4420
NBTree 5-5-26 10-1-25 9-3-24 11-3-22
0.0002 0.0166 0.0136 0.0802
BSE 7-4-25 10-7-19 12-6-18 12-7-17 24-2-10
0.0022 0.1360 0.3616 0.4582 0.0244
TAN 8-2-26 12-1-23 13-4-19 13-1-22 15-3-18 15-3-18
0.0030 0.0896 0.3770 0.1754 0.7284 0.7284
NB 8-7-21 11-10-15 11-6-19 15-3-18 21-4-11 13-7-16 17-3-16
0.0242 0.5572 0.2004 0.7284 0.1102 0.7110 1.0000
FSsS 5-1-30 6-1-29 9-1-26 7-2-27 7-2-27 8-2-26 7-3-26 11-2-23

<0.0001 0.0002 0.0090 0.0008 0.0008 0.0030 0.0014 0.0580

assumption may make semi-naive Bayesian methods fit the training sample bet-
ter. Consequently, they may have lower bias, but higher variance compared with
NB. AODE reduces variance successfully by aggregating all the qualified 1-
dependence classifiers. It delivers competitive variance with NB. NBTree has
relatively low bias, but high variance. Brain and Webb [25] hypothesized that
the low variance algorithms tend to enjoy lower relative error on small training
sets, while low bias algorithms enjoy lower relative error on large training sets.
Therefore, the Weka bias-variance estimation method used in this study, which
produces small training sets, might put NBTree at a disadvantage. We believe
that this also accounts for why AODE was the only algorithm to achieve a sig-
nificant advantage over NB with respect to error in our experiments, given the
low variance of these two algorithms.

As has been discussed above, bias tends to dominate error for large train-
ing samples. Therefore, for large training data we recommend use of the lowest
bias semi-naive Bayesian method whose complexity satisfies the computational
constraints of the application context. For small training data we recommend
the lowest variance semi-naive Bayesian method that has suitable computational
complexity. For intermediate size training samples, an appropriate trade-off be-
tween bias and variance should be sought within the prevailing computational
complexity constraints. AODE has very low variance, relatively low bias, and
low training time and space complexity. In consequence, it may prove compet-
itive over a considerable range of classification tasks. For extremely small data
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Table 6. Win/Draw/Loss Records of Bias on 36 Datasets

W/D/L NBTree BSEJ LBR  AODE TAN SP-TAN  BSE FSS NB
p of W/D/L
NBTree
BSEJ 7-5-24
0.0034
LBR 4-5-27  11-3-22

<0.0001 0.0814

AODE 10-2-24 13-3-20 18-4-14

0.0244 0.2962 0.5966

TAN 12-2-22 19-1-16 21-1-14 21-2-13
0.1214 0.7358 0.3106 0.2294
SP-TAN 5-4-27 7-4-25 15-7-14 16-3-17 14-3-19

0.0001 0.0022 1.0000 1.0000 0.4868

BSE 8-2-26 10-8-18 19-3-14 16-4-16 14-2-20 19-5-12

0.0030 0.1850 0.4868 1.2734 0.3916 0.2810

FSS 5-2-29 12-5-19 16-3-17 15-2-19 13-2-21 17-2-17 13-3-20

<0.0001 0.2810 1.0000 0.6076 0.1754 1.2734 0.2962

NB 6-2-28 4-2-30 7-11-18 4-9-23 9-1-26 7-4-25 5-2-29 13-3-20

0.0002 <0.0001 0.0432 0.0004 0.0060 0.0022 <0.0001 0.2962

NB may prove better and for large data NBTree, BSEJ and LBR may have an
advantage if their computational profiles are appropriate to the task.

Admittedly these guidelines are imprecise, as the relevant data size is relative
to the complexity of the decision surfaces that must be approximated, and in
most applications this is unknown. Nonetheless, we believe that they provide
a useful framework within which to operate when choosing between semi-naive
Bayesian methods.

5 Conclusion

A number of techniques have developed to improve Naive Bayes’s accuracy per-
formance by relaxing the attribute independence assumption. We study eight
typical semi-naive Bayesian algorithms, and give details of the time and space
complexity of these methods. BSEJ, NBTree and SP-TAN have relatively high
training time complexity, while LBR has high classification time complexity.
BSEJ has very high space complexity. We performed extensive experimental
evaluation of the relative error, bias and variance of these algorithms. For the
experimental data sets investigated, AODE shares similar levels of error with
LBR and SP-TAN, and has a significant advantage over the other algorithms.
NBTree has a significant advantage over all the other algorithms, except TAN.
All the other algorithms, except TAN and FSS have a significant advantage over
NBTree. As bias tends to be a larger portion of error when training set size
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Table 7. Win/Draw/Loss Records of Variance on 36 Datasets

W/D/L NB AODE LBR  SP-TAN  BSE BSEJ TAN  NBTree FSS
p of W/D/L
NB
AODE 6-15-15
0.0784
LBR 3-13-20 10-8-18

0.0004 0.1850

SP-TAN 6-5-25 7-4-25 11-7-18

0.0008 0.0022 0.2650

BSE T-2-27 6-2-28 13-1-22  11-5-20

0.0008 0.0002 0.1754 0.1496

BSEJ 5-4-27 4-2-30 10-2-24 7-5-24 12-6-18

0.0001 <0.0001 0.0244 0.0034 0.3636

TAN 3-3-30 2-4-30 8-4-24 11-1-24  12-2-22 13-5-18

<0.0001 <0.0001 0.0070 0.0410 0.1214 0.4732

NBTree 0-6-30 1-5-30 3-2-31 6-1-29 3-3-30 5-3-28 13-1-22

<0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 0.1754

FSs 3-1-32 3-1-32 7-2-27 6-2-28 5-1-30 8-3-25 12-1-23 15-1-20

<0.0001 <0.0001 0.0008 0.0002 <0.0001 0.0046 0.0896 0.4996

increases, we suggest using low bias methods for large data sets, and low vari-
ance methods for small data sets, within the further constraints on applicable
algorithms implied by the computational constraints of the given application.
Computation cost and the trade-off between bias and variance should be con-
sidered for intermediate size data.
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Abstract. One of the fundamental tasks of data analysis in many disci-
plines is to identify the significant differences between classes or groups.
Contrast sets have previously been proposed as a useful tool for de-
scribing these differences. A contrast set is a conjunction of (association
rule-like) attribute-value pairs for which the conjunction is true for some
group. The intuition is that comparing the support for a contrast set
across groups may provide some insight into the fundamental differences
between the groups. In this paper, we compare two contrast set mining
methods that rely on different statistical philosophies: the well-known
STUCCO approach, and CIGAR, our proposed alternative approach.
We survey and discuss the statistical measures underlying the two meth-
ods using an informal tutorial approach. Experimental results show that
both methodologies are statistically sound, representing valid alternative
solutions to the problem of identifying potentially interesting contrast
sets.

1 Introduction

One of the fundamental tasks of data analysis in many disciplines is to identify
the significant differences between classes or groups. For example, an epidemio-
logical study of self-reported levels of stress experienced by health care providers
could be used to characterize the differences between those who work in rural and
urban communities. The differences could be conveniently described using pairs
of contrasting conditional probabilities, such as P(Stress=high A Income=low
| Location=rural) = 32J and P(Stress=high A Income=low | Location=
urban) = 25%. The conditional probabilities shown here are equivalent to rules
of the form Location=rural = Stress=high A Income=low (32}) and
Location = urban = Stress=high A Income=low (25%), known as assocta-
tion rules [1], where the antecedents (i.e., Location=rural and Location=urban)
describe distinct groups that share a common consequent (i.e., Stress=high A
Income=low), and the percentages represent the number of examples in each
group for which the association rule is true (called support). The common con-
sequent is called a contrast set [2].

Contrast set mining is an association rule-based discovery technique that was
originally introduced as emerging pattern mining [4], a temporal pattern mining
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problem that is essentially a special case of the more general contrast set mining
problem. An excellent bibliography can be found in [6].

More generally applicable work in contrast set mining can be found in [2], [3],
and [8]. In [2], contrast set mining is studied within the context of an association
rule-based technique called STUCCO (Searching and Testing for Understandable
Consistent COontrasts). For an extensive description and evaluation, see [3]. The
fundamental characteristic of this approach is that it utilizes a canonical order-
ing of nodes in the search space, such that any node that cannot be pruned is
visited only once. STUCCO also utilizes x2 testing of two-dimensional contin-
gency tables, along with a modified Bonferroni method to control Type I error,
to determine whether differences between rules in a contrast set are statistically
significant.

Group differences are also studied in [8] within the context of an association
rule-like technique called Magnum Opus, a commercial exploratory rule discovery
tool. However, the statistical reasoning used by Magnum Opus actually performs
a within-groups comparison rather than a between-groups comparison [7], finding
only a subset of the contrast sets generated by STUCCO, so we do not discuss
it further in this work.

Here, we discuss STUCCO in detail, and introduce CIGAR (Contrastlng,
Grouped Association Rules), a contrast set mining technique that relies on an
alternative statistical philosophy to the discovery of statistically significant con-
trast sets, yet still adheres to sound and accepted practices. CIGAR not only
considers whether the difference in support between two groups is significant,
it also considers whether the attributes in a contrast set are correlated, and a
correlational pruning technique is utilized to reduce the size of the search space.

2 The Contrast Set Mining Framework

In this section, we describe how the contrast set mining problem generalizes the
association rule mining problem from binomial or transactional data types to
multinomial, grouped categorical data.

2.1 The Association Rule Mining Problem

Mining contrast sets is based upon the problem of mining association rules [1].
The problem of association rule mining is typically studied within the context
of discovering buying patterns from retail sales transactions (i.e., market basket
data), and is formally defined as follows. Let A = {A;,A,,..., A} be a set of
attributes called items. Let D be a set of transactions, where each transaction T'
is described by a vector of m attribute-value pairs Ay = Vi, Ay =V, ..., Ay = Vp,
and each Vj is selected from the set {1,0} (ie., V; = 1 (V5 = 0) indicates
that item A; was purchased (not purchased)). The collection of purchased items
contained in transaction 7" is an itemset. Transaction T contains X, a set of
purchased items, if X C T. An association rule is an implication of the form
X = Y, where X C A, Y C A and X N Y = (). Confidence c in X = Y is the
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percentage of transactions in D containing X that also contain Y. Support s for
X = Y is the percentage of transactions in D containing X U Y. The confidence
in an association rule X = Y measures the conditional probability of Y given X,
denoted P(Y|X). The goal of association rule mining is to identify rules whose
support and confidence exceed some user-defined thresholds.

2.2 The Contrast Set Mining Problem

In the problem of contrast set mining [2], [3] transaction set D is generalized to
a set of multinomial examples, where each example FE is described by a vector
of m attribute-value pairs Ay = Vy,Ay = V,, ..., Ay =V, and each V; is selected
from the finite set of discrete domain values in the set {V;,,Vs,,..., Vi } asso-
ciated with A;. One attribute A; in D is a distinguished attribute whose value
Vj, in example E is used to assign E into one of n mutually exclusive groups
G1,Ga,...,Gyh. A contrast set X is a conjunction of attribute-value pairs defined
on G1,Ga, ..., Gy, such that no A; occurs more than once. From these conjunc-
tions, we have rules of the form A; = V;, = X, where the antecedent contains the
distinguished attribute and determines group membership, and the consequent
describes a contrast set. Support s for association rule A; = V;, = X is the per-
centage of examples in G containing X. The goal of contrast set mining is to
identify all contrast sets for which the support is significantly different across
groups.

3 STUCCO

The objective of STUCCO is to find contrast sets from grouped categorical data,
where a dataset D can be divided into n mutually exclusive groups, such that
for groups G; and G;, G;NG; = 0, for all i # j. Specifically, we want to identify
all contrast sets, such that the conditions

31jP(X/G) # P(K/G))
and
max;;|support(X,G;) — support(X,G,)| > §

are satisfied, where X is a contrast set, Gy is a group, and ¢ is the user-defined
minimum support difference (i.e., the minimum support difference between two
groups). Contrast sets satisfying the first condition are called significant, those
satisfying the second condition are called large, and those satisfying both condi-
tions are called deviations.

3.1 Finding Deviations

The search space consists of a canonical ordering of nodes, where all possible
combinations of attribute-value pairs are enumerated. The rule contained at
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each node is called a candidate set until it has been determined that it meets
the criteria required to be called a contrast set (i.e., it is significant and large).

Determining Support for a Candidate Set. The search for contrast sets
follows a breadth-first search strategy, and is based upon support for a candidate
set. For example, a sample contingency table is shown in Table 1. In Table 1,
Support (Location=urban A Stress=high) = 194 / 554 = 0.35 (or 35%) and
Support (Location=rural A Stress=high) = 355 / 866 = 0.41 (or 41%).

Table 1. An example contingency table

Location=urban|Location=rural Z Row
Stress=high 194 355 549
— (Stress=high) 360 511 871
> Column 554 866 1420

Determining Whether a Candidate Set is Large. As mentioned above,
two rules whose support difference exceeds some user-defined threshold are called
large rules. For example, in Table 1, | Support (Location=urban A Stress=high
) - Support(Location=rural A Stress=high)| = [0.35 - 0.41] = 0.06 (or
6%). If we assume that § = 0.05 (or 5%), then the rules Location=urban A
Stress=high and Location=rural A Stress=high are large.

Determining Whether a Candidate Set is Significant. To determine
whether support for rules are significantly different across groups, two-dimensional
contingency table analysis and the 2 statistic are used. A 2 x n contingency
table is constructed, where the rows represent the truth of the contrast set and
the columns represent the groups. The x? statistic tests the null hypothesis that
row and column totals are not related (i.e., are independent), and is given by

2 Oij — Ey;)?
X2 :ZZ( JEij J) ,
=1 5=1
where O;; is the observed frequency at the intersection of row 4 and column j,
E;; = (0;. x0;)/0.., O;. is the total in row ¢, O ; is the total in column j, and
O.. is the sum of the row and column totals (i.e., the total number of examples).
The number of degrees of freedom for x? is given by df = (r—1) x (¢ — 1), where
r and ¢ are the number of rows and columns, respectively. A sufficiently large
x2 value will cause rejection of the null hypothesis that row and column totals
are not related. For example, x2 = 5.08 for the contingency table in Table 1. At
the 5% significance level (i.e., a = 0.05), x? = 3.84. Since 5.08 > 3.84, we reject
the null hypothesis. That is, we conclude that Location and Stress in the
rules Location=urban A Stress=high and Location=rural A Stress=high
are dependent.
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However, we have failed to consider the effects of multiple hypothesis tests.
The « level is used to control the maximum probability of falsely rejecting the
null hypothesis in a single x? test (i.e., known as a Type I error or a false posi-
tive error in statistical and non-statistical parlance, respectively). In the above
example, we used @ = 0.05. But since STUCCO performs multiple hypothesis
tests, a modified Bonferroni statistic is employed to limit the total Type I error
rate for all x? tests to . The modified Bonferroni statistic uses a different « for
contrast sets being tested at different levels of the search space. That is, at level
7 in the search space,

a; = min((a/2°)/|Cy|, a;1),

where |C;| is the number of candidates at level i. The net effect, then, is that
as we descend through the search space, «; is half that of «;_1, so a significant
difference is increasingly restrictive as we descend. In the case of the contingency
table in Table 1, the rules being tested are found at level two of the search
space. If we assume there are 10 nodes at level two, then ¢ = 2 and ay =
((0.05/2%)/|10]) = 0.00125. For a = 0.00125, x? ~ 10.83. Since 5.08 < 10.83, we
accept the null hypothesis. That is, we conclude that Location and Stress are
independent (i.e., no relationship exists between the two attributes). And since
the rules are not significantly different, they are not significant. Finally, since the
rules are not both large and significant, they are not deviations, and therefore,
do not constitute a contrast set.

3.2 Pruning the Search Space

Conceptually, the basic pruning strategy is simple: a node in the search space
can be pruned whenever it fails to be significant and large.

Effect Size Pruning. When the maximum support difference, 9,42, between
all possible pairs of groups has been considered and 6,4, < 6, then the cor-
responding nodes can be pruned from the search space. This ensures that the
effect size is large enough to be considered important by the domain expert.

Statistical Significance Pruning. The accuracy of the x? test depends on
the expected frequencies in the contingency table. When an expected frequency
is too small, the validity of the x? test may be questioned. However, there is
no universal agreement on what is appropriate, so frequencies ranging anywhere
from 1 (liberal) to 5 (conservative) are considered acceptable. Thus, nodes are
pruned whenever an expected frequency is considered unacceptable.

Maximum x2? Pruning. As we descend through the search space, the number
of attribute-value pairs in a contrast set increases (i.e., itemsets are larger as
the rules become more specific), and at each successive lower level in the search
space, the support for a contrast set at level ¢ is bounded by the parent at level
¢t — 1. For example, given the rule Location=rural = Stress=high (54%),
then the rule Location=rural = Stress=high A Income=low (65%) cannot
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possibly be true. That is, any specialization of this rule cannot be any more
than 54%. Consequently, the support for the parent rule Stress=high becomes
an upper bound for all descendants in the search space. Similarly, as we ascend
through the search space, the support for a contrast set at level ¢ is bounded by
the child at level ¢ + 1. That is, the support for the child rule becomes a lower
bound for all ancestors in the search space. Within the context of a contingency
table, the observed frequencies in the upper (lower) row decrease (increase) as
the contrast set becomes more specialized.

Since the support is bounded, the maximum possible x? value for all special-
izations at the next level can be determined and used to prune the specialization
if it cannot meet the x2? cutoff for o at that level. Let u; and I; represent the
upper and lower bounds, respectively, of the observed values in position 7 of
row one across all specializations. For example, if we have three specializations,
say, and the observed values at position ¢ = 2 of the three specializations are
4,2, and 5, then us = 5 and Iy = 2. The maximum x? value possible for any
specialization of a rule is given by

2 _ 2
Xmax - mawoiG{ui,li}X (01; 02, ... 7071))

where x2(01,02,...,0,) is the value for a contingency table with {o1, 0, ...,
on} as the observed values in the first row. The rows that we use to determine
the maximum x? value are based upon the n upper and lower bounds from the
specializations. For example, if the first rows of our three specializations are
{5, 4, 9}, {3, 2, 10}, and {8, 5, 6}, then the upper and lower bounds are {8,
5, 10} and {3, 2, 6}, respectively. We generate all 2" possible first rows from
combinations of the values in the upper and lower bounds. For example, from
the upper and lower bounds given previously, the 2% unique first rows that we
can generate are {8, 5, 10}, {3, 5, 10}, {8, 2, 10}, {3, 2, 10}, {8, 5, 6}, {3, 5, 6},
{8, 2, 6}, and {3, 2, 6}. These rows actually correspond to the extreme points
(i.e., corners) of a feasible region where the maximum x? value can be found.
Since the values in the second row of each contigency table are determined by the
values in the first row (since the column totals are fixed), then each contingency
table is unique. For example, if the column totals are {15, 7, 13}, then the second
row corresponding to {8, 5, 10} is {7, 2, 3}. We then simply determine the x?
value for each of the generated contingency tables and take the maximum. If
X2,4. €xceeds the o cutoff, then none of the specializations can be pruned.

Interest Based Pruning. Specializations with support identical to the parent
are not considered interesting by STUCCO. Similarly, when the support for one
group is much higher than other groups, it will sometimes remain much higher
regardless of the nature of any additional attribute-value pairs that are added
to the rule. Specializations of the rule are pruned from the search space.

Statistical Surprise Pruning. When the observed frequencies are statististi-
cally different from expected frequencies (i.e., statistically surprising), a contrast
set is considered interesting. For cases involving two variables, the expected fre-
quency can be determined by multiplying the respective observed frequencies.
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For example, if P(Stress=high | Location=rural) = 40% and P(Income=low
| Location=rural) = 65, then P(Stress=high A Income=low | Location
=rural) = 26%. If the product is within some threshold range, the contrast set
is considered uninteresting and pruned from the search space. For more compli-
cated cases (i.e., more than two variables), iterative proportional fitting can be
used [5].

4 CIGAR: A Statistically Sound Alternative

Whereas STUCCO answers the question whether a difference exists between
contrast sets in two or more groups through the analysis of 2 X n contingency
tables, CIGAR seeks a more fine grained approach by breaking the 2 x n contin-
gency tables down into a series of 2 X 2 contingency tables to try to explain where
these differences actually occur. So, while we still want to identify all contrast
sets such that the conditions

3ijP(X|G;) # P(X|G;)

and
max;;|support(X,G;) — support(X,G,)| > ¢

used by STUCCO are satisfied (i.e., to find the significant and large contrast
sets), CIGAR also utilizes three additional constraints. That is, we also want to
identify all contrast sets such that the conditions

support(K,Gi) > 6,
correlation(X,G;) > A,

and
|correlation(X,G;) — correlation(child(X,G;))| > v

are satisfied, where X is a contrast set, Gy, is a group, 3 is the user-defined min-
imum support threshold, A is the user-defined minimum correlation threshold,
and + is the user-defined minimum correlation difference. Contrast sets satisfy-
ing the third condition are called frequent. We believe a support threshold can
aid in identifying outliers. Since outliers can dramatically affect the correlation
value, the minimum support threshold provides an effective tool for removing
them. Contrast sets satisfying the fourth condition are called strong. This mea-
sures the strength of any linear relationship between the contrast set and group
membership. Contrast sets satisfying the first four conditions are called devia-
tions. Those deviations that fail to satisfy the last condition are called spurious
and pruned from the search space.
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4.1 Finding Deviations

With CIGAR, before a candidate set can become a contrast set it must meet
more restrictive criteria than STUCCO. That is, it must not only be significant
and large, it must also be frequent and strong.

Determining Support for a Candidate Set. CIGAR determines support
for a candidate set in the same way as STUCCO, but CIGAR also utilizes a
minimum support threshold. This threshold is useful for two reasons. First, the
domain expert may not be interested in low support rules. Consequently, the
nodes for these rules and all the descendant nodes can be pruned from the search
space. Second, if the rule support is 0% or 100%, then the rule is pruned since
a conjunction of this rule with any other does not create any new information.

Determining Whether a Candidate Set is Large and/or Significant.
CIGAR determines whether a candidate set is large and/or significant in the
same way as STUCCO.

Determining Whether a Candidate Set is Correlated. In CIGAR, cor-
relation is calculated using the Phi correlation coefficient. The Phi correlation
coefficient is a measure of the degree of association between two dichotomous
variables, such as those contained in a 2 x 2 contingency table, and is conve-
niently expressed in terms of the observed frequencies. For example, given the
generic 2 x 2 contingency table shown in Table 2, the Phi correlation coefficient
is given by

0110322 — 01202,
V(011 + 021) (012 + 022)(011 + O12) (021 + O22)

¢ =

Table 2. A generic contingency table

G1 G2 Z Row
Contrast Set O11 O12 O11 + O12
— (Contrast Set) O21 Oa2 O21 + O22
z Column O11 + 012|012 + 022|011 + O12 + O21 + O22

The Phi correlation coefficient compares the diagonal cells (i.e., O11 and Oa3)
to the off-diagonal cells (i.e., O2; and Op2). The variables are considered posi-
tively associated if the data is concentrated along the diagonal, and negatively
associated if the data is concentrated off the diagonal. To represent this associ-
ation, the denominator ensures that the Phi correlation coefficient takes values
between 1 and -1, where zero represents no relationship. However, the calcula-
tion for the Phi correlation coefficient can be expressed in terms of the x? value
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(which we have to calculate anyway), and is given by
r=Vx*/N,

where N = O11 4+ O12 + O21 + Og2. So, for the example in Section 3.1, and using
x% = 5.08 and o = 0.05, we have r = 1/5.08/1420 = 0.06. Now a general rule of
thumb is that 0.0 < r < 0.29 represents little or no association, 0.3 < r < 0.69
represents a weak positive association, and 0.7 < r < 1.0 represents a strong
positive association. Consequently, although we have previously determined that
a significant relationship exists between Location and Stress (i.e., prior to
considering the effects of multiple hypothesis tests), at » = 0.06, this relationship
is very weak.

4.2 Pruning the Search Space

CIGAR provides a powerful alternative strategy for reducing the number of
results that must be considered by a domain expert. Conceptually, the basic
pruning strategy is that a node in the search space is pruned whenever it fails
to be significant, large, frequent, and strong.

Look-Ahead x? Pruning. The x? look-ahead approach calculates the x? value
for each specialization of a rule. If no specialization is found to be significant,
then all the specializations are pruned from the search space. If at least one
specialization is found to be significant, all the specializations are considered
candidate sets at the next level of the search tree.

Statistical Significance Pruning. As mentioned in Section 3.2, the validity of
the x2 test may be questioned when the the expected frequencies are too small.
To address this problem, Yates’ correction for continuity has been suggested.
Although there is no universal agreement on whether this adjustment should be
used at all, there does seem to be some consensus that indicates the correction
for continuity should be applied to all 2 x 2 contingency tables and/or when
at least one expected frequency is less than five (liberal) or 10 (conservative).
Either way, Yates’ correction provides a more conservative estimate of the y2
value that is, hopefully, a more accurate estimate of the significance level. Yates’
correction for continuity is given by

(|04 — Eij] = 0.5)°

o3

2 2
=1 j=

1
For example, Yates’ x? = 4.84 for the contingency table in Table 1.

Minimum Support Pruning. The minimum support threshold utilized by
CIGAR is the first line pruning strategy. For example, when determining cor-
relation between Location and Stress, if one group happens to have very low
support, it will likely affect the correlation for all pairwise group comparisons.
Consequently, a domain expert may decide to exclude the low support group.
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Minimum Correlation Pruning. The Phi correlation coefficient provides a
basis for determining whether a contrast set is worth further consideration. For
example, the lower the correlation, the higher the likelihood that no relationship
actually exists between a rule and the group. That is, even if a rule is considered
significant, if the correlation is zero, then the probability that the rules is simply
a statistical artifact is high. Therefore, the removal of rules that do not meet
the minimum correlation criteria eliminates the likelihood of reporting statistical
artifacts. For example, we determined in the previous section that the relation-
ship between Location and Stress is weak at » = 0.06 and the rule should be
removed from further consideration.

When a high minimum correlation threshold is used, many significant rules
may be pruned, resulting in an increase in Type II error. Similarly, when a low
minimum correlation threshold is used, many spurious rules may not be pruned.
This is analogous to the problem of setting support thresholds in the classic
association rule mining problem.

CIGAR is different from STUCCO in that it tends to report more specialized
contrast sets rather than generalized contrast sets. The assumption behind ap-
proaches that report more generalized rules is that more general rules are better
for prediction. However, the complex relationships between groups can often be
better explained with more specialized rules.

Minimum Correlation Difference Pruning. CIGAR calculates the differ-
ence between the correlation of a rule and the correlations of specializations of
that rule. If the difference in correlation between a rule and a specialization
is less than the minimum correlation difference threshold, the specialization is
pruned from the search space. That is, if the addition of a new attribute-value
pair to a contrast set does not add any new information that directly speaks
to the strength of the relationship, then the contrast set is spurious. For ex-
ample, assume that » = 0.70 for the rule Location=rural A Income=low. If
v = 0.05, and » = 0.67 for the specialization Location=rural A Income=low
A Stress=high, then the specialization is pruned from the search space because
[0.70 — 0.67) = 0.03 and ~ > 0.03.

Generally, as we descend through the search space, the support for rules at
lower levels decreases. As a result, the x? value and r generally decrease, as
well. The decision on whether to prune a rule from the search space is then
a fairly easy one, as the previous example showed (i.e., it failed to exceed the
minimum correlation difference threshold). However, it is possible that as we
descend through the search space the x? value and/or r can increase. It is also
possible the x? value and/or r can decrease and then increase again. If the
correlation difference between a rule and one of its specializations is less than the
minimum correlation difference, regardless of whether the difference represents
a decrease or an increase, the domain expert has to be careful when deciding
whether to prune the specialization. That is, pruning a specialization that fails
to meet the minimum correlation difference criteria at level ¢ could result in the
loss of a specialization at level ¢ + 1 that does meet the minimum correlation
difference criteria. So, some statistical judgment may be required on the part of
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the domain expert to ensure that only unproductive and spurious rules can be
pruned.

5 Experimental Results

In this section, we present the results of our experimental evaluation and com-
parison of STUCCO and CIGAR. STUCCO was supplied by the original authors
[2], [3]. STUCCO, implemented in C++ and compiled using gcc (version 2.7.2.1),
was run on a Sun Microsystems Enterprise 250 Model 1400 with two UltraSparc-
IT 400 MHz processors and 1 GB of memory. CIGAR was implemented by the
authors of this paper in Java 1.4.1 and was run under Windows XP on an IBM
compatible PC with a 2.4 GHz AMD Athlon processor and 1 GB of memory.
The performance of the two software tools was compared by generating contrast
sets from publicly available datasets.

5.1 The Datasets

Discovery tasks were run on three datasets: Mushroom, GSS Social, and Adult
Census. The Mushroom dataset, available from the UCI Machine Learning Repos-
itory (www.ics.uci.edu/ mlearn/MLRepository.html), describes characteris-
tics of gilled mushrooms. The GSS Social dataset is a survey dataset from Statis-
tics Canada that contains the responses to the General Social Survey of Canada
(1986 - Cycle 2): Social Activities and Language Use. The Adult Census dataset
is a subset of the Adult Census Data: Census Income (1994/1995) dataset, a
survey dataset from the U.S. Census Bureau.

The characteristics of the three datasets are shown in Table 3. In Table 3,
the Tuples column describes the number of tuples in the dataset, the Attributes
column describes the number of attributes, the Values column describes the
number of unique values contained in the attributes, and the Groups column
describes the number of distinct groups defined by the number of unique values
in the grouping attribute.

Table 3. Characteristics of the Four Datasets

Dataset Tuples |Attributes| Values| Groups
Mushroom 8,142 23 130 2
GSS Social 179,148 16 2,026 7
Adult Census 826 13 129 2

5.2 The Effect of Error Control

STUCCO seeks to control Type I (or false positive) error, whereas CIGAR seeks
to control Type IT (or false negative) error. In this section, we compare the error
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control philosophies of STUCCO and CIGAR to evaluate the impact on the
number of candidate sets and contrast sets generated.

The number of candidate sets generated from the Mushroom, GSS Social, and
Adult Census datasets is shown in Table 4. Table 4 shows for the Mushroom,
GSS Social, and Adult Census datasets that CIGAR generated approximately
9.1, 1.3, and 2.8 times more candidate sets, respectively, than STUCCO. For
example, for the Mushroom dataset, CIGAR generated 128,717 candidate sets
containing up to 13-itemsets, while STUCCO generated 14,089 candidate sets
containing up to 8-itemsets.

Table 4. Summary of Candidate Sets Generated

Mushroom GSS Social Adult Census

k-Itemsets| STUCCO| CIGAR|STUCCO|CIGAR|STUCCO|CIGAR
1 103 53 11,965 | 3,009 97 44
2 951 694 13,994 | 5,980 877 419
3 3,470 3,912 6,670 | 8,620 2,011 1,680
4 6,025 10,496 4,897 | 13,168 3,033 3,545
5 3,054 | 21,006 792 | 10,298 826 4,806
6 485 | 28,427 117 | 5,356 36 4,357
e 1 | 27,995 6| 1,524 0 2,755
8 0 | 20,189 0 236 0 1,184
9 0 | 10,545 0 20 0 342
10 0 3,870 0 9 0 60
11 0 939 0 0 0 5
12 0 133 0 0 0 0
13 0 8 0 0 0 0
14 0 0 0 0 0 0
Total| 14,089 [128,717 38,411 | 48,220 6,880 | 19,197

Up to the 2-itemset level, STUCCO generates more candidate sets than
CIGAR. The primary reason for this is that when STUCCO is determining
whether a candidate set is large, it includes groups for which the support is zero.
CIGAR uses the minimum support threshold to remove contrast sets with low
support from further consideration. In addition, at the 3-itemset level, the sig-
nificance level calculated by the modified Bonferroni statistic used in STUCCO
starts to become more restrictive than the significance level used in CIGAR.

5.3 The Effect of 2 X 2 Contingency Tables

The number of contrast sets generated from the Mushroom, GSS Social, and
Adult Census datasets by STUCCO and CIGAR is shown in Table 5. Table 5
shows that CIGAR generated significantly more contrast sets than STUCCO.
For the datasets that contain only two groups (i.e., Mushroom and Adult Cen-
sus), the number of contrast sets generated is somewhat similar until the modified
Bonferroni statistic becomes more restrictive at the 4-itemset level. Essentially,
the number of groups contained in a dataset affect the number and size of the
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contingency tables used. For example, the Mushroom and Adult Census datasets
contain two groups, so both STUCCO and CIGAR use 2 x 2 contingency tables.
But the GSS Social dataset contains seven groups. In this case, STUCCO uses a
2 x 7 contingency table, while CIGAR uses a series of 2 x 2 contingency tables,
one for each possible combination of group pairs.

Table 5. Summary of Contrast Sets Generated

Mushroom GSS Social Adult Census

k-Itemsets| STUCCO|CIGAR|STUCCO|CIGAR|STUCCO|CIGAR
1 71 46 83 566 22 23
2 686 548 466 3,081 139 202
3 2,236 2,721 1,292 7,645 353 843
4 2,531 7,577 1,155 | 10,930 341 1,972
5 714 | 13,899 199 9,368 64 2,929
6 102 | 18,293 22 4,852 0 2,920
7 0 | 17,915 0 1,504 0 2,011
8 0 | 13,124 0 249 0 943
9 0 7,077 0 20 0 286
10 0 2,715 0 11 0 53
11 0 697 0 0 0 5
12 0 106 0 0 0 0
13 0 7 0 0 0 0
14 0 0 0 0 0 0
Total 6,340 | 84,725 3,217 | 38,226 919 12,187

The 2 x 2 contingency tables used by CIGAR have the potential to provide
more information about the differences between groups than the 2 x 7 contin-
gency table used by STUCCO. For example, a 2 x 7 contingency table for the
contrast set Activity Code = everyday shopping generated by STUCCO for
the seven groups in the GSS Social dataset is shown in Table 6. The x? value
and degrees of freedom calculated for this table are x? = 386.38 and df = 6, re-
spectively. From this information, STUCCO reports that a significant difference
exists between groups and generates the rule A11 Groups = Activity Code =
everyday shopping. But other than pointing out that the relationship between
the contrast set Activity Code = everyday shopping and group is not ran-
domly causal, it does not provide any details as to where the differences actually
occur. That is, it does not provide any details as to which groups are different.

In contrast, CIGAR is able to provide details as to which groups are different.
For example, CIGAR generates a series of 21 2x 2 contingency tables, one for each
possible combination of group pairs. From these contingency tables, CIGAR de-
termines that for the contrast set Activity Code = everyday shopping, there
are significant differences between G2 and Gg, G2 and G7, G3 and Gg, G3 and
Gr, and G4 and G7. The other sixteen combinations of group pairs failed to
meet the minimum support and minimum support difference thresholds. Conse-
quently, not only do we know that a significant difference exists between some
groups, we have a fine grained breakdown of the groups involved.
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Table 6. Contingency Table for Activity Code = everyday shopping

Gy G2 G3 Gy Gs Gs Gr Z Row
Activity Code = everyday shopping 164 555 558 650 481 619 718 3,745
— (Activity Code = everyday shopping)|17,278|32,655(31,627|31,815(20,078(20,685(21,264| 175,402
Z Column 17,442|33,210(32,185|32,465(20,559(21,304 (21,982 179,147

5.4 The Effect of a Minimum Support Threshold

Recall that one of the constraints utilized by CIGAR in contrast set mining, and
not utilized by STUCCO, is a minimum support threshold. To aid in making
this discussion clear, we discuss the 1-itemset results generated by STUCCO and
CIGAR for the Mushroom and Adult Census datasets. These results are shown
in Table 7. In Table 7, the Zero Itemsets row describes the number of contrast
sets that were generated where at least one of the groups had zero support.
The Below Minimum Support row describes the number of contrast sets where
at least one of the groups had support below the minimum support threshold.
The Unmatched Contrast Sets row describes the number of contrast sets that
are found by STUCCO (CIGAR) but not by CIGAR (STUCCO). The Matched
Contrast Sets row describes the number of contrast sets found.

Table 7. Summary of 1-itemset Results

Mushroom Adult Census
STUCCO|CIGAR|STUCCO|CIGAR

Zero Itemsets 15 0 2 0

Below Minimum Support 10 0 1 0

Unmatched Contrast Sets 0 0 0 4

Matched Contrast Sets 46 46 19 19

Table 7 shows that for the Mushroom and Adult Census datasets, STUCCO
generates 25 and 3 contrast sets, respectively, whose support is below the min-
imum support threshold. These contrast sets represent 35% and 14%, respec-
tively, of the total number of contrast sets generated. On the Mushroom dataset,
this represents 100% of the difference between the contrast sets generated by
STUCCO and CIGAR. On the Adult Census dataset, four (or 17%) of the con-
trast sets generated by CIGAR did not have a corresponding contrast set in those
generated by STUCCO. These four contrast sets were pruned by STUCCO be-
cause they did not meet the significance level cutoff of the modified Bonferroni
statistic.
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5.5 The Effect of Correlational Pruning

The minimum correlation threshold utilized by CIGAR can significantly reduce
the number of contrast sets that need to be considered by a domain expert by
focusing attention on only those contrast sets where the relationship between
variables is strong. The number of contrast sets generated by CIGAR from the
Mushroom dataset is shown in Table 8. In Table 8, the k-Itemset column is as
previously described. The No Prune and Prune columns describe the number
of contrast sets generated without and with correlational pruning, respectively,
for each of the specified minimum correlation threshold values (i.e., r = 0.00 to
r = 0.70). The minimum correlation difference threshold was set at 2%.

Table 8. Contrast Sets Generated With and Without Correlational Pruning

r = 0.00 r = 0.25 r = 0.50 r = 0.60 r =0.70
k-Itemsets| No Prune|Prune|No Prune| Prune|No Prune|Prune|No Prune|Prune|No Prune|Prune
1 46 46 21 21 9 9 0 0 0 0
2 548 531 226 226 53 50 11 11 7 7
3 2,721 2,506 949 882 188 148 36 35 17 14
4 7,577 | 6,290 2,377 1,956 394 257 53 36 21 4
5 13,899 (10,183| 4,104 2,838 536 332 35 15 15 0
6 18,293 (11,897 5,359 3,063 508 318 10 2 6 0
7 17,915 (10,305 5,433 2,562 345 208 0 0 0 0
8 13,124 | 6,531 4,232 1,671 167 86 0 0 0 0
9 7,077 | 2,964 2,466 835 55 20 0 0 0 0
10 2,715 931 1035 309 11 2 0 0 0 0
11 697 191 295 80 0 0 0 0 0 0
12 106 23 51 13 0 0 0 0 0 0
13 7 0 4 0 0 0 0 0 0 0
Total| 84,725 |52,398| 26,552 |14,456 | 2,266 1,430 145 99 66 25

Clearly, the choice of minimum correlation threshold can affect the quantity
and validity (i.e., quality) of the contrast sets generated. For example, when
r = 0.00 and with no pruning and pruning, 84,725 and 52,398 contrast sets
were generated, respectively. Contrast sets containing up to 13-itemsets and 12-
itemsets were generated with no pruning and pruning, respectively. The number
of contrast sets generated with pruning is 62% of the number generated without
pruning. Similarly, when r = 0.25, 0.50, 0.60, and 0.70, the number of con-
trast sets generated with pruning is 54%, 63%, 68%, and 38% of the number
generated without pruning. The number of contrast sets generated is also sig-
nificantly reduced as the minimum correlation threshold increases. For example,
the number of contrast sets generated with pruning when r = 0.70 (i.e., strong
positive correlation by most standards) is 0.00048% of the number generated
when r = 0.00.

Finally, we describe a situation where contrast sets at level i + 1 in the
search space have higher correlation than those at level i, a situation that
is possible, as was described in Section 4.2.2. The situation occurs frequently
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in practice. For example, the rules Bruise=no (r=0.501), Bruise=no A Gill
Space=close (r=0.735), and Bruise=no A Gill Space=close A Veil
Color=white (r=0.787) were generated from the Mushroom dataset. Recall
that according to the general rule of thumb previously described, a Phi correla-
tion coefficient in the range 0.7 < r < 1.0 represents a strong positive association.
If we set the minimum correlation threshold to A = 0.7, then the more general
rule Bruise=no (r=0.501) would have been pruned and the two specializations
never would have been generated. This highlights a problem in setting the min-
imum correlation threshold and shows how it can affect results.

6 Conclusion

We have discussed and demonstrated two alternative approaches to the contrast
set mining problem. Essentially, STUCCO and CIGAR are based upon different
statistical philosophies and assumptions: STUCCO seeks to control Type I er-
ror, while CIGAR seeks to control Type II error. However, experimental results
showed that even though the underlying statistical assumptions are different,
both approaches can be used to generate potentially interesting contrast sets.
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Abstract. Many people have access to large collections of music in digi-
tal form. However, their methods of access are mostly based on meta-data
and directory browsing. One content-based method of access may involve
using instrument samples to retrieve pieces possessing similar timbres.
In this paper, feature selection and classification of six instrument fami-
lies is explored to help identify and characterise an instrument using its
timbre. Single instrument note samples plus short song excerpts were ex-
amined. Classification accuracy of single instrument note samples using
a KNN classifier was close to 90% for both Fourier-based spectral audio
features and Mel-Frequency Cepstral Coefficients. However, distinguish-
ing pianos was the most difficult classification task, achieving only 56%
accuracy.

1 Introduction

The growing field of content-based music information retrieval researches a range
of techniques for finding music. These include retrieval based on melodies, har-
mony, audio sample and musical taste. One of the aims is to make audio-based
retrieval possible, for example retrieving pieces of the same genre, artist, or mood
as a given sample. Related to this is the idea of retrieving pieces given a sample
of a particular musical instrument — the focus our work. This type of query well
matches the modern aesthetic of enjoying pieces of music not so much for the
melodic or harmonic structure but for the timbres that it contains.

Most work on audio-based retrieval is currently still focused on classification
and the determination of good features for the task at hand. The task that we
attempt here — musical instrument classification given a sequence of notes —
has only fairly recently been examined [3]. Previous studies have built musi-
cal instrument classifiers that use as their training and test data recordings of
musical instruments playing a single note.

The intention behind this paper is to help answer the following questions.
‘How can an instrument be characterised using its timbre in order to retrieve
songs of similar timbre?’ and, ‘How can we best classify music based on the
instrument’s timbre?’. Eventually an application will be produced that allows
the retrieving of songs based on an instrument’s timbre. Part of the process is

S. J. Simoff, G. J. Williams, J. Galloway and I. Kolyshkina (eds). 1
Proceedings of the 4th Australasian Data Mining Conference — AusDMO5, [
5 - 6th, December, 2005, Sydney, Australia,


simeon
S. J. Simoff, G. J. Williams, J. Galloway and I. Kolyshkina (eds).  
Proceedings of the 4th Australasian Data Mining Conference – AusDM05, 
5 – 6th, December, 2005, Sydney, Australia,


Australiasian Data Mining Conference AusDM05

to examine the features of the samples and to use classification techniques to
classify the instruments.

In our experiments reported here we tested both one-note instrument sam-
ples and short song segments of digital audio containing a single instrument.
Audio features extracted from the musical instrument sample files were used to
differentiate one instruments. We used six instrument families, each comprising
six different types of digital instruments. Many of the instruments used in our
experiments were software-based.

This paper concentrates on the following extracted features: Spectral Cen-
troid, Rolloff, Flux, Zerocrossings, Low Energy and Mel-Frequency Cepstral Co-
efficients (MFCC) which are applied to the samples. We used decision trees (J48),
OneR and k-nearest neighbor (KNN) to classify the instrument samples based
on these features.

Throughout the work covered in this paper, the best performing classifier
was KNN. The piano instrument family was more difficult to classify than the
other instrument families.

This paper first covers related work. It then explains the method and ap-
proach used, feature extraction and classification and then the source data.
Experiments and results are then included, finishing with the conclusion and
possible future work.

2 Related Work

Most of the instrument classification research has been undertaken using single-
note instrument samples. Very little research has used multi-note samples. In
our survey we discuss some of the work published on instrument classification
as well as other related work in audio classification and segmentation.

A range of different features have been tried for instrument classification,
with common ones including brightness (spectral centroid) and Mel-Frequency
Cepstrum Coefficients (MFCCs). Herrera et. al. [6] provides a very thorough ac-
count of feature selectors and classification techniques for this classification task.
Reference is made to many other authors who have explored feature extraction
and classification.

Jensen and Arnspang [7] included the amplitude of odd partials and inhar-
monicity, and used 1500 sounds from seven instruments for their work. Kostek
used features derived from the Wavelet Transforms rather than the FFT-based
ones [10]. Herrera et. al. [6] indicate that there are some features that work
particularly well with certain types of instruments and the features considered
should cover temporal, spectral and temporal evolution.

Essid and David [3] indicate that there has not been any real consensus
on what features should be chosen when trying to identify musical instruments.
Class pairwise feature selection was used to determine the most efficient features
used to compare two instruments. When combined with the Gaussian Mixture
Model Classification strategy, the results are commendable. Ten musical instru-
ments were considered in the experiments conducted.
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A number of instrument classification techniques are listed by Herrera et.
al. [5] where the emphasis is to segment musical audio streams to achieve tasks
like locating a solo in the middle of a song. The KNN algorithm was reported
to perform very well on small datasets [9]. In this case, the Root Mean Square
(RMS - the average value of a part waveform) descriptor was used with four
instruments having a restricted note range of one octave. On some occasions,
the KNN classifier has been combined with other classifiers [2] or enhanced [4]
particularly when larger data sets were used.

The techniques outlined by Herrera et. al. [6] that cover sound classification
are K-Nearest Neighbours, Naive Bayesian Classifiers, Discriminant Analysis,
binary (or decision) trees, Artificial Neural Networks(ANN), Support Vector
Machines (SVMs), Rough Sets and Hidden Markov Models. A SVM was used
for classification of eight instruments playing musical scores by Marques [12].
When using MFCCs and 200msec sound segments, an accuracy of 70% was
acheived. When applied to longer segments of sound, an improvement to 83%
resulted. The instruments which proved difficult to classify were trombone and
harpsichord.

Vincent and Rodet [16] presented a method used for instrument identifica-
tion, based on using Independent Subspace Analysis (ISA). Tests using five in-
struments and some song data from commercial CDs gave promising results. The
results showed some advantages over using Gaussian Mixture Models (GMM),
SVMs or linear ISA. This approach appeared to be quite successful when applied
to polyphonic music, whereas the other approaches seemed to work better with
monophonic music.

Zhang and Kuo [19] looked at content-based classification and retrieval of
audio, where recordings were classified and segmented into music, speech and
other environmental sounds. The sound collection consisted of 1000 environmen-
tal sound clips, 100 excerpts of music played with ten kinds of instruments, other
styles of music sung by males and females, speech from different languages and
speech with music in the background. They achieved an accuracy of over 90%
with their collection.

The work carried out by Tzanetakis and Cook [14] covered musical genre
classification of audio signals, revealing a classification of 61% where ten musical
genres were concerned. The datasets included 20 musical genres and three speech
genres with 100 excerpts being used for training. The excerpts were taken from
radio, compact disc and MP3 compressed audio files.

Other studies have also been undertaken in exploring musical instrument
classification. Eronen and Klapuri identified musical instruments using various
feature extraction techniques and classifying them into musical instrument fam-
ilies based on the similarity of features found. Features covering the spectral
range and temporal properties of sounds were investigated. The database of
sounds consisted of 1498 solo tones from 30 orchestral instruments covering sev-
eral styles including pizzicato, bowed and muted [2]. An accuracy of 94% was
achieved for identifying the correct instrument family and 80% when identifying
individual instruments.
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Kaminskyj [8] looked at a multi-feature instrument sound classifier, and
achieved an accuracy of 96% when identifying instrument families. Nineteen
musical instruments were used providing 604 recordings, of which 517 were non-
vibrato and the rest, vibrato recordings.

The recognition of musical instruments in polyphonic audio was tackled by
Eggink and Brown [1]. When using 27 different instruments, the system achieved
a recognition accuracy of 57%. When frequency regions were muddled and clut-
tered with excessive tones, the consequence was to omit such regions from the
classification process.

A content-aware sound browser known as SoundFisher has been developed
by Musclefish [18]. It is a sound effects database management system, featur-
ing retrieval and content-based recognition. The structures, determined by the
system, contain statistical data, describing aspects such as pitch, brightness,
bandwidth and loudness. Soundfisher provides a useful application for storing,
categorizing and retrieving sounds.

3 Method and approach used

To identify characteristics of an instrument’s timbre, it was necessary to examine
appropriate features. Features extracted including Spectral Centroid, Spectral
Rolloff, Spectral Flux, Zero Crossings, Low Energy and MFCCs helped to define
characteristics that can distinguish instruments. Spectral Centroid refers to the
spectral brightness; Spectral Rolloff refers to the measure of spectral shape;
Spectral Flux refers to the measure of spectral change; Zero Crossings is the
number of time domain zero-crossings of the signal. Low energy indicates the
amount of quiet time, which is a good discriminator for speech against music.
Throughout this paper, Centroid, Rolloff, Flux, Zerocrossings and Low Energy
will be referred to as SPEC-CHA (spectral characteristics). Centroid, Rolloff and
Flux are based on the Short Time Fourier Transform. An in depth coverage of
the SPEC-CHA based features was covered by Tzanetakis et. al. [15]. MFCCs are
used in speech recognition and some music based applications. They represent
a compact form of the audio spectrum. Further details concerning MFCCs are
covered extensively by Logan [11].

In our notation of the SPEC-CHA attributes used in the experiments, we
include a number representing the time slice on which the attribute is based,
and we prefix it with Mean or Std, for mean and standard deviation respec-
tively. Thus the features are annotated MeanCentroidl, MeanRolloff1, Mean-
Flux1, MeanZeroCrossings1, StdCentroid1, StdRolloff1, StdFlux1, Stdzerocross-
ingsl, Lowenergyl through to MeanCentroid25, MeanRolloff25, MeanFlux25,
MeanZeroCrossings25, StdCentroid25, StdRolloff25, StdFlux25, Stdzerocross-
ings25, Lowenergy25 for a 500msec length sample. MeanCentroid5 for instance,
referred to the 5th Mean Spectral Centroid value calculated from the sample.
This measured a value at approximately 5 x 20msec = 100msec from the be-
ginning of the sample. The nine attributes repeated 25 times across the one
note sample provided readings at all stages of the instrument sample. This gave
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SPEC-CHA
attributes
1°T Segment: 2" Segment: Final Segment:
MeanCentroid1 MeanCentroid2 MeanCentroid25
MeanRolloff1 MeanRolloff2 MeanRolloff25
StdCentroid1 StdCentroid2 StdCentroid25
StdRolloff1 StdRolloff2 StdRolloff25
LowEnergy1 LowEnergy2 LowEnergy25

500msec

e ¥

One note
instrument
sample
waveform

—=
\\'{______T___T___’/

1% Segment:

2™ Segment: Final Segment:
mMFCC11
mMFCC21 mMFCC12 mMFCC125
3 mMFCC22 mMFCC225
mMFCC51 :
vMFCC11 mMFCC52 mMFCC525
vMFCC21 vMFCC12 vMFCC125
3 vMFCC22 vMFCC225
vMFCC51 : MFCC :

vMFCC52 attributes vMFCC525

Fig. 1. SPEC-CHA and MFCC attributes spanning a one note instrument sample

225 attributes spanning the one note sample. MFCC attribute values ranged
from mMFCC11 to mMFCC525 and vMFCC11 to vMFCC525, indicating firstly,
mean attributes followed by variance attributes. The first digit in the attribute
name, ranged from 1 to 5 and the next digit entries ranged from 1 to 25. This gave
5 x 25 = 125 mean and 125 variance coefficients spanning from the beginning
to the end of the instrument sample. Similar to the SPEC-CHA situation, 250
attributes were used for MFCC which span the instrument sample. For one-note
samples lasting longer than 500msec, extra attributes were used and therefore
the numbers attached to the attributes also increased. Figure 1 indicates the
coverage of the attributes over the entire instrument sample.
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After extracting features, classification techniques including OneR, Decision
Trees (J48) and K-Nearest Neighbour classifier were applied. These revealed
more in-depth details of the audio samples explored [1, 8].

To help with the sound analysis tasks, MARSYAS (Musical Analysis and Re-
trieval Systems for Audio Signals version Marsyas-0.1) was used for its feature
extraction ability. MARSYAS provides access to feature extraction selectors in-
cluding Spectral Centroid, Rolloff, Flux, Zero Crossing, Low Energy and MFCCs.
These approaches would provide a suitable starting point when applied to single
instrument samples and short song segments.

The Weka Data Mining toolkit was used to classify instrument collections [13].
Within Weka, to help to provide classification accuracy, ten-fold stratified cross-
validation was used. The stratified approach is where Weka attempts to properly
represent each instrument class in both training and test sets. Ten-fold cross-
validation is where the data is split into ten similar sized partitions, and in turn,
each is used for testing while the rest is used for training. This procedure is re-
peated until every instance has been used once for testing [17]. In general, when
using the classification methods within Weka, default values were used.

All sound files were stored as 22050Hz, 16 bit, mono audio files. Forty analysis
windows of 20 milliseconds were used with 512 samples per window [15]. All
features were calculated every 20 milliseconds.

Four types of experiments were carried out. The first three involved one
shot instrument samples, and the last one, five second segments of digital audio
generated from midi files. The first involved running feature extraction on the
six individual instrument groups. For each, this included three volume levels,
low, medium and high and five different octave notes, C1 through to C5 where
C4 represents middle C, which is at 440Hz. Since the piano category results
were inferior and very low compared to the remaining categories, experiment
two was carried out on just the piano, exploring different groupings of the five
octaves used. The third major test combined all six instruments to determine
any differences between the instrument families. The final test combined all six
instruments whilst using five second segments of audio generated from six midi
files.

4 Data Sources

The data sources used samples from software and hardware based instruments.
Figure 2 shows the categories of musical instrument families used in the experi-
ments. The instruments came from an array of sources. These included synthesiz-
ers (Korg Trinity and Yamaha CS2X), digital piano (Roland EP85), Soundfonts,
Gigasamples and VST instruments. The first three instruments were hardware-
based, whereas the final three were generated in software. The emphasis in the
experiments was to use software and digitally based instruments rather than sam-
pling from real acoustic instruments. Six categories of instruments were used,
which cover pianos, strings, organs, brass, flutes and violins. The strings cate-
gory differed to violins in that the string instrument samples were built from
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VST Gigasamples - GS
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Fig. 2. Instrument tree

layers of strings sounds whereas the violins were just individual violin samples.
Six different types of instruments were used within each category. These can also
be seen in Figure 2.

The experiments used one note instrument samples, lasting up to two seconds
in length and also short song pieces lasting five seconds. The short song pieces
were digital songs files generated from midi files. The segments of midi files
came from the following six pieces of music, Tchaikovsky - Swanlake - prelude,
BirdLand full band. Handel Water Music, a Reggae piece, a Hardrock piece and
a Latin piece.

5 Experiments & Results

The experiments aimed to extract features in order to characterize the timbre
of instrument samples. Feature extraction of single note instrument samples was
undertaken and then classified, based on some popular classification methods.
These experiments were then extended to include songs containing multiple in-
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Fig. 3. SPEC-CHA Features - Mean and Stddev.

strument notes. A further task undertaken in the experiments, was to identify
features that are prominent. The OneR classifier helped to achieve this.

5.1 Experiment 1

To help answer the first question concerning the characterising of an instrument
using its timbre, the first experiment treated each instrument group separately,
extracts the relevant features and performs classification on them. More specifi-
cally, this experiment endeavored to answer another question: ‘Given six different
instrument family groups and relevant feature extractors, can adequate classifi-
cation occur using the OneR, KNN and J48 classifiers?’. This experiment dealt
primarily with one note instrument samples. To help answer this, the following
approach was undertaken. Short, one note instrument samples were used which
last between 500msec and 800msec, depending on the category of instrument.
The samples covered three different levels of volume and five octave notes which
were C1, C2, C3, C4 and C5. Features, including a Low Energy value, plus four
mean and standard deviation values of Centroid, Rolloff, Flux and Zero Cross-
ings, were used. Comparisons can be seen in Figure 3. The KNN classification
technique returned the highest correctly classified number of instances with most
instruments recording above 90%. The piano category only returned 56% in this
instance. In the particular case of the organ category, SPEC-CHA features re-
turned very high results for both J48 and KNN. Correctly classified instances
were 93% and 100% respectively.

Figure 4 which refers to the MFCC feature selectors, also showed quite highly
classified instances for the KNN classification approach, with most instruments
recording above 90%. However, the piano category only delivered 67%. For both
categories of feature selectors, the decision tree classification method generally
returned poorer results than the KNN technique.
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Table 1. OneR classifier showing significant features

Instrument|OneR OneR
Category |attributes attributes
(SPEC —CHA)|(MFCCs)
Brass StdFlux13 mMFCC324
Flutes StdFlux& mMFCC44
Organs StdCentroid29 |[vMFCC130
Pianos MeanFlux19 mMFCC21
Strings MeanFlux4 vMFCC139
Violins MeanFlux12 mMFCC12

Witten and Frank indicated that the OneR classifier aimed to express a set
of rules that test one particular attribute [17]. Table 1 indicates the significant
features identified by WEKA using the OneR classifier.

Flux values which refer to the spectral change were prevalent with the SPEC-
CHA based features. Coefficients registering early, and near the middle of the
sample, were indicated using the MFCC approach.

The confusion matrices in Table 2 shows the piano instrument family, which
includes instruments that were difficult for the given classifiers to identify. Pi-
ano2ep85, a Roland digital piano was particularly difficult to classify and The-
Grand, a Vst instrument and puii002wiredcs2x, a hardware synthesizer, posed
difficulties in numerous cases. Interestingly, piano2ep85 and puii002wiredcs2x
represented two instrument patches coming from two of the most expensive in-
struments of the ones used. These two were hardware instruments whilst most
of the others are all created in software.
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Table 2. Confusion Matrices for pianos - using one note samples

SPEC-CHA Features:
Pianos
J48 KNN

=== Confusion Matrix === Confusion Matrix ===

a b c d e f <-- classified as a b c d e f <-- classified as
13 2 0 0 0 0| a=scct 15 0 0 0 0 0| a=scct
2 8 3 1 1 01| b = TheGrand 3 2 2 1 3 41| b= TheGrand
1 210 0 1 1| c = gigapiano 0 113 0 1 01| c = gigapiano
2 2 1 9 0 1] d=pal27isntitgrandkorg 0 0 112 2 0| d = pal27isntitgrandkorg
1 0 3 0 6 5| e = piano2ep85 1 4 3 4 0 3| e = piano2ep85
1 3 1 0 4 6| f = puii002wiredcs2x 2 1 1 1 2 8| f = puii0O2wiredcs2x
MFCC features
Pianos
Jas KNN

=== Confusion Matrix === === Confusion Matrix ===

a b c d e f <- classified as a b ¢ d e f <- classified as

10 1 0 3 0 1] a=scCCl 14 0 1 0 0 0] a=sCCl

3 3 4 1 2 2] b= TheGrand 1 6 1 3 1 3| b = TheGrand

0 4 8 0 3 0| c = gigapiano 1 012 0 1 1| c¢ = gigapiano

2 2 1 9 1 0| d=pal27isntitgrandkorg 0 1 113 0 0| d = pal27isntitgrandkorg
2 4 0 2 6 1| e = piano2ep85 2 1 2 2 4 4| e = piano2ep85

3 3 2 4 0 3| f =puii0O2wiredcs2x 0 2 1 1 011 | f = puiiOO2wiredcs2x

5.2 Experiment 2

Since the piano instrument family in experiment one returned far poorer classifi-
cation results than any other instrument family, the second experiment involved
close examination of pianos. The question relevant to this experiment is ‘Are
there significant differences of timbre characteristics within the piano instrument
family?’. To answer this, further experiments were conducted involving different
octave groupings. The previous entries in the confusion matrices for the piano
category were conducted across the five octaves, C1 to C5. Different groupings
of the octaves were then explored to determine any significant variations across
the span of the five octaves. Firstly, tests were carried out on individual octaves
C1, C2, C3, C4 and C5, followed by groupings of two adjacent octaves C1 & C2,
C2 & C3,C3 & C4 and C4 & C5 and then three adjacent octaves C1 & C2 & C3,
C2 & C3 & C4 and C3 & C4 & C5. There was no significant outcome arising
from the tests, except for a marginal difference between lower octaves and higher
octaves. Classification was generally more successful when working with lower
octaves and middle range octaves rather than higher ones. This, however, was
not conclusive in all cases. The largest difference was evident with the grouping
of three octaves C1 & C2 & C3, C2 & C3 & C4 and C3 & C4 & C5. The details
can be seen in Figure 5.

Classifying the octave category of C3 & C4 & C5 for both SPEC-CHA and
MFCC features, was difficult compared to that of C1 & C2 & C3 and C2 & C3
& C4, but the differences were only minor and less than 10% in most cases.

To identify which particular piano instruments were of concern, the confusion
matrices in Table 3 are given.
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Grouping of 3 separate piano octaves (includes 3 volume levels)

Fig. 5. Pianos - general features including 3 volumes

Table 3. Confusion Matrices for piano octaves: C3, C4 & C5

SPEC-CHA features:
Pianos
Ja4s

Confusion Matrix ===

abcdef <-- classified as
8001001 a=scC1
152100 | b= TheGrand
0251101 c = gigapiano
201600 | d=pail27isntitgrandkorg
00005 4| e =piano2ep85
10007 1| f=puii002wiredcs2x
MFCC features
Pianos
Jas

Confusion Matrix ===

abcdef <-- classified as
710100 1] a=scC1

032121 ]| b= TheGrand

133101 1| c= gigapiano

11050 2| d= pal27isntitgrandkorg
130113 | e = piano2ep85
021024 | f=puii002wiredcs2x

183

KNN

Confusion Matrix

abcdef <-- classified as
900000 | a=scct

242100 | b= TheGrand

009000 | c=gigapiano
101700 | d= pal27isntitgrandkorg
102123 ]| e = piano2ep85
201141 ] f=puii0O2wiredcs2x

KNN

Confusion Matrix

abcdef <-- classified as
800100 1] a=sccC1

041211 ] b= TheGrand

007101 | c=gigapiano
001800 | d=pal27isntitgrandkorg
110124 | e = piano2ep85
011106 | f=puiidO2wiredcs2x
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Fig. 6. Combined instruments - includes 36 instruments, 3 volumes and 5 octave notes

The piano2ep85 and puiio002wiredcs2x again failed to score highly in most
cases. Generally the two instruments were difficult to classify from one another.
In particular, using the SPEC-CHA features, the puii002wiredcs2x piano was
difficult to classify, whereas, applying the MFCC features, piano2ep85 scored
rather low.

5.3 Experiment 3

Experiment three tackled the question of ‘Is there a notable difference in timbre
between the different instrument group families?’. To assist in answering this
question, the third experiment combined all six instruments, so that the general
categories of brass, flutes, organs, pianos, strings and violins were used. The
first 500msec of the one note samples were examined for the combined instru-
ments. All three classifiers performed reasonably well, considering the variables
included: three volumes, five octave notes and 36 different instruments. Figure 6
shows that the KNN classifier achieved close to 90% whereas the decision tree
classifier resulted in correctly classified instance percentages near to 70. The
most significant aspect to result from the confusion matrices was that the vio-
lin category of instruments was confused as strings on numerous occasions. As
stated earlier, the string instrument samples comprised layers of string sounds
whereas the violins were just purely individual violin samples. The confusion
matrices in Table four indicate that for the OneR classifier, the piano category
was classified far better than any other instrument category.

When considering different instrument categories, of all the instrument fam-
ilies considered, the OneR classifier had the least trouble in classifying the pi-
ano instrument family. Classification values of 49 and 43 for SPEC-CHA and
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Table 4. Confusion Matrices for OneR. classifier of combined instruments

SPEC-CHA features: MFCC features:

Combined instruments Combined instruments

OneR OneR

=== Confusion Matrix === === Confusion Matrix ===
a b c d e f <-- classified as a b c d e f <-- classified as
26 6 11 14 16 17 | a = organs 41 14 8 9 8 10 | a = organs
825 6 18 19 14 | b = brass 156 26 5 14 13 17 | b = brass
10 10 32 5 9 24 | c¢ = flutes 19 12 29 10 156 5 | ¢ = flutes
12 13 10 22 21 12 | d = strings 18 11 15 24 16 6 | d = strings
10 19 7 13 28 13 | e = violins 14 9 13 14 28 12 | e = violins
3 912 4 13 49 | f = pianos 14 10 5 6 12 43 | f = pianos

MFCC respectively were achieved, whereas most of the other instrument fami-
lies recorded figures in the twenties or thirties. There was a total of 90 instances
provided for the experiment. Here again, the piano instrument family was being
identified as appearing separate to the other groups. The OneR classifier identi-
fied the MeanRolloff17 attribute as significant for SPEC-CHA and the variance
of MFCC11 for MFCC. Rolloff referred to the measure of spectral shape.

5.4 Experiment 4

The final experiment expanded on experiment three, to include samples spanning
multiple notes rather than a single one note instrument sample . The question ‘Is
it possible to distinguish timbre characteristics between instruments when longer
segments of digital samples are used?’ was examined in the final experiment. The
experiment combined all six instruments and used five seconds of a song which
was based on a monophonic midi file piece. Six different midi files were used which
all possessed a different style. Figure 7 indicates the classification outcomes. The
following confusion matrices in Table five indicate that the violins, and on some
occasions, the flutes were the instrument families most difficult to classify, using
all six midi files. Part of the reason for the violins being difficult to classify, may
have been due to some of the midi file pieces being classically based. The violins
were sometimes being confused with the string category of instruments.

6 Conclusion and future work

The questions concerning characterising an instrument using its timbre, and
classifying music based on the instrument’s timbre were posed and examined and
the following observations resulted from our experiments. When the instruments
were considered separately, using one note samples, distinguishing different piano
timbres was difficult. On the contrary, the organ category performed particularly
well when classified with both J48 and KNN. When the pianos were examined
more closely, some of the hardware based instruments were difficult to classify.
Further examination of the pianos was carried out and a grouping of three higher
octaves C3, C4 & C5 revealed slightly inferior results to that of lower octaves.
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Fig. 7. Combined instruments (6 midi files) - includes 36 instruments, 3 volumes and
5 octave notes

Table 5. Confusion matrices for all instrument categories using 6 midi files

SPEC-CHA features:

6 midi files

Jas KNN

=== Confusion Matrix === Confusion Matrix ===

a b c d e f classified as a b c d e f <--classified as
19 2 3 6 3 3| a = organs 12 414 3 3 0| a = organs
320 4 2 5 2| b = brass 212 5 3 9 5| b = brass
8 813 1 2 4| c = flutes 7 9 9 0 3 81 c = flutes
2 1 122 8 21| d= strings 3 0 127 2 3| d= strings
2 8 1 218 5| e = violins 1 4 3 619 3| e = violins
0 3 4 1 226 | f =pianos 1 0 3 1 229 | f = pianos
MFCC features
Jas KNN
=== Confusion Matrix === === Confusion Matrix ===
a b c d e f <-- classified as a b c d e f <-- classified as
22 2 2 4 2 4| a = organs 22 2 2 3 1 6| a= organs
218 5 2 6 3| b = brass 127 0 3 5 0| b = brass
4 224 1 2 3| c = flutes 3 021 5 4 3| c = flutes
1 2 520 4 4| d = strings 3 0 11713 2| d = strings
3 3 3 715 5| e = violins 2 3 014 15 2 | e = violins
5 2 4 6 118 | f = pianos 2 1 0 2 427 | f = pianos
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This may be due to piano samples differing more within the one instrument’s
samples than with other pianos. We also hypothesise that distinguishing pianos
may be more difficult with lower sampling rates.

Using combined instrument categories of brass, flutes, organs, pianos, strings
and violins, revealed that violins (solo) and strings (ensemble) were sometimes
confused with one another. Another notable outcome was the high performance
of the KNN classifier of close to 90% for this task. Surprisingly the OneR classifier
had the least trouble in classifying pianos from other instrument categories. A
trend seemed to be emerging where the pianos were being considered as different
to the other instruments. The differences can be seen within the piano group
itself, as well as when it was compared with other instrument groups.

When considering longer segments of instrument samples, the violin family
group was generally the most difficult to classify and classification accuracy fell.

A common theme ran through many of the experiments. Experiments applied
to MFCC features, resulted in KNN classification results that were better than
when using SPEC-CHA features. Experiments using SPEC-CHA features and
the decision tree classifier resulted in outcomes being varied.

In the future, when examining the single note piano samples, it may be
worthwhile examining higher octaves than the ones tested. The range could be
taken from C2 to C6 or even C7. It will also be interesting to test the effect on
classification accuracy of varying the resolution of the sample. Currently we have
considered each specific instrument separately within each class, leading to sep-
arate classifiers for violins, pianos and so on. We also tested a general classifier
that decides on the general category of the instrument. A further step would be
to test a multi-level classifier made from these components. It would be worth-
while investigating the KNN classification approach and determining significant
reasons why it gave higher results than the other approaches. Other approaches
such as Support Vector Machines, Neural Networks and the random forest clas-
sifer could also be explored. The random forest classifier is based on using a large
number of individual decision trees. Ultimately, however, we wish to apply in-
strument classification to pieces containing multiple instruments, probably after
segmentation has been applied.

In conclusion, we have demonstrated the possibility of classifying single-
instrument musical snippets according to broad instrument classes, albeit with
mixed success at this stage. The work here is still preliminary, but leads us to
be optimistic regarding our goal of developing a query by instrument timbre
system.
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Abstract. This paper reports on experiments in multi-class document
categorization with support vector machines and self-organizing maps.
A data set consisting of personal e-mail messages is used for the exper-
iments. Two distinct document representation formalisms are employed
to characterize these messages, namely a standard word-based approach
and a character n-gram document representation. Based on these doc-
ument representations, the categorization performance of both machine
learning approaches is assessed and a comparison is given.

1 Introduction

The task of automatically sorting documents into categories from a predefined
set, is referred to as text categorization. Text categorization is applicable in a
variety of domains such as document genre identification, authorship attribution,
survey coding, to name but a few [13]. One particular application is categorizing
e-mail messages into legitimate and spam messages, i.e. spam filtering. The fact
that spam has become a ubiquitous problem with e-mail has lead to considerable
research and development of algorithms to efficiently identify and filter spam
or unsolicited messages. In [1] a comparison between a Naive Bayes classifier
and an Instance-Based classifier to categorize e-mail messages into spam and
legitimate messages is reported. The data for this study is composed of sample
spam messages received by the authors as well as messages distributed through a
linguist mailing list. The latter messages are regarded as legitimate. The authors
conclude that the learning-based classifiers clearly outperform simple anti-spam
keyword approaches. The data used in the experiments, however, does not reflect
the typical mix of messages encountered in personal mailboxes. In particular, the
exclusive linguistic focus of the mailing list should be regarded as rather atypical.
In [11] a related approach aims at authorship attribution and topic detection.
In this paper, the performance of a Naive Bayes classifier combined with n-gram
language models is evaluated. The authors state that the n-gram-based approach
showed better classification results than the word-based approach for topic de-
tection in newsgroups messages. Their interpretation is that the character-based
approach captures regularities that the word-based approach is missing.
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A completely different approach to e-mail categorization is presented in [6].
In this work, e-mail filtering is based on a reputation network of e-mail users.
The reputation represents the “trust” in the relevance of e-mails from various
people. By means of transitive closures, reputation values can be assigned even
to people with whom an individual had no contact before. Hence, the reputation
network resembles the ideas immanent in collaborative filtering.

The study presented herein compares the performance of two text classifi-
cation algorithms in a multi-class setting. More precisely, the performance of
support vector machines (SVMs) trained with sequential minimal optimization
and self-organizing maps (SOMs) in categorizing e-mails into a predefined set of
multiple classes is evaluated. Besides categorizing messages into categories, we
aim at providing a visual representation of document similarities in terms of the
spatial arrangement obtained with the self-organizing map.

By nature, e-mail messages are short documents containing misspellings, spe-
cial characters and abbreviations. This entails the additional challenge for text
classifiers to cope with noisy input data. To classify e-mail in the presence of
noise, a method used for language identification is adapted in order to statisti-
cally describe e-mail messages. Specifically, character-based n-grams as proposed
in [4] are used as features that represent each particular e-mail message. A per-
formance comparison of e-mail categorization based on an n-gram document
representation vs. a word-based representation is provided.

Besides the content contained in the body of an e-mail message, the e-mail
header holds valueable information that might impact classification results. The
study presented in this paper explores the influence of header information on
classification performance thoroughly. Two different representations of each e-
mail message were generated. The first set consists of the information extracted
from the textual data as found in the e-mail body. The second set additionally
contains all the information of the e-mail header. So, the impact on classification
results when header information is discarded can be assessed.

This paper is structured as follows. Section 2 reviews document represen-
tation approaches as well as the feature selection metric used for this study.
The algorithms applied for text categorization are presented in Section 3. A de-
scription of the experiments for multi-class e-mail categorization is provided in
Section 4. Finally, some conclusions are given in Section 5.

2 Document Representation

One objective of this study is to determine the influence of document represen-
tation methods on the performance of different text categorization approaches.
To this end, a character n-gram document representation [4] is compared with a
word-based document representation. For both document representation meth-
ods we rely on binary weighting, i.e. the presence or absence of a word (n-gram)
in the document is recorded. The rationale behind this decision is that in our pre-
vious work [2] binary weighting resulted in superior categorization accuracy as
compared to frequency-based weighting for this particular corpus. No stemming
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is applied to the word-based document representation, basically because of the
multilinguality of the corpus that would require automatic language detection
in order to apply the correct stemming rules.

2.1 n-Grams as Features

An n-gram is an n-character slice of a longer character string. When dealing with
multiple words in a string, the blank character indicates word boundaries and
is usually retained during the construction of the n-grams. However, it might
get substituted with another special character. As an example for n = 2, the
character bi-grams of “have a go” are {ha, av, ve, e_, _a, a-, _g, go}. Note that
the “space” character is part of the alphabet and is represented by “_”.

Formally, let A be an alphabet of characters. If |A] is the cardinality of A
and A(n) the number of unique n-grams over A, then A(n) = |A|". In case
of |A] = 27, i.e. the Latin alphabet including the blank character, we obtain
27 possible sub-sequences for uni-grams, already 729 possible sub-sequences for
bi-grams and as many as 19, 683 possible sub-sequences for tri-grams. Note that
these numbers refer to the hypothetical maximum number of n-grams. In prac-
tice, however, the number of distinct n-grams extracted from natural language
documents will be considerably smaller than the mathematical upper limit due
to the characteristics of the particular language. As an example consider the
tri-gram “yyz”. This tri-gram will usually not occur in English or German lan-
guage documents, except for the reference to the three letter code of Toronto’s
international airport.

Using character n-grams for describing documents has a number of advan-
tages. First, it is robust with respect to spelling errors, second, the token alphabet
is known in advance and is, therefore, complete, third, it is topic independent,
fourth, it is very efficient and, finally, it does not require linguistic knowledge and
offers a simple way of describing documents. Nevertheless, a significant problem
is the number of n-grams obtained, if the value of n increases. Most text cat-
egorization algorithms are computationally demanding and not well suited for
analyzing very high-dimensional feature spaces. For that reason, it is necessary
to reduce the feature space using feature selection metrics.

2.2 Feature Selection

Generally, the initial number of features extracted from text corpora is very
large. Many classifiers are unable to perform their task in a reasonable amount of
time, if the number of features increases dramatically. Thus, appropriate feature
selection strategies must be applied to the corpus. Another problem emerges if
the amount of training data in proportion to the number of features is very small.
In this particular case, classifiers produce a large number of hypothesis for the
training data. This might lead to overfitting [8]. So, it is important to reduce the
number of features while retaining those that are potentially useful. The idea of
feature selection is to score each feature according to a feature selection metric
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and then take the top-ranked m features. A survey of different feature selection
metrics for text classification is provided in [5].

For this study the Chi-squared (x?) feature selection metric is considered.
The x? statistic measures the lack of independence between a particular feature
f and a class ¢ of instances. The x? metric has a natural value of zero if a
particular feature and a particular class are independent. Increasing values of
the x? metric indicate increasing dependence between the feature and the class.

For the exact notation of the y? metric, we follow closely the presentation
given in [16]. Let f be a particular feature and ¢ be a particular class. Let further
A be the number of times f and c¢ co-occur, B be the number of times f occurs
without ¢, C' be the number of times ¢ occurs without f, D be the number of
times neither f nor ¢ occurs, and N be the total number of instances. We can
then write the y? metric as given in Equation 1.

N(AD — CB)?
(A+C)(B+D)(A+B)(C + D)

X2 (foe) = (1)

3 Text Categorization Algorithms

For the text categorization experiments an unsupervised and a supervised learn-
ing technique was selected. In particular, self-organizing maps as a prominent
representative of unsupervised learning was chosen because of its capability of
visual representation of document similarities. Support vector machines are cho-
sen as the representative of supervised learning techniques because they have
been identified in a number of studies as highly effective for text categorization.

3.1 Self-organizing Maps

The self-organizing map is a general unsupervised tool for ordering of high-
dimensional data in such a way that similar instances are grouped spatially
close to one another [7]. The model consists of a number of neural processing
elements, i.e. units. These units are arranged according to some topology where
the most common choice is marked by a two-dimensional grid. Each of the units 4
is assigned an n-dimensional weight vector m;, m; € R™. It is important to note
that the weight vectors have the same dimensionality as the instances, i.e. the
document representations in our application.

The training process of self-organizing maps may be described in terms of
instance presentation and weight vector adaptation. Each training iteration ¢
starts with the random selection of one instance z, x € X and X C R". This
instance is presented to the self-organizing map and each unit determines its
activation. Usually, the Euclidean distance between the weight vector and the
instance is used to calculate a unit’s activation. In this particular case, the unit
with the lowest activation is referred to as the winner, c. Finally, the weight
vector of the winner as well as the weight vectors of selected units in the vicinity
of the winner are adapted. This adaptation is implemented as a gradual reduc-
tion of the difference between corresponding components of the instance and
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the weight vector, as shown in Equation (2). Note that we use a discrete-time
notation with ¢ denoting the current training iteration.

mi(t +1) = mi(t) + a(t) - hei(t) - [2(t) — mi(t)] (2)

The weight vectors of the adapted units are moved slightly towards the in-
stance. The amount of weight vector movement is guided by the learning rate,
«, which decreases over time. The number of units that are affected by adapta-
tion as well as the strength of adaptation depending on a unit’s distance from the
winner is determined by the neighborhood function, h.;. This number of units
also decreases over time such that towards the end of the training process only
the winner is adapted. The neighborhood function is unimodal, symmetric and
monotonically decreasing with increasing distance to the winner, e.g. Gaussian.

The movement of weight vectors has the consequence that the Euclidean
distance between instances and weight vectors decreases. So, the weight vectors
become more similar to the instance. Hence, the respective unit is more likely
to win at future presentations of this instance. The consequence of adapting not
only the winner but also a number of units in the neighborhood of the winner
leads to a spatial clustering of similar instances in neighboring parts of the self-
organizing map. Existing similarities between instances in the n-dimensional
input space are reflected within the two-dimensional output space of the self-
organizing map. In other words, the training process of the self-organizing map
describes a topology preserving mapping from a high-dimensional input space
onto a two-dimensional output space. Such a mapping ensures that instances,
which are similar in terms of the input space, are represented in spatially adjacent
regions of the output space.

3.2 Support Vector Machines

A support vector machine (SVM) is a learning algorithm that performs binary
classification (pattern recognition) and real value function approximation (re-
gression estimation) tasks. The idea is to non-linearly map the n-dimensional
input space into a high-dimensional feature space. This high-dimensional feature
space is classified by constructing a linear classifier. The basic SVM creates a
mazimum-margin hyperplane that lies in this transformed input space. Consider
a training set consisting of labelled instances: A maximum-margin hyperplane
splits the training instances in such a way that the distance from the closest
instances to the hyperplane is maximized.

The training data is labelled as follows: S = {(z;,v:)]¢ = 1,2,...,N},y; €
{-1,1},2; € RY. Consider a hyperplane that separates the positive from the
negative examples: w - x + b = 0 is satisfied from those points z which lie on the
hyperplane. Moreover, w is orthogonal to the hyperplane, |b|/||w|| represents
the perpendicular distance from the hyperplane to the origin and [|w|| is the
Euclidean norm of w. Let d* (d~) be the shortest distance from the separat-
ing hyperplane to the closest positive (or negative) example. Define the margin
of a separating hyperplane to be d* + d~. If the examples are linearly sepa-
rable, the SVM algorithm looks for the separating hyperplane with the largest
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margin, i.e. maximum-margin hyperplane. In other words, the algorithm deter-
mines exactly this hyperplane, which is most distant from both classes. For a
comprehensive exposition of support vector machines we refer to [3,9].

For the study presented herein, the sequential minimal optimization (SMO)
training algorithm for support vector machines is used. During the training pro-
cess of a SVM the solution of a very large quadratic programming optimization
problem has to be found. The larger the number of features which describe the
data, the more time and resource consuming the calculation process becomes.
For a detailed report on the functionality of the SMO training algorithm for
SVMs we refer to [12].

4 Empirical Validation

4.1 Experimental Setting

The document collection consists of 1,811 e-mail messages. These messages have
been collected during a period of four months commencing with October 2002 un-
til January 2003. The e-mails have been received by a single e-mail user account
at the Institut fiir Softwaretechnik, Vienna University of Technology, Austria.
Beside the noisiness of the corpus, it contains messages of different languages.

Messages containing confidential information were removed from the corpus.
The corpus was manually classified according to the categories outlined in Ta-
ble 1. Due to the manual classification of the corpus, some of the messages may
have been misclassified. Some of the introduced classes might give the impression
of a more or less arbitrary separation. Introducing similar classes was intention-
ally done for assessing the performance of classifiers on closely related topics.
Consider, for example, the position class that comprises 66 messages mainly
posted via the dbworld and seworld mailinglists. In particular, it contains 38 db-
world messages, 23 seworld messages, 1 isaus message and 4 messages from
sources not otherwise categorized. In contrast to standard dbworld or seworld
messages, position messages deal with academic job announcements rather than
academic conferences and alike. Yet they still contain similar header and sig-
nature information as messages of the dbworld or seworld classes. Hence, the
difference between these classes is based on the message content only.

Two representations of each message were generated. The first representation
consists of all data contained in the e-mail message, i.e. the complete header as
well as the body. However, the e-mail header was not treated in a special way.
All non-Latin characters, apart from the blank character, were discarded. Thus,
all HTML-tags remain part of this representation. Henceforth, we refer to this
representation as complete set. Furthermore, a second representation retaining
only the data contained in the body of the e-mail message was generated. In
addition, HTML-tags were discarded. Henceforth, we refer to this representation
as cleaned set. Due to the fact, that some of the e-mail messages contained no
textual data in the body besides HTML-tags and other special characters, the
corpus of the cleaned set consists of less e-mails than the complete set. To provide
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Table 1. Corpus statistics (e-mails per category).

[category [complete set]cleaned set[description |

admin 32 32 administration
dbworld 260 259 mailinglist
department 30 29 department issues
dilbert 70 70 “daily dilbert”

ec3 20 19 project related
isaus 24 22 mailinglist
kddnuggets 6 6 mailinglist

lectures 315 296 lecturing issues
michael 27 25 unspecific

misc 69 67 unspecific

paper 15 14 publications
position 66 66 job announcements
seworld 132 132 mailinglist

spam 701 611 spam messages
talks 13 13 talk announcements
technews 31 31 mailinglist

[totals [ 1,811 | 1,692 |

the total figures, the complete set consists of 1,811 messages whereas the cleaned
set comprises 1,692 messages, cf. Table 1. Subsequently, both representations
were translated to lower case characters.

Starting from these two message sets, the document representations are built.
For each message in both sets a character n-gram representation with n € {2, 3}
was generated. For the complete set we obtained 20, 413 distinct features and for
the cleaned set 16,362. Next, we generated the word-based representation for
each set and obtained 32,240 features for the complete set and 20, 749 features
for the cleaned set. Note that occurrence frequencies are not taken into account
in both representations. In other words, simply the fact of presence or absence
of an n-gram or a word in a message is recorded in the document representation.
Moreover, no stemming was applied for the word-based document representa-
tion. To test the performance of text classifiers with respect to the number of
features, we selected the top-ranked n features as determined by the x? feature
selection metric, with n € {100, 200, 300, 400, 500, 1000, 2000}. All experiments
were performed with 10-fold cross validation.

In order to evaluate the effectiveness of text classification algorithms ap-
plied to different document representations the F-measure as described in [15]
is used. It combines the standard Precision P, cf. Equation (3), and Recall R,
cf. Equation (4), measures with an equal weight as shown in Equation (5).

number of relevant documents retrieved

P= (3)

total number of documents retrieved

number of relevant documents retrieved
R= (4)
total number of relevant documents

F(P,R) = —iii (5)
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The percentage of correctly classified instances is assessed by the Accuracy
measure. [t calculates the proportion of the number of correctly classified in-
stances on the total number of instances in the collection, cf. Equation (6).

number of correctly classified documents

(6)

Accuracy =
4 total number of documents

4.2 Experimental Results

Table 2 gives a comparison of the classification results for the two classifiers
using the character n-gram representation and the word-based representation.
In particular, the minimum, average and maximum F-measure values when
applied to the cleaned and complete set are shown. Due to space limitations,
we refrain from providing detailed class-based F—measure values. The results
are based on 1000 features determined by the x? feature selection metric. Note
that the table’s left part depicts the results for the supervised support vector
machine (SVM) trained with sequential minimal optimization while the right
part refers to the unsupervised self-organizing map (SOM). The results for the
support vector machine are determined with the SMO implementation provided
with the WEKA machine learning toolkit [14].

Table 2. The minimum, average and maximum F-measure values for the support
vector machine (SVM) and the self-organizing map (SOM).

Support vector machine (SVM) Self-organizing map (SOM)
character n-grams| word based character n-grams| word based
cleaned| complete |cleaned|completel|cleaned| complete |cleaned|complete

set set set set set set set set
minimum || 0.540 0.608 0.556 0.528 0.513 0.563 0.615 | 0.559
average 0.840 0.902 0.885 0.894 0.789 0.834 0.856 0.870
maximum 1 1 1 1 1 1 1 1

The support vector machine’s F'—measure values increase strongly when ap-
plied to the complete set of messages described by character n-grams. The aver-
age F—-measure value is boosted by 6.2% in this particular case which is similar
to the increase of the respective minimum F-measures. When applied to the
word-based document representation, the average F-Measure value raises only
marginally in case of the complete set. Interestingly, the minimum value is even
smaller than the value obtained using the cleaned set. However, the largest av-
erage F-measure for the support vector machine is 90.2% obtained using the
complete set with n-gram document representation.

The average F—measure values for the self-organizing map classifier show a
comparable picture. The value increases by about 4.5% when the classifier is
applied to the complete set described by character n-grams. In case of the word-
based document representation the raise is only 1.4%. In contrast to the support
vector machine, the largest average F-measure is obtained for the complete set
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based on the word-based document representation. Overall, the support vector
machine outperformed the self-organizing map classifier. Especially with the n-
gram document representation SVM is substantially better than SOM.

In Figure 1 the classifiers’ accuracy values for different numbers of features,
are shown. Figure 1(a) depicts the percentage of correctly classified instances
using the support vector machine (SVM) and Figure 1(b) illustrates the results
obtained for the self-organizing map (SOM) classifier. Each curve corresponds
to a distinct combination of document representation and message set, e.g. the
cleaned set described by means of character n-grams.

When we consider the support vector machine, cf. Figure 1(a), the accu-
racy values for the word-based document representation are remarkably low in
case of a small number of features. Regardless of the message set, results are
roughly 20% worse than those obtained when character n-grams are used. As
soon as the number of features exceeds 300, the accuracy values for the word-
based representation catch up with those of the n-grams. However, the character
n-gram document representation outperforms the word-based approach almost
throughout the complete range of features.

In case of the self-organizing map, cf. Figure 1(b), a similar trend is observed
at the beginning. The n-gram document representation outperforms the word-
based approach dramatically, as long as the number of features is below 300.
Generally, once the number of features exceeds 300 the accuracy values for the
word-based representation get ahead of those obtained for the character n-gram
document representation.

By using the self-organizing map for document space organization we gain
as an additional benefit the concise visual representation of the document space
as depicted in Figure 2. In this case the result of the self-organizing map for
the complete data set based on n-gram document representation reduced to 500
features is shown. The available class information is exploited for coloring the
map display. More precisely, each class is randomly assigned a particular color
code and the color of a unit is determined as a mixture of the colors of documents
colors assigned to that unit. Note that class information was not used during
training, it is just used for superimposing color codes to the result of the training
process. We are currently working on a more sophisticated coloring technique
for self-organizing maps along the idea of smoothed data histograms [10].

It is obvious from the map display that the spam cluster is located on the top
of the map with a remarkable purity, i.e. the number of misclassified legitimate
messages is very small. On the lower left hand side of the map, an area related to
messages from various mailinglists, such as dbworld, seworld, isaus, is found. It
is remarkable how well the self-organizing map separates the various mailinglists
when taking into account that some of the messages are highly similar. On
the lower right hand side of the map, messages relating to university business
are located, e.g. teaching and department. Again, the separation between these
classes is achieved to a remarkably high degree.

For easier comparison, enlarged pictures of four regions of the self-organizing
map are provided in Figures 3 to 6. Note that in these figures reference to the
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(a) Support vector machine (SVM)
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(b) Self-organizing map (SOM)
Fig. 1. Classification accuracy.

classes is given with the names originally chosen for the e-mail folders. Some of
these names have German origin. So, “lehre” refers to lectures, and “insti” refers
to department. The coordinates of the respective regions within the overall map
are given in the caption of the figures. In particular, Figure 3 shows an area of
the map on the left hand center featuring messages assigned to the dilbert and
spam clusters. The dilbert messages are neatly arranged within the larger area of
spam messages. Figure 4 depicts an enlarged view of the lower left hand corner
of the map containing various messages from the mailinglists dbworld and se-
world. Note that messages of the position class, i.e. messages related to academic
job announcements are neatly embedded within this cluster. Moreover, messages
from the isaus mailinglist are mapped to an adjacent area. This makes perfect
sense, since these messages are primarily concerned with academic announce-
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Fig. 2. A self-organizing map of the complete set, n-grams and 500 features.

ments related to Australia. Figure 5 enlarges the right center area of the map
which primarily features messages related to university business. In particular,
this cluster contains messages dealing with teaching and department issues. Fi-
nally, we show an enlargement of the area containing the messages of the michael
cluster in Figure 6. This area is especially remarkable since no misclassification
occurred during the unsupervised training process of the self-organizing map.

5 Conclusion

In this paper, a comparison of support vector machines and self-organizing maps
in multi-class categorization is provided. Both learning algorithms were applied
to a character n-gram as well as a word-based document representation. A corpus
personal e-mail messages, manually split into multiple classes, was used. The
impact of e-mail meta-information on classification performance was assessed.
In a nutshell, both classifiers showed impressive classification performance
with accuracies above 90% in a number of experimental settings. In principle,
both the m-gram-based and the word-based document representation yielded
comparable results. However, the results for the n-gram-based document repre-
sentation were definitely better in case of an aggressive feature selection strategy.
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Fig. 3. Enlarged view of selected regions of the self-organizing map: dilbert and spam:
col 1-5, row 6-10

Fig. 4. Enlarged view of selected regions of the self-organizing map: mailinglist: col
1-5, row 13-17
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Fig. 5. Enlarged view of selected regions of the self-organizing map: teaching and de-
partment: col 14-18, row 8-12

Fig. 6. Enlarged view of selected regions of the self-organizing map: michael: col 13-16,
row 19-20
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The more features are selected, the more favorable are the results for the word-
based document representation. The only exception to that was the result for
the support vector machine which produced the best result based on the 2000
top-ranked n-grams selected according to the x? metric.

The accuracies of the self-organizing map are just slightly worse than those
of support vector machines. This is all the more remarkable because the self-
organizing map is trained in an unsupervised fashion, i.e. the information on class
membership is not used during training. Moreover, training of the self-organizing
map results in a concise graphical representation of the similarities between the
documents. In particular, documents with similar contents are grouped closely
together within the two-dimensional map display.
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Abstract. We explore evidence accumulation (EAC) for combining clustering en-
sembles. According to EAC, a voting mechanism, where each partition has an
identical weight in the combination process, is used to combine N partitions into
a co-association matrix. This matrix is constructed based on co-occurrences of
pairs of patterns in the same cluster. A final data partition is obtained by ap-
plying a clustering agorithm over this co-association matrix. In this paper we
propose the idea of weighting the partitions differently (WEAC). Depending on
the quality of the partitions, measured by internal and relative validity indices,
each partition contributes differently in a weighted co-association matrix. We
propose two ways of weighting each partition: SWEAC, using a single valida
tion index, and JWEAC, using a committee of indices. The new approach is
evaluated experimentally on synthetic and real data sets, in comparison with the
EAC technique and the graph-based combination methods by Strehl and Gosh,
leading in general to better results.
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1 Introduction

The aim of clustering is to organize patterns into clusters so that patterns within a
cluster are more similar to each other than are patterns belonging to different clusters.
Even though there are hundred of clustering algorithmsin the literature [1-3], no single
algorithm can effectively find by itself all types of cluster shapes and structures. With
the objective to solve this limitation, some combination clustering ensemble g-
proaches have been proposed [4-8, 23-28] based on the idea of combining the results
of aclustering ensemble into afinal data partition.

The evidence accunulation clustering (EAC) method, by Fred and Jain, considers
each clustering result as an independent evidence of data organization, and combines
a clustering ensemble into a single combined data partition using a voting mechanism.
This voting mechanism produces a mapping of N clusterings into a new similarity
measure between n patterns, summarizedinann = n co-association matrix:

Co_ assoc(i, j) =votes; /N

where votes; is the number of times the pattern pair (i j) is assigned to the same cluster
among the N clusterings. The final combined data partition (P*) is obtained by apply-
ing a clustering algorithm to the co-association matrix. The final number of clusters can
be fixed or automatically chosen using lifetime criteria[5-6].

Strehl and Ghosh see the cluster ensemble problem as an optimization problem
based on the maximal average mutual information between the combined data partition
and the clustering ensemble, exploring graph theoretical concepts. The clustering
ensemble is mapped into a hypergraph, where vertices correspond to samples, and
partitions are represented as hyperedges. They presented three heuristics to solve this
problem: the hypergraph-partition algorithm (HGPA) cut a minimum number of hyper-
edges in the hypergraph using HMETIS algorithm with the objective of obtaining
unconnected components of approximately the same size; the meta clustering algo-
rithm (MCLA) applies a graph-based clustering to hyperedges in the hypergraph rep-
resentation with the purpose of reducing the number of hyperedges; the cluster-based
similarity partitioning agorithm (CSPA) is similar to the EAC approach, producing a
similarity co-association matrix from the hyperedges representation of the partitions,
and the final partition is obtained by applying the METIS algorithm to this similarity
metrix.

In this paper we introduce a new approach (WEAC), based on the work by Fred et
a. [4-6] on evidence accumulation clustering. WEAC consists of a weighted voting
mechanism on the clustering ensemble, leading to a weighted co-association natrix
(w_co_assoc matrix). We explore two different ways to weight each clustering to be
incorporated in the w_co_assoc matrix. In the first method, the Single Weighted EAC
(SWEAC), each clustering is evaluated by arelative or internal cluster validity index
and the contribution of each clustering is weighted by the value obtained for this
index. In the second method, the Joint Weighted EAC (JWEAC), each clustering is
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evaluated by a set of relative and internal cluster validity indices and the contribution
of each clustering is weighted by all results obtained with each of these indices. For
comparison, we used in experiments two internal indices and fourteen relative indices.
The final combined partition is obtained by clustering the obtainedw_co_assoc matrix.

The proposed WEAC approach is evaluated experimentally in this paper, on acom
parative study with the EAC, HGPA, MCLA and CSPA methods.

Section 2 summarizes the cluster validity indices used in WEAC. Section 3 presents
the proposed Weighted Evidence Accumulation Clustering (WEAC) and the experi-
mental setup used. In section 4 a variety of synthetic and real data sets are used to
evaluate the performance of WEAC. Finally, in section 5 we present the conclusions.

2 Clugter Validity Indices

How many clusters are present in the data and how good is the clustering itself are
two important questions that have to be addressed in any clustering. Cluster validity
indices provide the formal mechanisms to give an answer to these questions. For an
overview of cluster validity measures and comparatives studies seefor instance[9,10]
and the references therein.

We can consider three goproaches to assess cluster validity [11]: externa validity
indices, where the results of a clustering algorithm are evaluated based on a pre-
specified structure that is assumed on the data set and reflects our intuition about the
clustering structure of the data set (ground truth); internal validity indices, where we
evaluate the clustering results in terms of quantities that involve the datarepresenta-
tions themselves, and; relative validity indices, where a clustering structure is evalu-
ated by comparing it to other clustering results, produced by the same algorithm but
with different input parameters.

In this paper we make use of aset of internal and relative clustering validity indices,
extensively used and referenced in the literature, to assess the quality of data parti-
tions; external validity criteriais excluded, since it requires the use of apriori informa-
tion about cluster structure. Thetwo internal indices used are: the Hubert Statistic and
Normalized Hubert Statistic (NormHub) [12]. The fourteen relative indices considered
are: Dunn index[13], Davies-Bouldin index (DB) [14], Root-mean-square standard error
(RMSSDT) [15], R-squared index (RS) [15], the SD validity index [10], the S_Dbw valid-
ity index[10], Caliski & Cooper cluster validity index (CH) [16], Silhouette statistic (S)
[17], index | [18], XB cluster vaidity index, [19], Squared Error index (SE), Krzanowski
& Lai (KL) cluster vdidity index [20], Hartigan cluster vaidity index (H) [21] and the
Point Symmetry index (PS) [22].
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3 Weighted Evidence Accumulation Clustering (WEAC)

WEAC is an extension of the EAC paradigm by weighting the influence of each data
partition of the clustering ensemble in the combination process, based on the quality
of these partitions, as assessed by cluster validity indices. In a simple voting mecha-
nism a set of bad clusterings can overshadow another isolated good clustering, thus
leading to poor clustering results. We expect to obtain better combination results by
weighting the partitions in a weighted co-association matrix according to a measure of
cluster validity, by giving higher relevance to better partitions in the clustering en-
semble.
Given aclustering ensemble

P- {Pl, PZ,...,PN} with N partitions of n objects (patterns), and a corresponding
set of normalized indices with values in the interval [0,1] measuring the quality of each

of these partitions, the clustering ensemble is mapped into a weighted co-association
matrix:

vote . VI "
W_co_assoc(i ,j):g e ,
L=1 N

where N is the number of clusterings, vote; isabinary value, 1 or 0, depending if the

object pair (,j) has co-occurred in the same cluster (or not) in the L™ partition, and

VIt is the normalized cluster validity index value for the L™ partition. The combined

data partition is obtained by applying a clustering algorithm to the weighted co-

association matrix. The proposed WEA C method is schematically described in table 1.

In WEAC we used two different ways of weighting each data partition:

1. Single Weighted EAC (SWEAC): in this method, the quality of each data partition
is assessed by a single normalized relative or interna cluster validity index, and
each votein thew_co_assoc matrix isweighted by the value of thisindex:

VIt :norm_validity(PL)

2. Joint Weighted EAC (JWEAC): in this method, the quality of each data partition is
assessed by a set of relative and internal cluster validity indices, each votein the
W_co_assoc matrix being weighted by the overall contributions of these indices:

e L
vtz hg»d norm_ validity, , (P ]
ind =1 NInd
where NInd is the number of cluster validity indices used, and
norm_validity,,, (P*) is the value of theind" validity index over the partition P".

In our experiments, we used sixteen cluster validity indices, as presented in section 2.
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Table1. WEAC approach

Input:
P= {Pl, Pz,...,PN}- Clustering Ensemble with N data partitions

VI =$/I TviZ,.. .V N} - Normalized Cluster Validity Index values of the corre-
sponding data partitions
n —number of data patterns
Output: Combined data partitioning.
Initialization: setw_co_assoctoanull n” n matrix.
1 ForL=1toN
Update thew_co_assoc: for each pattern pair (i,j) in the same cluster, set

vote,; VI*
w_co_assoc(i,j)=w_co_assoc(i,j)+ ————

votey; - binary value (1 or 0), depending if the object pair (i,j) has co-occurred in the
same cluster (or not) in the L™ partition
2. Detect consistent clusters in the weighted co-association matrix using a clus-
tering algorithm

3.2 Experimental Setup

3.21 Construction of Clustering Ensemble

We can use several different approaches to construct clustering ensambles, such as:
applying different clustering algorithms; using the same clustering agorithm with
different parameter values/initializations, clustering different views/features of the
data; using different preprocessing and/or feature extraction mechanisms; perturbing
the data set using techniques such as bootstrapping or boosting. In [5], clustering
ensembles were generated by random initialization of the K-means algorithm. In this
paper, besides the K-means algorithm (KM), we also explore other clustering methods
to construct clustering ensembles: Single Link (SL), Complete-Link (CL), Average-Link
(AL) and Clarans (CLR). We study the effect of combining clusterings produced by a
single algorithm with different initializations and/or parameters values and the effect of
combining clusterings produced by different clustering algorithms with different ini-
tializations and/or parameters values. Specifically, each clustering algorithm uses dif-
ferent values of k and K-means and Clarans additionally use different initializations of
clusters centers. We explore also aclustering ensemble including all the partitions
produced by al the clusterings algorithms (ALL). Considering K, and K.x the mini-
mum and maximum initial number of clusters, the procedure used to produce partitions
isasfollows:

For K-means and Clarans clustering algorithms:
1. DoNtimes
11. Randomly select k in theinterval [KuinKmax] @and k clusters centers.
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1.2. Run the algorithm with the above k and random initialization to produce a par-
tition.

For SL, CL and AL clustering algorithms:
1. Dok= km'n to kmax
1.1. Run the algorithm with the above k to produce a partition.

3.2.2 Normalization of Cluster Validity Indices

Some indices are intrinsically normalized but others are not. For some of them the best
result is the highest and for others the lowest value. For the indices of the first type,
when the index only has values greater than zero, the normalization is made by divid-
ing the value obtained for the index by the maximum value obtained over all partitions
(index_value=value_obtained/Maximum_value). For indices of the second type,

when the index only has values greater than zero, the normalization is made by divid-
ing the minimum value obtained over all partitions by the partition value obtained for
the index. (ndex_value= Minimum value/value_obtained). The Normalized Hubert
Statistic and Silhouette index are intrinsically normalized between [-1,1] but we only
consider values between [0,1]. Some other indices increase (or decrease) as the num-
ber of clusters increase and it is not possible to find neither the maximum nor the mini-
mum. In these cases, we search for the value of k at which asignificant local changein
the value of the index occurs. This change appears as a “knee” in the plot and is an
indication of the number of clusters underlying the data set. Table 2 presents the crite-
riato obtain the best value with each validity index.

Table 2. Criteriato obtain the best value according to each vaidity index

Index Criteria Index Criteria | Index | Criteria | Index Criteria
Hubert “Knee" RMSSDT | “Knee* CH Max SE “Knee"
NormHub | Max RS “Knee" S Max KL Maximum
Dunn Max D Min | Max H Smallest k=1:

H(k)=10
DB Min S Dbw Min XB Min PS Minimum

Usually the highest (or lowest) value obtained in an index based on the “kneg” is
not the best value for that index. Therefore, this kind of indices can’t be integrated
directly in the w_co_assoc matrix. The best value of the index is where the “knee” is
identified. The value 1 is assigned to the clustering associated to the “knee” in this
index. The method we follow to incorporate the indices based on the “knee” in the co-
association matrix was the following: running each of the clustering algorithms (SL,
CL, AL, CLR and KM), varying the number of clusters to be obtained between [1,
Kimaximum] Where Kiaximem 1S the maximum number of clusters we believe to exist in the
data set; then, in each algorithm, we have to compare the clustering associated to the
“knee” with each of the other clusterings produced by this algorithm. We used an
external index, the Consistency index (C), proposed in [1] to compare these cluster-
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ings; G(P,Pxee) Where P is the clustering we want to validate and Py, the clustering
associated to the knee. Consistency index is defined as the fraction of shared samples
in matching clusters of two clusterings. The Consistency index is equal to the percent-
age of correct labelling when data partitions have the same number of clusters. Con-
sider two clusterings with an arbitrary number of clusters and with the samples enu-
merated and referenced using the same labels in every clustering, s, i=1,...,n. Each
cluster has an equivalent binary valued vector representation, each position indicating
the truth value of the proposition: sample i belongsto the cluster. The following nota-
tionis used:

Pe clusteringi : (nc;, Cil...Crimi)
nc, °© number of clustersin clusteringi

Ci]- ={s:s1 clusterj of clusteringi} ° list of samplesin thej" cluster of clustering i
XX (k) =13 Ho50C) k=1, ,n° binary valued vector representation of cluster C}
min{ n¢; ,nc,}
The Consistency index (Ci) isdefinedin[1] as: C, == é n_shared,
n ix

whereit is assumed that clusters occupy the same position in the ordered clusterslists
of the clusterings, and n_shared; is the number of samples shared for thei" clusters.

We did this procedure to Hubert Statistic, RMSSDT index, RS index and Squared
Error index. In Hartigan cluster validity index the estimated number of clustersisthe
smallest k = 1 such that H(k)= 10. Since Hartigan index is not calculated for values of k
greater than the estimated number of clusters (usually obtained negative values) we
have to apply to this index the same procedure applied to the indices based on the
“knee” to obtain an index value for clusterings with k’s greater than the estimated
number of clusters.

3.2.3 Extraction of the Final Data Partition

The obtained co-association matrix represents a new similarity matrix between pat-
terns to which a clustering algorithm must be applied in order to extract the combined
data partition. We tested the SL, CL, AL and WR algorithms in the final edraction
phase of P*. In the results shown next, we assumed the final number of clusters
known. To evaluate the performance of the combination methods, we compare the
combined data partitions with ground truth information, obtained from known labeling
of the data. We used the Consistency index described in [1] to compare these cluster-
ings.

211


simeon
Australiasian  Data  Mining  Conference  AusDM05

simeon
211


Australiasian Data Mining Conference AusDM05

4 Experimental Results

4.1 Data sets

Synthetic data sets For simplicity of visualization we considered 2-dimensional pat-
terns. These data sets were produced aiming the evaluation of the performance of
WEAC in a multiplicity of conditions, like distinct data sparseness in the feature
space, arbitrary shaped clusters, well separated and touching clusters. Figure 1 plots
these data sets.

The Bars data set has 2 classes (200 and 200) and the density of the patterns in-
creasing with increasing horizontal coordinate. The Cigar data set has 4 classes (100,
100, 25 and 25). The Half Rings data set is composed by 3 uniformly distributed
classes (150, 150 and 200) within half-ring envelops. The Rings data set consists of 500
samples organized in 4 classes (25, 75, 150 and 250). The Spiral data set consists of 200
samples divided evenly in 2 classes.

w T

(a) Bars (b) Cigar  (c) Half Rings (d) Rings (e) Spirall
Fig. 1. Synthetic Data Sets

Real Data Sets Four real-life data sets were considered to show the performance of the
WEAC: Breast Gancer, Iris, DNA microarrays and Handwritten Digits. The Breast
Cancer data set (http://www.ics.uci.edu/~mlearn/M L Repository.html) has 683 samples
(9 features) spitted in two classes: Benign and Malignant. The Iris data set is divided
in three types of Iris plants (50 samples per class), characterized by 4 features, and
with one class well separated from the other two, which are intermingled. The Y east
Cell data set (DNA microarrays) consists of the fluctuations of the gene expression
levels of over 6000 genes over two cell cycles. The available data set is restricted to
the 384 genes with 17 features (http://staff.washington.edu/kayee/model/) whose ex-
pression level peak at different time points corresponding to the 5 phases of the cell
cycle. It was used the logarithm of the expression level (Log Y east) and a “ standard-
ized” version (Std Yeast) of the data (with mean O and variance 1). The Handwritten
Digits, is available at the UCl repository
(http://www.ics.uci.edu/~mlearn/M L Repository.html), and consists in 3823 samples,
each with 64 features. A subset (Optical) composed by the first 100 samples of al the
digits was used from atotal of 3823 training samples (64 features).
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4.2 Combination of Clustering Ensemblesusing WEAC

The quality of the combined data partition, P*, obtained with the WEAC method is
evaluated by computing the consistency of P* with ground truth information P°, using
Ci(P* ,P%). We assume that the true number of clusters is known, being the number of
clustersinP*.

Tables 3-12 show the values of G(P*,P°) over the experiments with both synthetic
(Bars, Cigar, Half Rings, Rings and Spiral) and real data (Breast Cancer, Iris, Std Y east,
Log Yeast and Optica). In these tables, rows are grouped by the clustering ensembles
construction method. Inside each clustering ensemble construction method appears
the three clustering methods used to extract the final combined partition. K-means and
Clarans based clustering ensembles have N=200 clusterings each, obtained with k
randomly chosen in the set {10,...,30}. SL, CL and AL based clustering ensembles
have N=21 data partitions, each corresponding to a different number of clusters, k, in
the set { 10,...,30}. ALL gather the partitions produced by all the methods, with N=463.

Analyzing the tables 3-12, we can conclude that we achieve in general better results
with both versions of WEAC when comparing with EAC. In JWEAC we can find many
situations where the results are the same as those of EAC, some other situations
where the JWEAC results outperform EAC's and in fewer situations the JWEAC re-
sults are worse than EAC's. The SWEAC results of each cluster index are in many
situations equal to the EAC results, in other situations the EAC results are improved
with the SWEAC approach and in fewer situations the EAC results are better than
those of SWEAC.

Concerning the clustering ensemble construction methods, we can see that in 7 out
of the 10 data sets used, the partitions produced by the k-means clustering algorithm,
provide the better results inthe EAC. In the IWEA C approach the same happened in 6
data sets. So, we can conclude that kmeans algorithmis a good option to produce
cluster ensembles for these approaches.

Table 3. Breast Cancer
|

EAC | JWEAC [ Hubert [NormHub] Dunn [RMSSDT[ RS S dbw cH S XB SE DB SD H KL PS

SL| 6515 | 6515 65.15 65.15 | 6515 65.15 65.15 | 6515 65.15 | 6515 | 65.15 65.15 65.15 65.15 65.15 65.15 65.15 65.15

st] AL | 6515 | 6633 66.33 65.15 | 6515 66.33 66.33 | 6545 66.33 65.15 | 66.33 66.33 66.33 66.33 66.33 66.33 66.33 65.15

WR| 6808 | 6808 68.08 68.08 | 68.08 68.08 68.08 | 68.08 6823 | 66.76 | 66.47 68.23 68.08 66.76 68.08 68.08 68.08 68.08

SL| ess1 | 6881 68.81 68.81 | 6881 68.81 68.81 | 6881 68.81 68.81 | 6881 68.81 68.81 68.81 68.81 68.81 68.81 68.81

AL| AL | 6881 | 7101 94.88 94.88 | 9488 94.88 9488 | 881 68.81 94.88 | o488 94.88 94.88 94.88 68.81 94.88 90.19 74.52

WR | 96.49 | 96.49 96.49 96.49 | 96.49 96.49 96.49 | 96.49 9488 | 96.49 | o488 96.49 96.49 96.49 96.49 96.49 96.49 96.49

SL| ess81 | 688l 68.81 68.81 | 6881 68.81 68.81 | 6881 68.81 68.81 | 6881 68.81 68.81 68.81 68.81 68.81 68.81 68.81

cL| AL | ess81 | 6676 96.63 66.76 | 73.94 96.63 96.63 | 96.63 96.63 | 96.63 | 6837 96.63 96.63 76.72 96.63 96.63 96.63 96.63
WR| o605 1 oeea 96,63 9605 1 9605 96.63 9663 1 9605 9663 | o605 | o663 96.05 26,63 96,05 96.05 96,63 96,63

SL| 6457 | 6457 64.57 64.57 | 6457 64.57 64.57 | 6457 64.57 6457 | 6457 64.57 64.57 64.57 64.57 64.57 64.57 64.57

km| AL | 97.07 | 97.07 97.07 97.07 | 97.07 97.07 97.07 | 97.07 97.07 | 97.07 | 9707 97.07 97.07 97.07 97.07 97.07 97.07 97.07

WR| 6120 ] 6120 68.67 6120 | 6120 68.67 68.67 | 59.74 68.67 6120 | 6867 61.20 68.67 61.20 61.20 68.67 61.20 61.20

SC| 6515 | 6515 65.15 65.15 | 6515 65.15 65.15 | 65.15 65.15 | 65.15 | 65.15 65.15 65.15 65.15 65.15 65.15 65.15 65.15

cLr| AL | 96.05 | 96.05 94.58 9458 | 96.05 94.58 9458 | 9575 9590 | 9575 | 95.90 94.58 94.58 96.05 96.05 94.58 96.05 96.05

WR| 4832 | 47.00 47.00 | 47.00 | 4832 47.00 47.00 | 4832 47.00 | 46.27 | 4583 4832 | 47.00 | 4832 48.32 47.00 47.00 48.32

SL| 6515 | 6515 65.15 65.89 | 6515 65.15 65.15 | 6515 65.15 65.15 | 65.15 65.15 65.15 65.15 65.15 65.15 65.15 65.15

ALL| AL | o385 | 6589 65.89 94.88 | e5.89 65.89 65.89 | 6589 94.00 | 94.44 | 9414 65.74 65.89 65.15 66.03 65.89 65.89 65.74

WR| 9693 ] 9400 94.73 9634 | 9473 94.73 9473 | 97.07 96.93 9634 | 9678 96.78 94.73 94.29 94.88 94.00 94.00 96.34
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Table4. Iris

EAC [ JWEAC | Hubert [NormHub] Dunn [RMSSDT[ RS S _dbw CH S 1 XB SE DB SD H KL PS
sL | 67.33 | 67.33 67,33 [ 67,33 67,33 | 6733 | 67.33 67,33 | 67,33 [ 67,33 67,33 | 67,33 | 67,33 67,33 67,33 67,33 67,33 67,33
sL| AL ] 6733 | 67.33 67,33 | 34,67 67,33 | 67,33 | 67,33 34,67 | 34,67 | 64,67 67,33 | 3467 | 67,33 68,00 68,00 67,33 34,67 64,67
wR] 7000 | 7000 70,67 § 70,00 91,33 | 7067 | 7067 91,33 | 7067 | 90,00 70,67 | 7000 | 7067 70,00 70,67 70,67 70,67 70,67
sL | 6933 | 6933 69,33 [ 69,33 69,33 | 69,33 | 69,33 69,33 | 69,33 | 69,33 69,33 | 69,33 [ 69,33 69,33 69,33 69,33 69,33 69,33
AL AL | 69.33 | 69.33 78.00 | 48.00 38.67 | 78.00 | 78.00 48.67 | 40.00 | 79.33 65.33 | 40.00 | 78.00 48.67 78.00 69.33 69.33 72.00
wr] 7800 | 7800 78,00 § 78,00 78,00 | 78,00 | 78,00 77,33 | 78,00 | 7800 78,00 | 7800 | 78,00 78,00 78,00 78,00 78,00 78,00
sL | 50,00 | 5000 50,00 [ 50,00 50,00 | 50,00 [ 50,00 50,00 | 50,00 [ 50,00 50,00 | 50,00 [ 50,00 50,00 50,00 50,00 50,00 50,00
CL| AL | s000 | 5000 47,33 | 6333 4533 | 47,33 | 47,33 52,00 | 50,00 | 50,00 59,33 | 47,33 | 47,33 40,00 47,33 50,00 47,33 36,67
WRE 673 7067 2067 0 7067 6733 | 7067 1 7067 6133 | 7067 | 6733 2067 1 7067 | 7067 6733 20,67 20,67 Q.67 20,67
SL | 7467 74.67 74.67 | 74.67 74.67 | 7467 | 74.67 69.33 | 74.67 | 74.67 74.67 | 69.33 | 74.67 69.33 74.67 74.67 74.67 69.33
kM| AL | 90,67 | 9067 90,67 | 90,67 90,67 | 90,67 | 90,67 90,67 | 90,67 | 90,67 90,67 | 90,67 | 90,67 90,67 90,67 90,67 90,67 90,67
WRY 9067 | 9067 90,67 | 9067 8400 | 9067 | 90,67 8400 | 9067 | 90,67 90,67 | 9067 | 9067 90,67 90,67 90,67 90,67 90,67
SL| 6800 | 6800 68,00 | 68,00 68,00 | 68,00 [ 6800 68,00 | 68,00 | 68,00 68,00 | 68,00 | 68,00 68,00 68,00 68,00 68,00 68,00
cLr| AL | 90,67 | 9067 90,67 | 90,67 90,67 | 90,67 | 90,67 90,67 | 90,67 | 90,67 90,67 | 90,67 | 90,67 90,67 90,67 90,67 90,67 90,67
WRJ 4600 | 4600 46,00 | 46,00 46,00 | 46,00 | 4600 46,00 | 46,00 | 4600 46,00 | 4600 | 46,00 46,00 46,00 46,00 46,00 46,00
sL | 67,33 | 67,33 67,33 | 67,33 67,33 | 67,33 [ 67,33 68,00 | 67,33 | 74,67 67,33 | 67,33 | 67,33 67,33 67,33 67,33 67,33 67,33
ALL| AL | 9067 | 69.33 69.33 | 89.33 69.33 | 69.33 | 69.33 96,00 | 90.00 | 90,67 90,67 | 90,67 | 70.00 69.33 90.00 69.33 69.33 69.33
wrl 9067 | o067 90,67 | 90,67 96,67 | 9067 | 90,67 96,00 | 97,33 | 9067 90,67 | 9067 | 96,67 96.00 90,67 96,00 90,67 94,00

Table5. Rings

EAC_J JWEAC | Hubert [NormHub] Dunn [RMSSDT] RS S dbw CH s 1 xB SE DB SD H KL PS
SL [ 44,00 [ 44,00 44,00 44,00 | 44,00 44,00 44,00 | 44,00 44,00 44,00 | 44,00 44,00 44,00 44,00 44,00 44,00 44,00 44,00
sL| AL | 4400 | 8180 55,00 59,00 | 42,00 55,00 55,00 | 61,00 43,40 44,00 | 4340 47,40 55,00 44,00 58,80 53,60 46,20 53,60
WR | 5980 | 5980 59,80 59,80 | 5980 59,80 59,80 | 61,00 59,80 74,60 | 59.80 59,80 59,80 59,80 59.80 59,80 59,80 59,80
sL | 3620 [ 3620 36,20 36,20 | 36,20 36,20 36,20 | 36,20 36,20 36,20 | 36,20 36,20 36,20 36,20 36,20 36,20 36,20 36,20
AL| AL | 3620 | 36.20 38.40 35.60 | 41.80 38.40 38.40 | 38.00 35.20 43.40 | 3800 36.80 38.40 39.00 38.40 41.80 38.00 36.80
WR | 77.40 | 77.40 60,20 77.40 | 8560 60,20 60,20 | 7420 60,20 8560 | 77.40 85,60 60,20 77.40 77.40 60,20 60,20 77,40
sL [ 4100 [ 4100 41,00 41,00 | 41,00 41,00 41,00 | 41,00 41,00 41,00 | 41,00 41,00 41,00 41,00 41,00 41,00 41,00 41,00
cL| AL | 4100 | 3940 42,20 36,60 | 34,20 42,20 42,20 | 40,60 40,60 61,80 | 4980 43,20 42,20 56,60 40,60 42,20 48,40 37,20

WR L6320 |
SL| 78,00 | 7800 78,00 78,00 | 78,00 78,00 78,00 | 79,80 78,00 78,00 | 78,00 85,40 78,00 78,00 85,40 78,00 78,00 79,80
kM| AL | 4460 | 7160 43,60 51,00 | 44,80 43,60 43,60 | 43,60 43,60 43,60 | 44,60 43,60 43,60 43,60 43,60 43,60 43,60 44,60
WR| 5740 | 5940 54,00 57.40 | 5940 54,00 54,00 | 62,60 54,00 58,20 | 59.40 57,60 54,00 58,20 54,20 54,00 54,00 59,40
SL| 4800 | 5260 52,60 48,00 [ 45,00 52,60 52,60 | 48,00 52,60 44,80 | 50,60 50,60 52,60 52,60 52,60 52,60 52,60 50,60
cLr] AL | s6.60 | 5640 56,40 56,40 | 56,40 56,40 56,40 | 56,60 56,40 56,40 | 56,40 56,40 56,40 56,40 56,40 56,40 56,40 56,40
WR| 5160 | 5140 51,40 51,40 | 5140 51,40 51,40 | 51,60 51,40 51,00 | 49.80 51,40 51,40 51,40 51,40 51,40 51,40 51,40
sL| 7380 | 7380 73,80 73,80 | 73.80 73,80 73,80 | 7380 73,80 80,20 | 7380 73,80 73,80 73,80 73,80 73,80 73,80 73,80
ALL) AL | s460 | 4340 44.80 4480 | 4340 61.00 61.00 | 47.60 47.60 50.00 | 4520 44.40 61.00 47.60 48.40 43.40 43.40 48.40
WR| 5620 | 7180 71,80 71,80 | 6180 71,80 71,80 | 6180 71,80 5840 | 7100 66,20 71,80 61,80 71,00 71,00 71,80 71,00
Table6. Bars

EAC JWEAC | Hubert [NormHub] Dunn |RMSSDT RS S _dbw CH S | xXB SE DB SD H KL PS
sL | 5150 | 5150 51,50 51,50 | 5150 51,50 51,50 | 5150 51,50 51,50 | 51,50 51,50 51,50 51,50 51,50 51,50 51,50 51,50
sL| AL | 5150 | 9425 95,25 54,25 | 9575 95,25 95,25 | 94,25 50,50 51,50 | 54,00 51,50 95,25 50,50 54,25 51,50 95,75 94,25
WR | 9400 | 9400 94,00 94,00 | 94,00 94,00 94,00 | 9425 94,00 9575 | 9575 94,00 94,00 94,00 94,00 94,00 94,00 94,00
sL| 5575 | 5575 55,75 55,75 | 5575 55,75 55,75 | 5575 55,75 55,75 | 5575 55,75 55,75 55,75 55,75 55,75 55,75 55,75
AL| AL | s5.75 | 6025 58.75 58.75 | 66.25 58.75 58.75 | 51.00 66.25 58.75 | 5875 58.75 58.75 58.75 72.75 51.00 56.75 71.00
WR | 7600 | 7600 76,00 76,00 | 6425 76,00 76,00 | 6425 76,00 76,00 | 76,00 76,00 76,00 76,00 76,00 76,00 76,00 76,00
sL | s650 | 5650 56,50 56,50 | 56,50 56,50 56,50 | 56,50 56,50 56,50 | 5650 56,50 56,50 56,50 56,50 56,50 56,50 56,50
CL| AL | 5650 | 5650 56,25 56,50 | 54,75 56,25 56,25 | 56,50 62,00 56,50 | 7150 74,75 56,25 61,25 61,25 56,50 51,50 63,00

AR L0200 }
SL| 98,75 | 98,75 98,75 98,75 | 98,75 98,75 98,75 | 5275 98,75 98,75 | 98,75 98,75 98,75 98,75 98,75 98,75 98,75 98,75
km| AL | 9875 | 98,75 98,75 98,75 | 9875 98,75 98,75 | 98,75 98,75 98,75 | 98,75 98,75 98,75 98,75 98,75 98,75 98,75 98,75
WR| 9875 | 9875 98,75 98,75 | 9875 98,75 98,75 | 9875 98,75 98,75 | 9875 98,75 98,75 98,75 98,75 98,75 98,75 98,75
SL| s175 | 5175 51,75 51,75 | 5175 51,75 51,75 | 5175 51,75 50,25 | 5025 50,25 51,75 51,75 51,75 51,75 51,75 50,25
cLr] AL | 50,75 | 50,75 50,75 50,75 | 50,75 50,75 50,75 | 50,75 50,75 50,25 | 5075 50,75 50,75 50,75 50,75 50,75 50,75 50,75
WR| 5100 | 5100 51,00 51,00 | 51,00 51,00 51,00 | 51,00 51,00 50,25 | 51,00 51,00 51,00 51,00 51,00 51,00 51,00 51,00
sL| si50 | 9875 54,75 50,75 | 50,75 54,75 54,75 | 98,75 98,75 98,75 | 98,75 98,75 54,75 50,75 98,75 98,75 98,75 98,75
ALL] AL | 96,25 | 9875 98.75 98,75 | 9875 98.75 98.75 | 9875 98,75 98,75 | 98,75 98,75 98.75 98,75 98,75 98,75 98,75 98,75
WR | 8000 | 9875 99,50 9875 | 9400 99,50 9950 | 9875 98,75 6425 | 9875 64,25 99,50 98,75 98,75 98,75 98,75 98,75
Table7. Cigar

EAC [ JweAc | Hubert [NormHub] Dunn [RMSSDT] RS S _dbw cH S 1 xB SE DB SD H KL PS
sL | 4080 [ 4080 40,80 40,80 [ 40,80 40,80 40,80 | 40,80 40,80 40,80 | 40,80 40,80 40,80 40,80 40,80 40,80 40,80 40,80
st| AL | 4080 | 9720 77,20 40,80 | 40,80 77,20 77,20 | 39,60 86,00 51,60 | 77.20 40,80 77,20 40,40 86,80 40,80 40,80 78,00
WR | 9800 | 9800 98,00 98,00 | 98,00 98,00 98,00 | 7840 98,00 98,00 | 98,00 98,00 98,00 98,00 98,00 98,00 98,00 94,40
sL | ss840 | 5840 58,40 58,40 | 5840 58,40 58,40 | 5840 58,40 58,40 | 5840 58,40 58,40 58,40 58,40 58,40 58,40 58,40
AL| AL | s8.40 | 4720 58.40 47.20 | 5840 46.40 46.40 | 58.40 58.40 58.40 | 58.40 44.80 46.40 41.60 58.40 46.40 46.40 44.80
WR | 6200 | 6200 62,00 62,00 | 6240 62,00 62,00 | 7240 62,00 62,00 | 62,00 62,00 62,00 62,00 62,00 62,00 62,00 62,00
sL | s640 [ 5640 56,40 56,40 | 56,40 56,40 56,40 | 56,40 56,40 56,40 | 56,40 56,40 56,40 56,40 56,40 56,40 56,40 56,40
cL| AL | 5640 | 50,00 66,40 56,00 | 69,20 66,40 66,40 | 56,40 56,40 66,40 | 64,00 40,00 66,40 66,40 42,80 53,60 66,40 72,80
WR | 7640 | 49 | 7200 45,60 6o 1 7200 45,60 60 45,60
SL | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 [ 100,00
km| AL | 7080 | 7080 70,80 70,80 | 70,80 70,80 70,80 | 70,80 70,80 70,80 | 70,80 70,80 70,80 70,80 70,80 70,80 70,80 70,80
WR| 7160 | 7160 71,60 71,60 | 7080 71,60 71,60 | 10000 | 71,60 7160 | 7080 71,60 71,60 71,60 71,60 71,60 71,60 71,60
SL [ 49,60 | 49,60 49,60 49,60 | 49,60 49,60 49,60 | 49,60 49,60 49,60 | 49,60 49,60 49,60 49,60 49,60 49,60 49,60 49,60
cLrR] AL | 49,60 | 49,60 49,60 49,60 | 49,60 49,60 49,60 | 49,60 49,60 49,60 | 49,60 49,60 49,60 49,60 49,60 49,60 49,60 49,60
WR | 4320 | 4320 43,20 4320 | 4320 43,20 4320 | 4320 43,20 4320 | 4320 46,80 43,20 43,20 43,20 43,20 43,20 43,20
sL | 56,00 | 8840 88,40 88,40 | 8840 50,80 50,80 | 100,00 | 8840 | 100,00 [ 100,00 | 100,00 | 8840 [ 100.00 88,40 50,80 88,40 100,00
ALL] AL | 43.20 88,40 88,40 71.60 88.40 87,60 87,60 88.40 52.00 71.60 70.40 83.20 88,40 88.40 71.60 54,80 71.60 87.60
WR| 4320 | 7160 77.60 60,00 | 9520 75.20 7520 | 8480 43.20 7160 | 8480 84,80 61,20 | 100.00 68.40 44,00 60.00 100,00
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Table 8. Haf Rings
EAC | JWEAC | Hubert [NormHub] Dunn [RMSSDT| RS S _dbw CH S 1 XB SE DB SD H KL PS
sL | 6580 65,80 65,80 65,80 65,80 65,80 65,80 | 65,80 65,80 39,60 | 6580 65,80 65,80 65,80 65,80 65,80 65,80 65,80
st| AL | 6580 | 100,00 | 100,00 | 6580 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 39,60 | 100,00 | 34,40 | 100,00 | 6580 100,00 65,20 100,00 65,80
WR | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 § 100,00 | 100,00 | 39,60 | 100,00 | 100,00 | 100,00 § 100,00 | 100,00 | 100,00 | 100,00 | 100,00
SL| 4840 | 4840 48,40 48,40 | 4840 48,40 48,40 48,40 48,40 48,40 | 48,40 48,40 48,40 48,40 48,40 48,40 48,40 48,40
AL | AL [ 4840 | 4840 52.80 73.60 | 49.60 61.40 61.40 | 48.40 48.40 60.20 61.80 61.60 61.40 48.80 48.40 52.80 52.80 39.20
WR | 51,80 64,60 64,60 6460 | 4920 64,60 64,60 | 56,60 64,60 51.80 64,60 64,60 64,60 51,80 64,60 64,60 64,60 64,60
sL | s0.20 50,20 50,20 50,20 50,20 50,20 50,20 | 50,20 50,20 50,20 50,20 50,20 50,20 50,20 50,20 50,20 50,20 50,20
CL| AL | 5020 | 4760 37,40 45,40 | 44,80 37,40 37,40 | 4580 37,40 37,40 | 47,60 37,40 37,40 37,40 45,80 44,40 44,40 50,20
WR 5020 5020 Q 48.80 5020 5020 5020 4880 1 5020 48.80 48.80 |
SL| 99,80 99,80 99,80 99,80 99,80 99,80 99,80 | 99,80 69.80 99,80 | 99,80 99,80 99,80 99,80 99,80 99,80 99,80 99,80
kM| AL | 9500 95,00 95,00 95,00 95,00 94,60 94,60 | 86,40 94,60 95,00 | 9500 86,00 94,60 95,00 94,60 95,00 95,00 95,00
WR | 7740 77,40 95,00 95,00 77,40 95,00 9500 | 77.80 95,00 77.40 77.40 77,40 95,00 77,40 77.40 95,00 95,00 77,40
SL | 54,80 54,80 54,80 54,80 54,80 54,80 54,80 | 54,80 54,80 39,60 | 54,80 54,80 54,80 54,80 54,80 54,80 54,80 54,80
CLR] AL | 55,00 55,40 55,40 55,40 55,40 55,40 55,40 | 55,00 55,40 39,60 | 5540 55,40 55,40 55,40 55,40 55,40 55,40 55,40
WR | 53,00 59,20 59,40 59,20 59,20 59.40 5940 | 5120 59,40 39.60 | 54,00 54,00 59,40 59,20 59,40 59,40 59,40 59,40
sL | 64,60 95,00 99,80 95,00 95,00 68,60 68,60 | 95,00 95,00 95,00 | 95,00 95,00 68,60 95,00 95,00 100,00 99,80 95,00
ALLJ AL 99,80 95,00 95.00 95,00 95.00 94.80 94.80 99.80 95,00 95,00 95,00 95,00 94.80 95,00 95,00 91.40 95.00 95,00
WR | 7180 95,00 95,20 95.00 | 10000 | 100.00 | 100,00 § 10000 | 95.00 95.00 95,00 77.40 | 100,00 | 95,00 95,00 99.80 95,00 95,00
Table9. Log Yeast
EAC | JWEAC | Hubert [NormHub] Dunn [RMSSDT| RS S dbw CH s 1 XB SE DB SD H KL PS
sL| 3542 35,42 35,42 35,42 35,42 35,42 35,42 35,42 35,42 3542 | 3542 35,42 35,42 35,42 35,42 35,42 35,42 35,68
sL| AL | 3542 35,42 35,42 35,42 35,42 35,42 35,42 35,42 35,42 3542 | 3542 35,42 35,42 35,42 35,42 35,42 35,42 35,42
WR | 3516 3516 35,16 35,16 35,16 35,16 35,16 3542 35,16 3542 | 3490 35,16 35,16 3542 35,16 35,16 3516 34,90
sL| 3021 30,21 30,21 30,21 30,21 30,21 30,21 30,21 30,21 30,21 | 3021 30,21 30,21 30,21 30,21 30,21 30,21 30,21
AL AL | 3021 32.29 30.47 36.46 27.60 30.47 30.47 26.82 35.68 30.47 | 3047 32.03 30.47 32.81 32.29 32.29 30.47 32.29
WR | 30,99 3099 26.30 3099 | 3099 6.30 630 | 3125 6,30 30,99 2630 3099 26.30 30,99 0,99 26,30 26.30 3099 |
sL| 3958 39,58 39,58 39,58 39,58 39,58 39,58 39,58 39,58 39,58 | 3958 39,58 39,58 39,58 39,58 39,58 39,58 39,58
CL] AL | 3958 31,51 32,29 34,38 | 4089 32,29 32,29 31,51 31,51 2891 | 2656 27,60 32,29 3151 32,03 33,85 32,29 35,42
WR I 3125 1 3220 3151 3229 3255 150 151 2,55 3151 3125 1 3151 32,55 3151 3125 125 3151 3151 3125 1
SL | 33.85 34.37 34.37 34.37 33.85 34.37 34.37 33.85 34.90 34.37 34.90 33.85 34.37 33.85 33.85 34.37 34.37 33.85
kM| AL | 4141 | 4141 41,41 4141 | 4141 41,41 41,41 43,49 43,49 41,41 | 4349 41,41 41,41 41,41 41,41 41,41 41,41 41,41
WR | 3359 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59 33,59
SL | 36,72 36,72 36,46 36,46 36,72 36,46 36,46 36,72 36,46 36,46 | 3646 36,46 36,46 36,72 36,46 36,46 36,46 36,72
CLRl AL | 36,98 37,24 37,24 37,24 38,54 37,24 37,24 | 3698 35,68 3724 | 3568 36,98 37,24 37,24 37,24 37,24 37,24 43,49
WR | 3464 34,64 35,68 35,16 34,64 35,68 35,68 34,37 35,16 3516 | 3542 35,68 35,68 35.16 35,68 35,68 35,68 35,16
SL| 3854 36,72 35,68 38,54 36,98 35,68 35,68 35,68 36,46 3854 | 3646 36,20 35,68 35,16 35,68 36,72 35,42 35,42
ALL| AL | 40,63 | 4063 40,63 40,63 | 4036 40,63 40,63 40,36 40,89 40,63 | 40,89 40,63 40,63 3438 40,63 40,63 40,63 39,84
WR | 3646 36,20 33,07 36,20 32,29 33,07 33,07 34,11 36,20 36,20 | 3255 35,94 33,07 33,33 3594 35,94 35,94 34,11
Table 10. Optical
EAC JWEAC | Hubert [NormHub] Dunn |RMSSDT RS S _dbw CH S | xXB SE DB SD H KL PS
sL | 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,10 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,60
sL| AL | 1060 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,10 10,60 10,60 10,60 10,60 10,60 10,60 10,60 10,60
WR | 30,50 30,50 30,50 30.60 30,50 30,50 30,50 | 30.60 30.50 10,10 | 3050 30,50 30,50 30,60 30,50 30,50 30,50 30,70
sL| 7570 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70 75,70
AL| AL | 7570 75.70 75.70 75.70 75.70 75.70 75.70 | 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70 75.70
WR | 8480 | 8480 84,80 84,80 84,80 84,80 84,80 84,80 84,80 84,80 | 8480 84,80 84,80 84,80 84,80 84,80 84,80 84,80
sL | 5180 51,80 51,80 51,80 51,80 51,80 51,80 | 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80
CL] AL | 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80 51,80
WR =620 5200 5200 5200 5650 5200 5200 1 =720 5200 5230 5320 52,00 5200 5230 56,50 5320 5320 5200
SL | 30.20 30.20 30.20 30.20 30.20 30.20 30.20 | 40.00 30.30 30.20 | 30.30 30.20 30.20 30.20 30.20 30.20 30.20 30.20
kM| AL | 7880 78,80 78,60 78,60 78,80 78,80 78,80 | 78,90 78,40 78,60 78,50 78,80 78,80 78,80 78,80 78,80 78,80 78,80
WR | 8040 80,20 80,40 80,20 80,20 80,40 80,40 80,20 80,00 80,40 | 8070 80,20 80,20 80,20 80,20 80,20 80,20 80,20
SL | 20,30 20,30 20,30 20,30 20,30 20,30 20,30 | 20,30 20,20 20,30 | 2020 20,30 20,30 20,30 20,30 20,20 20,30 20,30
cLrR] AL | 79,00 79,00 79,10 79,00 79,00 78,80 78,80 81,50 78,70 78,90 | 8110 79,20 78,70 79,00 81,60 81,40 78,90 81,50
WR | 8740 82,80 80,30 90,20 87,40 80,30 80,30 | 8740 80,20 90,10 | 8150 81,90 81,40 87,40 83,30 80,20 79,90 90,20
sL [ 40,00 30,30 30,30 40,00 [ 4010 30,30 30,30 30,30 30,20 30,00 | 30,20 30,30 30,30 30,30 30,30 30,30 30,30 30,30
ALL] AL | 79,40 79,20 79.20 79,40 79,00 81,40 81,40 | 68.60 79,40 79,60 | 81,20 79,10 79,20 77.60 80,90 62.60 69.60 80,90
WR | 7860 78,70 79.30 78,90 78,90 78,60 78,60 | 7860 77,60 79,30 79,00 78,90 78,70 78,70 78,90 79,50 77,60 78,90
Table11. Spira
EAC | JWEAC | Hubert [NormHub]l Dunn [RMSSDT| RS S _dbw CH S 1 XB SE DB SD H KL PS
SL | 50,50 50,50 50,50 50,50 50,50 50,50 50,50 | 50,50 50,50 50,50 50,50 50,50 50,50 50,50 50,50 50,50 50,50 50,50
st| AL | 5050 98,00 50,50 98,00 98,00 50,50 50,50 98,00 98,00 50,50 | 98,00 98,00 50,50 98,00 98,00 50,50 50,50 50,50
WR | 96,50 96,50 98,00 96,50 96,50 98,00 98,00 | 96,00 98,00 50,50 | 98,00 96,50 98,00 96,50 96,50 98,00 98,00 98,00
sL [ 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00 52,00
AL | AL | 52.00 52.00 50.00 52.00 50.00 50.00 50.00 | 58.00 52.00 58.00 58.00 58.00 50.00 52.00 58.00 52.00 58.00 58.00
WR | 50,00 50.00 50.00 50.00 50.00 50.00 5000 | 5000 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
sL | 54,00 54,00 54,00 54,00 54,00 54,00 54,00 | 54,00 54,00 54,00 | 54,00 54,00 54,00 54,00 54,00 54,00 54,00 54,00
CL] AL | 5400 54,00 54,00 50,00 50,00 54,00 54,00 54,00 54,00 50,00 50,00 50,00 54,00 50,00 50,00 52,00 54,00 54,00
WR 2000 50,00 50,00 5000 50,00 5000 5000 1 5000 50.00 50.00 1 5000 50,00 50,00 50,00 50.00 50.00 5000 50,00
SL | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 [ 100,00 | 100,00 | 100,00 | 100,00 | 100,00 | 100,00 [ 100,00 | 100,00 | 100,00 | 100,00 | 100,00
kM| AL | 51,50 50,00 51,50 51,50 51,50 51,50 51,50 | 55,00 53,00 50,00 | 50,50 51,50 51,50 50,00 52,50 51,50 51,50 51,50
WR | 54,00 52,00 52,00 54,00 58,50 52,00 52,00 | 51,00 55,00 50,50 | 55,00 55,00 52,00 50,50 54,00 58,50 58,50 55,50
SL | 51,00 51,00 51,00 51,00 51,00 51,00 51,00 | 51,00 51,00 55,00 | 51,00 55,00 51,00 51,00 51,00 51,00 51,00 51,00
CLR] AL | 56,00 56,00 56,00 56,00 56,00 56,00 56,00 | 56,00 56,00 57,00 | 55,00 55,00 56,00 56,00 55,00 56,00 56,00 55,00
WR | 55,00 55,00 55,00 55,00 55,00 55,00 55,00 | 55.00 55,00 5450 | 5350 53,50 55,00 55,00 55,00 55,00 55,00 53,50
sL | 68,00 90,00 60,00 68,00 90,00 68,00 56,00 [ 100,00 | 68,00 | 10000 | 200,00 | 74,00 68,00 [ 100,00 80,00 60,00 68,00 100,00
ALL] AL | 51.00 51.50 56.00 50.50 52.00 52.00 52.00 52.00 56.50 52.00 52.00 52.00 52.00 84.00 52.00 100,00 | 100,00 52.00
WR | 5250 50,00 75.50 50.00 70,00 51,50 51,50 50,00 53,50 50.00 | 50.00 50.00 51,50 74,00 50,00 96.00 96.00 50,00
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Table 12. Std Yeast

EAC | JWEAC [ Hubert [NormHub] Dunn [RMSSDT[ RS S dbw CH S 1 XB SE DB SD H KL PS

SL| 3568 | 3568 3568 | 3568 | 3568 3568 | 3568 | 3568 3568 | 3542 | 3568 3568 | 3568 | 3568 35,68 35,68 35,68 35,68

sL] AL | 3568 | 3646 3646 | 3568 | 3568 3646 | 3646 | 3646 37,24 | 3542 | 3646 3568 | 3646 | 3646 35,68 35,68 35,68 35,68

WR| 3698 ] 3698 3698 | 3698 | 3698 3698 | 3608 | 3724 3698 | 3542 | 3698 3698 | 3698 | 3724 36,98 36,98 36,98 36,98

sL| 57,29 | 57,29 5729 | 57,29 | 57,29 57,29 | 57,29 | 57,29 57,29 57,29 | 57.29 5729 | 57,29 | 57,29 57,29 57,29 57,29 57,29

AL| AL | 5729 | 6536 65.10 | 6536 | 5573 65.10 | 6510 | 57.29 5729 | 57.29 | 57.29 65.89 | 6510 | 3594 66.41 57.29 65.10 47.14

WR| 6979 | 6979 69,79 | 69,79 | 6979 69,79 | 69,79 | 69,79 6953 | 69,79 | 6953 6979 | 6979 | 6979 69,79 69,79 69,79 69,79

SL| 3464 | 3464 3464 | 3464 | 3464 3464 | 3464 | 3464 34,64 | 34,64 | 3464 34,64 | 34,64 | 3464 34,64 34,64 34,64 34,64

cL| AL | 3464 | 5104 40,63 | 3464 | 4583 4063 | 40,63 | 3333 4505 | 4740 | 4479 5625 | 4063 | 4557 44,53 34,38 40,63 42,45

WR | 4818 1 4818 4ga8 | 4828 | 4818 agaa | 4828 | 4818 agaa | 4828 | 4818 aga8 | 4818 0 4818 4848 4848 4818 4818

SL| 3594 | 3594 3594 | 3594 | 3594 3594 | 3594 | 36.98 4870 | 35.94 | 4896 3594 | 3594 | 3594 35.94 35.94 35.94 35.94

km| AL | 69,01 | 6901 69,01 | 6849 | 67,97 69,01 | 69,01 | 67,97 69,01 | 69,00 | 69,01 67,45 | 69,01 | 69,01 67,97 69,01 69,01 69,01

WR | 5729 | s807 5833 | 5807 | 5677 5833 | 5833 | 57,03 5260 | 5807 | 5208 5651 | 5651 | 57,29 56,51 56,77 58,33 56,51

SC| 4948 | 57,81 54,17 | 57,81 | 5807 54,17 | 54,17 | 4948 54,17 | 54,17 | 5469 49,48 | 5417 | 4948 49,48 54,17 54,17 49,48

cLr] AL | 61,72 | 61,72 61,98 | 61,72 | 6146 61,72 | 61,72 | 6146 61,98 | 61,72 | 62,24 61,72 | 6172 | 6172 61,72 61,72 61,72 61,72
WR| 5469 | 5495 5339 | 5495 | 5651 5339 | 5339 | 5260 5026 | 5495 | 5339 5521 | 5339 | 5651 5521 58,85 53,39 55,21

SL | 3646 | 3620 36,20 | 36,46 | 36,20 36,20 | 36,20 | 36,20 49,48 | 36,46 | 49,22 36,20 | 3620 | 36,20 36,20 36,20 36,20 36,20

ALL| AL | 6849 | e840 68,49 | 6849 | 67,97 6823 | 6823 | 4557 6823 | 6823 | 6823 67,19 | 6823 | 3672 68,49 45.05 68,23 36.72
WR| 55909 ] 5938 5703 | 5599 | 5859 5729 | 5729 | 5781 5469 | 5833 | 5469 5911 | 5781 | 6016 61,98 60,42 57,81 57,29

Table 13 presentsthe results obtained by the three Strehl combination heuristics for
al data sets. The results of MCLA heuristic for the ALL clustering ensarble are not
presented due to computational problems related with the high number of data parti-
tions present in this clustering ensemble. The best results are achieved aimost in all
situations with CSPA and MCLA methods.

Table 13. Vaues obtained by the three heuristics of Strehl combination method

Spiral Log Yeast Std Yeast| Optical Cigar Breast Iris Halfrings Bars Rings
CSPA 96 36,72 34,11 37,5 70,8 55,78 90 91,6 99 70
SL HGPA 51 22,66 21,09 10,7 51,6 50,07 60 54 52 37,6
MCLA 98 35,42 30,73 31,6 86,8 67,94 68 93,4 98 75,6
CSPA 56 29,95 61,98 82 57,6 82,72 62,67 65,8 89,5 53,4
AL HGPA 52 25,78 41,93 21,6 53,6 52,12 52 51,4 51 39,6
MCLA 62 27,08 70,57 84,1 69,6 96,49 64 42 97,75 52,8
CSPA 52 34,9 45,83 59,5 47,2 83,89 49,33 54,4 62,5 47
CcL HGPA 52 31.51 39.58 39.9 59,2 53.29 71,33 50.6 515 34.8
MCLA 52 37,76 53,13 61,6 52,4 96,63 70,67 57,8 61 44,2
CSPA 54,5 33,85 57,29 84,2 70,4 84,63 98 93,4 97,75 45,2
KM} HGPA 5315 38,28 55,99 75,8 72,8 82,43 97,33 89,2 98 67,2
MCLA D4 33,07 59,11 89 612 84,77 28 92,8 98,75 70.4
CSPA 58,5 32,03 57,55 83,4 36,8 76,43 96,67 63,6 51,5 51,4
CLR HGPA 57 32,29 55,73 72 36,8 81,41 96 63,4 51,75 48
MCLA 52,5 32,55 58,59 75,1 36,4 81,41 96,67 63 51,75 47,8
ALL CSPA 51,5 34,37 55,99 84,5 56,4 83,31 98 93,2 98,25 42
HGPA 52 33,33 52,86 759 36,8 86,24 97,33 59,4 51,25 49

Table 14 presents best individual results produced by each clustering method (lines
SL to KM) and best combined results per combination strategy (linesEAC to MCLA).
Asshown, almost in all data sets the SWEAC results outperform the single application
of al the clustering algorithms and the SWEAC results are always better or equal of
EAC results. In the Optical, Log Y east and Rings data sets, the superiority of EAC and
JWEAC and even more that of SWEAC is particularly evident. In Cigar and Half Rings
data sets, both the EAC and WEAC gpproaches obtain 100%, which are much better
results than the ones obtained by other dgorithms.

To compare the influence of the different cluster validity indicesin SWEAC results,
we first calculated, for each data set, the improvement between all the values obtained
in each index and the corresponding values obtai ned with the EAC approach. Next, the
average of those improvements was calculated for each index in each data set.
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Table 14. Best single and combined results

Spiral |Log Yeast]Std Yeast| Optical Cigar Breast Iris Halfrings] Bars Rings
SL 100 34.9 36.2 10.6 60.4 65.15 68 95 50.25 58.8
CL 52 28.91 66.67 51.8 55.6 92.83 84 72 98.75 36.8
AL 52 28.65 65.89 75.7 87.2 94.29 90.67 73.4 98.75 34
CLR 58 30.99 57.55 73.86 824 95.9 89.33 77.4 97 44.4
KM 52.5 29.43 64.06 67.71 63 96.49 89.33 75.6 98 38.8
EAC 100 41.41 69.79 87.4 100 97.07 90.67 100 98.75 78
SWEAC 100 43.49 69.79 90.2 100 97.07 97.33 100 99.5 85.6
JWEAC 100 41.41 69.79 84.8 100 97.07 90.67 100 98.75 81.8
CSPA 96 36.72 61.98 84.5 70.8 84.63 98 93.4 99 70
HGPA 57 38.28 55.99 75.9 728 86.24 97.33 89.2 98 67.2
MCLA 98 37.76 70.57 89 86.8 96.63 98 93.4 98.75 75.6

Table 15 presents the average of all the previous values of each index obtained for
each data set. In WEAC (both the SWEAC and JWEAC approaches), we achieved
better average results than with EAC, by weighting the clusteringsin thew_co_assoc
matrix with the obtained indices values. The average improvement obtained with the
cluster validity indices in all data sets was of 3,25%. The same happened with the
JWEAC goproach where the average improvement was of 5,35%, a value much better
than the average improvement obtained in the SWEAC approach. Theseresults show
that the SWEAC and JWEAC approaches increase the quality of the combined data
partitions when compared with the EAC approach.

In the SWEAC approach, none of the cluster validation indices performed system
atically better than the others. Different validation indices achieved the best Ci
SWEAC results, depending of the data set, but overall they performed better than
EAC in average. However, as we can seein table 16, in 9 of the 10 data sets used, the
Normalized Hubert Statistic (NormHub), in average, improves the results of EAC. Only
in Iris data set this doesn’t happen. It should also be highlighted that in all used data
sets the best Ci result using NormHub (SWEAC approach) is as good as the best EAC
Ci result or even better than it. In fact, 1 result is better (Optical) and the other 9 are
equal to Ci EAC results (table 17). Therefore, based on these two facts, we can con-
clude that choosing NormHub index in the SWEAC approach is a good choice to ob-
tain good results.

Table 15. Average percentual increasein the performance of WEAC and SVEAC as
compared to EAC, over all data sets

[ JWEAC | Hubert [NormHub] Dunn JRMSSTD] RS [ S_dbw CH ] S | | [ vxB | Se [ DB T s ] H

5,35

3,78

2,76 | 383 | 305 | 296 | 357 300 | 178 | 505 | 241 | 328 | 28L | 420 | 197

Table 16. Average percentud increase in the performance of SWEAC approach using

NormHub index when compared to EAC
[ “Spiral [Log Yeast]Std Yeast] Optical | Cigar [ Breast | Iris  [Halfrings] Bars [ Rings |
| 449 [ o073 | 178 | o024 | 72 | 179 | 237 | 968 | 19 | 251 |

Table17. Ci results of the SWEAC approach using NormHub and of the EAC approach, in all

data sets
Spiral |Log Yeast]Std Yeast| Optical Cigar Breast Iris Halfrings|] Bars Rings
[ _EAC 100 41,41 69,79 87.4 100 97,07 90,67 100 98,75 78
| S_Dbw 100 41,41 69,79 90,2 100 97,07 90,67 100 98,75 78
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Table 18 presents the number of times EAC, SWEAC and JWEAC approaches ob-
tained better, worse and equal values than Strehl approach. Each of these values is
relative to a clustering ensembles construction method (six in each gpproach). EAC,
SWEAC and JWEAC achieved in more data sets better results than Strehl. We can
also see that IWEAC and even more SWEAC obtain a greater number of cases of
better results than Strehl. Considering the sum of all data sets, al above three -
proaches present also better results than Strehl.

Doing the same type of comparison between SWEAC and JWEAC (table 19) the re-
sults by data set are almost equivalent, however considering the sum of all data sets,
JWEAC obtained a higher number of times better results than SWEAC. If in SWEAC,
instead of considering the best value obtained, we consider the average of al the
values, we can see (table 20) that IWEAC also gets a better performance than
SWEAC. This shows that IWEAC is a robust approach to incorporate al the indices
in the weighting of the data partitions in the co-association matrix. Table 21 showsthe
same type of comparison between the EAC, the SWEAC and the IWEA C approaches.
Both SWEAC and JWEA C obtain in general better resultsthan EAC.

Table 18. Number of better, worse and equal values Table 20. Number of better, worse and equal val-
obtained comparing EAC, SWEAC and JWEAC with ues obtained comparing JWEAC with SWEAC
Streh (AVG)
p— EAC SWEAC JWEAC WEAG SWEAC (AVG)
Better Worsel Egual Better| Worse Egual Better| Worse Egual BetterfWorse| Equal
Spral = | 2 ol 21 21 21 21 2 1 Spiral 3 3 6
Log Yeast 5 1 (o} 5 1 0o 5 1 (o) Log Yeast 6 8 4
Sid Yeast 4 2 o 5 1 o 4 2 o Std Yeast 3 12 3
Optical 2 4 0 2 4 [¢] 1 5 [¢] Optical 6 7 5
ICigar | 4 2 o 6 0 o 5 1 o Cigar 6 5 7
Breastcancer 4 1 1 4 (0] 2 4 (o] 2 Breastcancer 7 5 6
Iris 1 5 o 2 4 o 1 5 o s 1 4 7 7
Halfrings 3 3 (o] 4 2 o]} 3 3 [0} Halfrings 4 12 2
Bars 1 3 2 2 2 2 2 2 2
Rings 5 1 0 5 1 0 6 0 0 FBeiar:Ss § ? Z
32 25 3 38 | 17 5 34 | 21 5 k=00 = — =
Table 19. Number of better, worse and equal values Table 21. Number of better, worse and equal values
obtained comparing SWEAC with JWEAC obtained comparing SWEAC and JWEAC with EAC
JWEAC SWEAC SWEAC JWEAC
5 Be7t:1Ler WZ;SE Ef;zal EAC Better | Worse| Equal | BetterfWorse} Equal
piral =
piral 66 | 47 | 175 3 3 12
;ﬁ’é’;(LS: ‘3‘(7) fgs E‘g Log Yeast 73 | 76 | 139 | 4 3 11
= Std Yeast 77 | 61 | 150 7 1 10
2oteal | 4% | | 12 Optical a8 | 65 | 175 ] 2 4 12
Eeacoamcer] 65 | a8 | 187 jeidar 67 SO Rere S 3 1
oreasicancer o °2 = | = [Breasicancer | 62 s5 | 172 ]| 3 4 1
o as ol e Iris. a7 | a4 | 197 1 1 16
B:rs”"gs e pos 20 Halfrings 104 | s9 | 125 6 2 10
T — Bars 76 | 24 | 188 | s 0 13
[RIngs 53 75 1 160 Rings g5 | 84 | 110] s 4 9
Al | [ ERIS | (kR 705 1 563 [ 16221 40 1 25 1 15
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5 Conclusions

In this paper we present a new approach (WEAC) that explores and extends the
idea of EAC, proposing the weighting of multiple clusterings by internal and relative
validity indices. The K-means, Clarans, SL, CL and AL algorithms are used to produce
clustering ensembles. We employ two different ways to combine the clustering en-
sembles: using only the clusterings produced by a single algorithm with different ini-
tializations and/or parameters values; and using clusterings produced by different
clustering algorithms with different initializations and/or parameters values. Using a
voting mechanism, the multiple clusterings are weighted in the SWEAC version by an
internal or relative index to be integrated in a w_co_assoc matrix; in the IWEAC ver-
sion all internal and relative indices contribute to weight each partition. The final parti-
tion is obtained by clustering the w_co_assoc matrix using the SL, CL, AL or WR
algorithms. Experimental results with both synthetic and real data show that these
approaches lead in general to better results than the EAC and Strehl methods. The
evaluation of results is based on a consistency index between the combined partition
and the ideal data partition taken as ground truth.

These preliminary results show that the association of weighting mechanisms with
cluster combination techniquesis a promising tool, worth of further investigation.
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Predicting Foreign Exchange Rate Return Directions
with Support Vector Machines

Abstract. Forecasting financial time series is an important and complex prob-
lem in machine learning and statistics. This paper examines and analyzes the
general ability of Support Vector Machine (SVM) models to correctly predict
and trade daily EUR/GBP, EUR/JPY and EUR/USD exchange rate return direc-
tions. For this purpose, six SVYM models with varying standard kernels along
with one exotic p-Gaussian SVM are compared to investigate the separability of
Granger-caused input data in high dimensional feature space. To ascertain their
potential value as out-of-sample forecasting and quantitative trading tool, al
SVM models are benchmarked against traditional forecasting techniques. We
find that hyperbolic SVMs consistently perform well in terms of forecasting ac-
curacy and in terms of trading performance via a ssimulated strategy. Moreover,
it is found that p-Gaussian SVMs perform reasonably well in predicting
EUR/GBP and EUR/USD return directions but not EUR/JPY .

Keywords. Financial time series, foreign exchange rate, support vector ma
chine, kernels.

1. Introduction

Over the past severa decades, researchers have used various forecasting methods
to study time series events. For example, the 1960s saw the development of a number
of large macroeconometric models purporting to describe the economy using hun-
dreds of macroeconomic variables and equations. Although complicated linear mod-
els can track the data very well over the historical period, they often perform poorly
for out-of-sample forecasting ([37]). This has often been interpreted that the explana-
tory power of exchange rate models is extremely poor. Nelson ([40]) discovered that
univariate ARMA models with small values for p and g produce more robust results
than the big models. Box and Jenkins ([5]) developed the autoregressive integrated
moving average (ARIMA) methodology for forecasting time series events. The basic
idea of ARIMA modeling approaches is the assumption of linearity among the vari-
ables. However, there are many time series events for which the assumption of linear-
ity may not hold. Clearly, ARIMA models cannot be effectively used to capture and
explain nonlinear relationships. When ARIMA models are applied to processes that
are nonlinear, forecasting errors often increase greatly as the forecasting horizon be-
comes longer. To improve forecasting nonlinear time series events, researchers have
developed alternative modeling approaches. These include nonlinear regression mod-
els, the bilinear model ([17]), the threshold autoregressive model ([53]), and the auto-
regressive heteroscedastic model (ARCH) by Engle ([13]). Although these methods
have shown improvement over linear models for some specific cases, they tend to be
application specific, lack generality, and are often harder to implement ([58]).
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An alternative strategy is for the computer to attempt to learn the input/output
functionality from examples, which is generaly referred to as supervised learning.
During the last decade, the application of artificial neural networks (ANN) as super-
vised learning methods has exploded in a variety of areas. ANN is a general-purpose
model that has been used as a universal function approximator ([22]). Researchers
have used the ANN methodology to forecast many nonlinear time series events ([21],
[51], [59)).

Apart from that, ANNs have been used to develop prediction agorithms for finan-
cial asset prices, such as technical trading rules for stocks and commodities ([14],
[31], [32], [48], [50], [55], [56])- The effectiveness of ANNSs and their performance in
comparison to traditional forecasting methods has also been a subject of many studies
([10], [56]). ANNs have proven to be comprehensive and powerful for modeling
nonlinear dependencies in financial markets ([46]), notably for exchange rates ([3],
[12], [33], [39]). However, ANN models have been criticized because of their black-
box nature, excessive training times, danger of overfitting, and the large number of
parameters required for training. As a result deciding on the appropriate network in-
volves much trial and error. These shortcomings paired with the logic that complex
real-world problems require more sophisticated solutions than a single network led to
idea of combining ANNs with other technologies to hybrid and modular solutions
([1]). For a survey of the application of ANN to forecasting problems in general see
[57] and [58].

Support Vector Machines ([4], [54]) are a new kind of supervised learning system
that map the input dataset via kernel into a high dimensional feature space in order to
enable non-linear data classification and regression. SVM has proven to be a princi-
pled and very powerful method that in the few years since its introduction has already
outperformed many other systemsin avariety of applications, such as text categorisa-
tion ([26]), image processing ([43], [44]), hand-written digit recognition ([34]) and
bioinformatic problems, for example protein homology detection ([25]) and gene ex-
pression ([7]). Subsequent applications in time series prediction ([38]) further indi-
cated the potential that SVMs have with respect to the economic and financial audi-
ence. In the special case of predicting Australian foreign exchange rates, [28] showed
that moving average-trained SVMs have advantages over an ANN based model which
was shown to have advantages over ARIMA models ([27]). Kamruzzaman and Sarker
[29] had a closer look at SVM regression and investigated how they perform with
different standard kernel functions. It was found that Gaussian radiad basis and
polynomial kernels appeared to be a better choice in forecasting the Australian forex
market than linear or spline kernels. However, athough Gaussian kernels are
adequate measures of similarity when the representation dimension of the space
remains small, they fail to reach their goal in high dimensional spaces ([15]).

The task in this paper is twofold. We examine the general ability of SVMs to cor-
rectly classify daily EUR exchange rate returns. Indeed, it is more useful for traders
and risk managers to forecast exchange rate fluctuations rather than their levels. To
predict that the level of the EUR/USD, for instance, is close to the level today is triv-
ial. On the contrary, to determine if the market will rise or fall is much more complex
and interesting. Since SVM performance depends to the most extent on choosing the
right kernel, we empirically verify the use of customized p-Gaussians by comparing
them with arange of standard kernels.
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The remainder is organized as follows: in the next section, we conduct statistical
analyses of EUR/GBP, EUR/JPY and EUR/USD time series. Section 3 outlines the
procedure for obtaining an explanatory input dataset. In section 4, we formulate the
SVM as applied to exchange rate forecasting and present the kernels used. Section 5
describes the benchmarks and metrics used for model evaluation. Section 6 gives the
results.

2. Exchange Rate Statistics

The purpose of this section is to examine the statistical properties of daily
EUR/GBP, EUR/JPY and EUR/USD exchange rate data from 1 January 1997 to 31
August 2003. Thisis done for mainly two reasons. First, time series analysis gives an
understanding on the degree of randomness inhibited in the chosen time interval.
Non-randomness is an important indicator for the generation of meaningful forecasts
and exists, if atime series does not consist of independent and identically distributed
(i.i.d.) values. Second, statistical analysis provides a foundation for traditional
ARIMA model building in order to identify benchmark models for the SYM method-
ology taken.

The investigation is based on London daily closing prices. The series for the period
from 1997 to 1998 were constructed by using the fixed EUR/DEM conversion rate
agreed in 1998, combined with the GBP/DEM, JPY/DEM and USD/DEM daily mar-
ket rates. Note that we do not include year 2004 in our analysis since it will be needed
for out-of-sample forecasting and is not known beforehand.

The results of the statistical inference procedure taken are depicted in Table 1. Asa
first step we ensured that the time series data we work with are stationary. Stationarity
is a necessary property to apply for statistical standard concepts such as volatility and
correlation. Informally, a seriesis said to be (weakly or covariance) stationary, if nei-
ther the mean nor the autocovariances depend on time ([20], p.45). The test results on
the null of nonstationarity (ADF and PP) and stationarity (KPSS) are basically consis-
tent. For level data we can assume nonstationarity despite the contradictory ADF re-
sult for the EUR/GBP series. Based on this finding, all series were transformed into
stationary ones with regards to [5]. First differences of the price data were taken and
the same tests as above were conducted subsequently. The test statistics suggest that
now all three exchange rate series are strongly difference-stationary, i.e. integrated of
order one (1(2)).

The Jarque-Bera test indicates that the hypothesis of normally distributed returns
has to be rejected at a high level within our chosen time interval. The reason can be
found in the excess kurtosis as compared to the normal distribution. Among the three
series, EUR/JPY exhibits the most leptokurtic behaviour whereas EUR/USD shows
weaker signs of fat talls.

A major objective when analysing stationary time series is to detect linear depend-
encies among the data through identifying an appropriate linear model. Univariate
time series models can only be explained by their own lagged values, i.e. by autore-
gressive (AR) terms as explanatory variables in their representation. Furthermore, if
the underlying process is stochastic and stationary, the errors can be linear combina-
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tions of white noise at different lags, so the moving average (MA) part of the model
refers to the structure of the error term. The most general model for a stationary proc-
ess is an integrated autoregressive moving average model ARIMA(p,q,r) with p auto-
regressive terms, g moving average terms and integration order r, with r=1 in our
case. ARIMA(p,g,1) models are also referred to as ARMA(p,q) models. Estimating p
and g is commonly done by visual inspection of the autocorrelation function (ACF)
and partial autocorrelation function (PACF) for MA models and low-order AR mod-
els ([20]). ACF and PACEF functions characterize the pattern of temporal, linear de-
pendence that is existent in the series. Since independent variables are always uncor-
related, testing for zero autocorrelation is equivalent to testing for linear
independency. We calculate Ljung-Box (LB) Q-statistics ([36]) for the null hypothe-
sis of linear independency among variables with up to 24 lags. We found that for all
three series linear dependencies are not neglectable within reasonable bounds. To re-
move them, we specified linear models according to the following procedure: in order
to account for stable regression coefficients that are significantly different from zero,
tests on omitted and redundant variables were implemented. Once the possibly best
model was found, its residuals were retested according to LB and the Breusch-
Godfrey LM test, alternatively. We find that simple MA and ARMA models with low
degrees of freedom provide the best results while preserving generalization ability for
forecasting. Model selection is further confirmed by the Schwarz information crite-
rion which imposes a larger penalty for additional AR(p) or MA(q) coefficients than
the Akaike criterion ([19]).

Both, the LB Q-statistics and the Breusch-Godfrey LM statistics of the regression
residuals indicate that serial dependencies have now disappeared at any lag. However,
although linear independency can be inferred, non-linear dependencies might still ex-
ist.

We investigate the origin of non-normal behavior by focusing on the phenomenon
of heteroskedastic processes. Heteroskedasticity is motivated by the observation that
in many financial time series the magnitude of residuals appeared to be related to the
magnitude of recent residuals ([13]). In order to detect these second-moment depend-
encies (conditional variances), we first calculated the autocorrelations and partial
autocorrelations of the squared residuals and computed the LB Q-statistics for the cor-
responding lags. If squared residuals do not exhibit autoregressive conditional het-
eroskedasticity (ARCH), autocorrelations and partial autocorrelations should be zero
at al lags and the Q-statistics should not be significant. The opposite holds at very
high significance levels for EUR/GBP and EUR/JPY. The ARCH-LM testing result
displayed in Table 1 confirms that ARMA residuals for EUR/GBP and EUR/JPY ex-
hibit considerable amounts of heteroskedasticity: the null hypothesis of zero het-
eroskedasticity is clearly rejected for all selected lags at the 1% level. The result for
EUR/USD isless clear: according to both, Q-statistics and ARCH-LM testing results,
the hypothesis of a constant variance can only be rejected at higher lags and with
dightly lower confidence. This brings us to an important result, which has also been
reported in literature ([11], [49]): ARCH processes are leptokurtic, or “fat-tailed”,
relative to the normal. The weaker test statistics for EUR/USD can be justified by a
kurtosis that is not considerably higher than 3 and a skewnessthat is close to zero.

Lee, White and Granger ([35]) examine the performance of a range of tests on non-
linearity across a variety of data generating processes. They find that no single test
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dominates all the others. In the light of this finding, it is advisable to use more than
one test. The tests for non-linearity that we apply are Ramsey’s RESET-Test ([45])
and the BDS-Test ([6]), which has proven to be a particular successful instrument
([23], [24]). The Ramsey RESET-Test checks the null of a correctly specified linear
model by adding a certain number n of higher order fitted terms. If the coefficients of
these terms are significantly different from zero, it can be inferred that the linear
model is not good enough due to existing additive nonlinearities. The BDS test for the
null of an i.i.d. is suitable for proving the existence of nonlinearities in mean and
nonlinearities in variance. This means that both the existence of additive and multipli-
cative nonlinearities in time series can be shown. The test statistic is asymptotically
normally distributed, it was calculated by using the AR(1) and GARCH(1,1) residu-
als. For both tests, the results are corresponding. Whereas for EUR/GBP and
EUR/JPY the null is rejected at noticeably high confidence levels, it cannot be re-
jected for EUR/USD. Note that up to this stage, the question whether non explainable
nonlinearities have to be attributed to more refined nonlinear stochastic models or to
chaotic ones remains open. For the EUR/USD series only few
nonlinearities have been detected, indicating that linear model residuals are suppos-
edly random. Still, it remains to be seen how well SVM models will be able to exploit
nonlinearities and compare to linear benchmark models.

3. Data Selection

The procedure of obtaining an exploratory dataset can be divided into two phases
([42]): specifying and collecting a large amount of data at first, and then reducing the
dimensionality of the dataset by selecting a subset of that data for efficient training
(feature extraction). Since there is a trade-off between accuracy as represented by the
entire dataset and the computational overheads of retaining all parameters without ap-
plication of feature extraction/selection techniques, the data selection procedure is
also referred to as the “curse of dimensionality” which was first noted by [2]. The
merit of feature extraction is to avoid multicollinearity, a problem that is common to
all sorts of regression models. If multicollinearity exists, explanatory variables have a
high degree of correlation between themselves meaning that only a few important
sources of information in the data are common to many variables. In this case it may
not be possible to determine their individual effects.

3.1 Phase One

The obvious place to start selecting data, along with the EUR/GBP, EUR/JPY and
EUR/USD is with the other leading traded exchange rates. In addition, we selected re-
lated financial market data, including stock market price indices, 3-month interest
rates, 10-year government bond yields and spreads, the price of Brent Crude oil, and
the prices of silver, gold and platinum. Due to the bullish commodity markets we also
decided to include daily prices of assorted metals being traded on the London Metal
Exchange, as well as agricultural commodities. Macroeconomic variables hardly play
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a role in daily FX movements and were disregarded. All data were obtained from
Bloomberg.

All the series span a seven-year time period from 1 January 1997 to 31 December
2004, totaling 2349 trading days. The data is divided into two periods: the first period
runs from 1 January 1997 to 31 August 2003 (1738 observations), is used for model
estimation and is classified in-sample. The second period, from 1 September 2003 to
31 December 2004 (350 observations), is reserved for out-of-sample forecasting and
evaluation. Missing observations on bank holidays were filled by linear interpolation.

3.2 Phase Two

Having collected an extensive list of candidate variables, the explanatory viability
of each variable has been evaluated. The aim was to remove those input variables that
do not contribute significantly to model performance. For this purpose, we took a
two-step procedure.

First, pair-wise Granger Causality tests ([16]) with lagged values until k=20 were
performed on stationary 1(1) candidate variables. The Granger approach to the ques-
tion of whether an independent variable x causes a dependent variable y is to see how
much of the current y can be explained by past values of y and then to see whether
adding lagged values of x can improve the explanation. Y is said to be Granger-
caused by x if x helpsin the prediction of y, or equivalently if the coefficients on the
lagged X's are statistically significant. The major advantage of the Granger causality
principle is that it is able to distinguish causation from correlation. Hence the known
problem of spurious correlations can be avoided ([18]). We find that EUR/GBP is
Granger-caused by 11 variables, namely

[J EUR/USD, JPY/USD and EUR/CHF exchange rates,

00 IBEX, MIB30, CAC and DJST stock market indices,

[ the prices of platinum and nickel aswell as

[1 10-year Australian and Japanese government bond yields.

Further, we identify 10 variables that significantly Granger-cause EUR/JPY, namely

[1 EUR/CHF exchange rate

[1 IBEX stock market index

[ the price of silver

[0 Australian 3-month interest rate

[ Australian, German, Japanese, Swiss and US government bond yields along with
[ UK bond spreads.

For EUR/USD, Granger causality testsyield 7 significant explanatory variables:

[J AUD/USD exchange rate,
[1 SPX stock market index and
[ the prices of copper, tin zinc, coffee and cocoa.

Second, we carried out linear principa component analysis (PCA) on Granger
caused explanatory datasets in order to check for computational overheads. PCA is
generally considered as a very efficient method for dealing with the problem of multi-
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collinearity. It allows for reducing the dimensionality of the underlying dataset by ex-
cluding highly intercorrelated explanatory variables. This results in a meaningful in-
put for the learning machine. Per cumulative R2, which we required to be not lower
than 0.99, significant multicollinearity could not be detected for any dependent vari-
able. Consequently, the datasets were not reduced any further and all variables were

kept.

4. SVM Classification Moddl and Kernels

4.1 SVM Classification M odel

One of the major reasons for the rise to prominence of the SYM ([4], [54]) is its
ability to cast nonlinear classification as a convex optimization problem. The basic
idea is to project the input data via kernel into a more expressive, high dimensional
feature space where the SVM algorithm finds the decision plane that has maximum
distance from the nearest training patterns. Applying the so-called “kernel trick”
([47]) guarantees that linear classification in feature spaceis equal to nonlinear classi-
fication in input space.

In this paper, we focus on the task of predicting a rise (labeled “+1”) or fal (la-
beled “-1") of daily EUR/GBP, EUR/JPY and EUR/USD exchange rate returns. To
predict that the level of the EUR/USD, for instance, is close to the level today is triv-
ial. On the contrary, to determine if the market will rise or fall is much more complex
and interesting for a currency trader. We apply the C-Support Vector Classification
(C-SVC) algorithm as described in ([9], [54]) and implemented in R packages
“e1071” ([8]) and “kernlab” ([30]):

Given training vectors x OR", i =1....I , in two classes, and avector yOR' such that
yi 0{+1-1}, C-SVC solves the following problem:
[
min lWTW+C & (D
whb,é 2 i=1

(W obx ) +bJ21- &
&=20=1..,1

Its dual representation is

min la'TQD/—eTD/ (2)
a 2

0<a; <C,i=1..[,

yT0/=0

where e is the vector of al ones, C is the upper bound, Q is an Ixl positive semidefi-
nite matrix, Q; = yiy;K(4.x), and K(x.x;)=dx )7 olx;) is the kernel, which maps train-
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ing vectors x into a higher dimensional, inner product feature space by the func-
tiong. The decision function is

09 =sion 31 yiy;Kbx ) +b) ©

Training a SVM requires the solution of a very large quadratic programming opti-
mization problem (QP) which is solved by using the Sequential Minimization Optimi-
zation (SMO) agorithm ([41]). SMO decomposes a large QP into a series of smallest
possible QP problems which can be solved analytically. Hence time consuming nu-
merical QP optimization as an inner loop can be avoided.

4.2 Kernel Functions

Ever, since the introduction of the SVM algorithm, the question of choosing the
kernel has been considered as crucial. This is largely due to the effect that the per-
formance highly depends on data preprocessing and much less on the linear classifica-
tion algorithm to be used. However, how to efficiently find out which kernel is opti-
mal for a given learning task is still a rather unexplored problem. Under this
circumstance, the best we can do isto compare arange of kernels with regardsto their
effect on SVM performance. Standard kernels chosen in this paper include the follow-

ing:
Linear: k(xx)=(xx)

]

Polynomial: k(xx) = (scalet{x,x) + offset '
Laplace: k(xx)= exp(—aﬂx— )(||)
Gaussian radial basis: k(xx)=eqf ~ofx-x[°

N A

Hyperbolic: k(x,x)= tanh(scaleEQx, x)+ offset)
Bessel]! -X
et ) )
(=)

In addition, we verify the use of customized p-Gaussian ker-
neISK(>q,xj):exp(—d()q,x)plap), where p and o are two parameters and

O

1/2
d(x ,X):[Zin:lpq - xiz] defines the Euclidean distance between data points. Com-

pared to the widely used RBF kernels, p-Gaussians include a supplementary degree of
freedom in order to better adapt to the distribution of datain high-dimensional spaces
([15]). The two parameters p and o depend on the specific input set for each ex-
change rate return time series. More specifically, we calculate p and o as proposed in
[15]:
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n(0. . dp _ dy
T E] T Froos
dN

In the case of EUR/USD, for instance, we are considering 1737 8-dimensional ob-
jects. Hence we calculate 1737x1737 distances and compute the 5% (dy ) and 95%

(dg ) percentilesin that distribution.

In order to avoid the known problem of overfitting, we determine robust estimates
for C and scale (o) for every kernel through 20-fold cross validation.

5. Benchmarksand Evaluation Method

Letting Y, represent the exchange rate at time t, we forecast the variable

sign(Aye+h) = sign(yess - vt) (5

where h =1 for aone-period forecast with daily data.

5.1 Naive M odel

The naive strategy assumes that the most recent period change is the best predictor of
the future. The simplest model is defined by sign($41) = sign(y;) Where ay; isthe actual

rate of return at period t and Ay, isthe predicted rate of return for the next period.

5.2 ARMA(p,q) Mode

An autoregressive moving average model with p autoregressive terms and g mov-
ing average terms ARMA(p, Q) is a univariate time series model. Such a model can
only be explained by its own lagged values, i.e. with autoregressive (AR) terms as ex-
planatory variables in its representation. If the process is stochastic and stationary the
errors can be linear combinations of white noise at different lags, so the moving aver-
age (MA) part of the model refers to the structure of the error term. ARMA(p, q)
models are the most general family of models for representing stationary processes
and are given by

Vi =CHa1yi—1 +ApYi—2 t ..t ApYi—p + & + BiEt-1+ Byét—q - (6)
where & ~i.i.d. (0,0?). For our analyses we use the model estimates from Section 2
asrepresented in Table 2, that is

Oy = +& +Bi&_q+ B3 for the EUR/GBP series,
Oy =g +& +B&_q for the EUR/IPY series, and
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[y =c+ayi1 +& + Big 1 for the EUR/USD series.

MA(q) models are only useful for predictions up to q steps ahead. Since &1, 42....
are unknown they are set to zero and the s-step-ahead predictions for s<q are given
by
T Sres = C+ Bty + Baspti—p fOr the EUR/GBP series, and
[ Yres =G+ By fOr the EUR/JPY series.

For the EUR/USD-ARMA(1,1) model the s-step-ahead predictionis
1 Shes == @(resa— 0+ Bty

for s<q. For s>qonly the AR part determines the forecasts.

5.3 Evaluation

The evaluation procedure in this paper is twofold. Out-of-sample forecasts are
evaluated both statistically via confusion matrices and practically via trading simula-
tions. Generally, a predictive test is a single evaluation of the model performance
based on comparison of actual data with the values predicted by the model. For this
purpose, confusion matrices are used to illustrate the amount of correctly specified
and misspecified forecasts in classification tasks. Since we are equally insterested in
predicting ups and downs, the accuracy rate defined as the sum of true positives and
true negatives divided by the total amount of observations is the right statistical per-
formance measure to apply.

In addition, practical or operational evaluation methods focus on the context in
which the prediction is used by imposing a metric on prediction results. More gener-
ally, when predictions are used for trading or hedging purposes, the performance of a
trading or hedging metric provides a measure of the model’s success. We set up a
trading ssimulation where, first of all, return predictions y, were trandated into posi-

tions. Next adecision framework |, was established that tells us when the underlying

asset is bought or sold depending on the level of the price forecast. We define asingle
threshold 7, which in our model isset to 7 = 0 and use the following mechanism:

1 ify,<yy-T 1 if the position is long (7
I, =<=1 if ¥, >y,4 +7 with I, = -1 if the position is short
0 otherwise 0 if the position is neutral

For measuring prediction performance on the operational level, a profit and loss
(P&L) metric is chosen. The gain or loss = on the position a time t is
7 = li(vi - vi—1) - As depicted in Table 3, nine P&L related performance measures

were defined: cumulated P& L, Sharpe ratio as the quotient of annulised P& L and an-
nualised volatility, maximum daily profit, maximum daily loss, maximum drawdown,
Value-at-Risk with 95% confidence, average gain/loss ratio and trader’s advantage.
Accounting for transaction costs (TC) is important in order to assess trading perform-
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ance in arealistic way. Between market-makers an average cost of 3 pips (0.0003) per
trade for a tradable amount of typically 10 to 20 million EUR is considered as a rea-
sonable guess and thus incorporated in net cumulated profit.

6. Resultsand Discussion

In order to compare forecasts for the same series across different models, accuracy
rates for the out-of-sample period are depicted by bar charts as shown in Figures 1 to
3 below. Note that foreign exchange markets are highly liquid and thus considered as
very efficient. Consequently, if SVM accuracy rates outperform those of naive or ran-
dom strategies, the SVM technique can be generally justified to predict exchange rate
return directions. In addition, Tables 4 through 6 give the results of the trading simu-
lation. Dominant strategies are represented by the maximum value(s) in each row and
are written in bold. The following conclusions can be drawn:

[1 In the case of statistical evaluation, both the naive and the linear model are beaten
by SVM with a suitable kernel choice. Statistically, the SVM approach is therefore
justified.

[ We find that hyperbolic SVMs deliver superior performance for out-of-sample
prediction across all three currency pairs. In the case of EUR/GBP, the Laplace
SVM performs equally well as the hyperbolic SVM. Other models are outper-
formed by the hyperbolic kernel SVM more clearly in the cases of EUR/JPY and
EUR/USD. This observation makes hyperbolic kernels promising candidates to
map all sorts of financial market return data into high dimensional feature spaces.

[1 Operational evaluation results confirm statistical ones in the case of EUR/GBP.
Both the hyperbolic and the Laplace SVM give best results along with the RBF
SVM. For EUR/JPY and EUR/USD the results differ. The statistical superiority of
hyperbolic SVMs cannot be confirmed on an operational level which is contradic-
tory to the EUR/JPY and EUR/USD operational results at first glance. The reason
for this phenomenon stems from the fact that operational evaluation techniques do
not only measure the number of correctly predicted exchange rate ups and downs.
They also include the magnitude of returns. Consequently, if local extremes can be
exploited, forecasting methods with less statistical performance may yield higher
profits than methods with greater statistical performance. Thus, in the case of
EUR/USD, the trader would have been better off by applying a p-Gaussian SVM in
order to maximize profit. In regards to EUR/JPY, we find that no single model is
able to outperform the naive strategy. The hyperbolic SVM, however, still domi-
nates two performance measures.

[0 P-Gaussian SVMs perform reasonably well in predicting EUR/GBP and EUR/USD
return directions but not EUR/JPY. For the EUR/GBP and EUR/USD currency
pairs, p-Gaussian data representations in high dimensional space lead to better gen-
eralization than Gaussians due to an additional degree of freedom p.

[ Future research direction will focus on further improvements of SVM models, for
instance, examination of other sophisticated kernels, proper adjustment of kernel
parameters and the development of data mining and optimization techniques for se-
lecting the appropriate kernel. In light of this research, it would also be interesting
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to see if the dominance of hyperbolic SVMs can be confirmed in further empirical
investigations on financial market return prediction.
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Table 1. Statistical Testing Procedure

kriterion Null-Hypothesis Testing Procedure [Time Series Input EURUSD
Stationarity Nonstationarity Dickey-Fuller Test [Y;, AY; -2.71%, -44.077* |-1.72, -39.58*** -2.27, -44.84%*
(ADF)
Philipps-Perron V.. BY, -2.61% -44.18%*  |-1.73, -39.53*** -2.30, -44.75***
Test (PP)
Stationarity’ Kwiatkowski- Y. Ay, 1.63%*, 0.31 1.99%%*,0.23 2.25%*, 0.49**
Philipps-Schmidt-
Shin Test (KPSS)
Normal Distribution [Normal Distribution [Jarque-Bera Test Ay, 79.13% [53.36"* 110.53%*
(JB)
Autocorrelation No Autocorrelation |Ljung-Box (LB) Ayl, ARMA-Residuals of Ayl k=1:5.58** 0.00 [k=1:4.47** 0.00 k=1: 9.60***, 0.03

.58%, 0.03
1.23*+,0.03
=4:11.31*, 0.11

:13.78,2.71
14.26, 3.09
5:17.24,5.34
k=20: 23.10, 10.83
k=24: 33.03, 19.53

.78%,0.27

5:17.23,12.26
k=20: 22.95, 18.43
k=24: 23.62, 18.97

=4: 14.67***,0.34
4.68**, 0.54
4.75**, 0.55
: 15.65**, 1.66
6.80*, 2.99
: 16.83*, 3.06

18.29%, 4.44
5:21.26, 7.55

k=20:24.93, 11.78
k=24: 27.44, 14.51

Breusch-Godfrey
Serial Correlation
Lagrange-Multiplier

ARMA-Residuals of Ay,

0.0392

0.2119

0.1685

Test (F)

Test (F)
Durbin-Watson _|Ay,, ARMA-Residuals of Ay, |1.9915, 1.9965  |1.9980, 2.0008 1.9905, 2.0037
Test (DW)
Heteroskedasticity |No Ljung-Box (LB) (ARMA-Residuals)? of Ay‘ k=1:21.82 k=1:103.59 k=1: 0.08
Heteroskedasticity 25.07**
125.60***
42.69*+*
57.72%*
k=6: 171.01**
73.01%*
83.71%+*
191.36%*
ARCH LM Test (F) |ARMA-Residuals of Ay,
7377
: 1.6951*
Nonlinearity Linearity Ramsey-RESET- [ARMA-Residuals of Ay,

Brock-Dechert-
Scheinkmann Test
(BDS)

ARMA-Residuals of Ay,

m=2: 0.0088***
: 0.0195%*
1 0.0262%**
0.0298***

GARCH(1,1)-Residuals of Ay,

0.0086***
m=3: 0.0192**
0.0259***
: 0.0294++*

umber of lags

umber of fitted terms included in test regression
m:= number of correlation dimension for which test statistic is calculated

*, ** *** indicate signficance at the 10%-, 5%-, 1% significance level
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Table2. ARMA model estimates

Dependent Variable: LN(EURGBP,1)

Method: Least Squares

Sample: 1/02/1997 9/01/2003

Included observations: 1738

Convergence achieved after 4 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=7)
Backcast: 12/30/1996 1/01/1997

Variable Coefficient Std. Error t-Statistic Prob.

C -3.58E-05 0.000116  -0.307893 0.7582
MA(1) -0.053492 0.025867  -2.068005 0.0388
MA(3) -0.055915 0.02709  -2.064017 0.0392
R-squared 0.005966 Mean dependent var -3.53E-05
Adjusted R-squared 0.00482  S.D. dependent var 0.005447
S.E. of regression 0.005434  Akaike info criterion -7.590528
Sum squared resid 0.051233  Schwarz criterion -7.581103
Log likelihood 6599.169  F-statistic 5.20668
Durbin-Watson stat 1.998712  Prob(F-statistic) 0.005566

Dependent Variable: LN(EURJPY,1)
Method: Least Squares

Sample: 1/02/1997 9/01/2003

Included observations: 1738
Convergence achieved after 4 iterations
Backcast: 1/01/1997

Variable Coefficient Std. Error t-Statistic Prob.

C -7.84E-05 0.000205  -0.382154 0.7024
MA(1) 0.02883 0.023994 1.201542 0.2297
R-squared 0.000827 Mean dependent var -7.85E-05
Adjusted R-squared 0.000252  S.D. dependent var 0.008313
S.E. of regression 0.008312  Akaike info criterion -6.741048
Sum squared resid 0.119943  Schwarz criterion -6.734764
Log likelihood 5859.97  F-statistic 1.437179
Durbin-Watson stat 1.999829  Prob(F-statistic) 0.23076

Dependent Variable: LN(EURUSD,1)

Method: Least Squares

Sample(adjusted): 1/03/1997 9/01/2003

Included observations: 1737 after adjusting endpoints
Convergence achieved after 11 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation=7)
Backcast: 1/02/1997

Variable Coefficient Std. Error t-Statistic Prob.

C -8.32E-05 0.000149  -0.558307 0.5767
AR(1) -0.583958 0.214689  -2.720017 0.0066
MA(1) 0.519186 0.22621 2.295155 0.0218
R-squared 0.006446  Mean dependent var -8.32E-05
Adjusted R-squared 0.0053  S.D. dependent var 0.006439
S.E. of regression 0.006422  Akaike info criterion -7.256372
Sum squared resid 0.071519  Schwarz criterion -7.246942
Log likelihood 6305.159  F-statistic 5.624804
Durbin-Watson stat 2.001353  Prob(F-statistic) 0.003673
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Table 3. Operational performance measures

profit and loss

Cumulated T
Profit and PLS = Znt
Loss t=1
Sharpe Ratio A T
=PL Wi A_ogpx L
R=— , With PLA =252 T;m
. <
A_ . B _A)2
and of'=v25 T Z(ﬂ{ 77)
t=1
Maximum Max(7z, 725, .., 777 )
daily profit
Maximum Min(7, 72,..., 757 )
daily loss
Maximum (e ( C)
drawdown MD = Min PL = Max IPLi
Vaue-at-Risk VaR= - Q(,0.05) , u=0
Net cumulated

.
NPL(,—;=Z(7Tt—It*TC),Where l,=1if 75_,*75 <0 ese |, =0
t=1

Average AG __(sumof all 7 >0)/#up
gain/loss AL (sumof all 7z <0)/#down
Trader’s Ad-
(Wr* AG)+(LT* AL) . — _—
TA=05*|1 with WT := number of winnin
vantage [ +[J(\NT* AG?)+(LT * AL?) 9

trades, LT:= number of losing trades, AG:= average gain in up peri-
ods, and AL:= average loss in down periods
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Fig. 1. Classification performance EUR/GBP
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Fig. 2. Classification performance EUR/JPY
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Fig. 3. Classification performance EUR/USD

Table 4. Operational performance EUR/GBP

EUR/GBP Naive MA(1,3) Linear Polynomial RBF Hyperbolic Laplace Bessel p-Gaussian
Cumulative P&L -0.00750 -0.00953 -0.09360 -0.09360 -0.03896 0.10360 0.01546 -0.04114 0.05958
Sharpe ratio -0.07966 -0.10112 -0.99367 -0.99367 -0.41354 1.09938 0.16407 -0.43671 0.63235

Maximum daily profit ~ 0.01492 0.01492 0.01684 0.01684 0.01684 0.01492 0.01684 0.01385 0.01232
Maximum daily loss -0.01684 -0.01684 -0.01492 -0.01492 -0.01385 -0.01684 -0.01385 -0.01684 -0.01684
Maximum drawdown -0.03811 -0.03811 -0.03619 -0.03619 -0.03496 -0.03811 -0.03512 -0.03564 -0.03811

VaR (alpha = 0.05) -0.00695 -0.00734 -0.00752 -0.00752 -0.00728 -0.00698 -0.00691 -0.00744 -0.00694
Net Cumulative P&L -0.06120 -0.01013 -0.12750 -0.12750 -0.09026 0.05590 -0.01964 -0.09214 0.01428
Avg gain/loss ratio 1.05178 0.85038 0.80370 0.80370 0.91714 1.03981 0.89932 0.88235 1.01891

Trader's Advantage 0.00000 1.00000 0.53003 0.53003 0.48716 0.48144 0.58986 0.39350 0.43507

Table5. Operational performance EUR/JPY

EUR/IJPY Naive MA(1) Linear Polynomial RBF Hyperbolic Laplace Bessel p-Gaussian

Cumulative P&L 0.05441 -0.11333 -0.09477 -0.09477 -0.21907 -0.13867 -0.28671 -0.31145 -0.24980
Sharpe ratio 0.38680 -0.80435 -0.67432 -0.67432 -1.55679 -0.98622 -2.03603 -2.21115 -1.77460|
Maximum daily profit 0.02187 0.02187 0.02068 0.02068 0.02068 0.02174 0.02068 0.02068 0.02050]
Maximum daily loss -0.02050 -0.02174 -0.02187 -0.02187 -0.02187 -0.02187 -0.02187 -0.02187 -0.02187|
Maximum drawdown -0.08535 -0.08659 -0.06479 -0.06479 -0.08672 -0.06197 -0.08672 -0.06479 -0.08672]
VaR (alpha = 0.05) -0.01003 -0.01144 -0.01092 -0.01092 -0.01111 -0.01081 -0.01127 -0.01145 -0.01130]
Net cumulative P&L 0.00281 -0.11363 -0.15267 -0.15267 -0.27607 -0.19837 -0.34461 -0.36185 -0.30260]|
Avg gain/loss ratio 1.04111 0.92829 0.89996 0.89996 0.88278 0.86458 0.83323 0.83752 0.82177|
Trader's advantage 0.00000 0.00000 0.43005 0.43005 0.43247 0.43647 0.41154 0.40350 0.40139

Table 6. Operational performance EUR/USD

EUR/USD Naive ARMA(1,1) Linear Polynomial RBF Hyperbolic Laplace Bessel p-Gaussian

Cumulative P&L -0.18070 -0.22255 -0.13259 -0.13259 -0.00927 0.04797 -0.10055 -0.16166 0.10182
Sharpe ratio -1.23452 -1.52256 -0.90434 -0.90434 -0.06296 0.32520 -0.68505 -1.10372 0.68905
Maximum daily profit 0.01962 0.01962 0.01667 0.01667 0.01962 0.01962 0.01889 0.01869 0.01889
Maximum daily loss -0.01889 -0.01889 -0.01962 -0.01962 -0.01869 -0.01889 -0.01962 -0.01962 -0.01962
Maximum drawdown -0.04172 -0.04112 -0.04484 -0.04484 -0.04391 -0.04410 -0.04484 -0.04484 -0.04484
VaR (alpha = 0.05) -0.01247 -0.01179 -0.01260 -0.01260 -0.01176 -0.01085 -0.01183 -0.01165 -0.01116
Net cumulative P&L -0.23680 -0.22345 -0.17429 -0.17429 -0.05967 -0.00003 -0.14525 -0.21056 0.05112
Avg gain/loss ratio 0.94708 0.93486 0.88117 0.88117 1.03619 0.96269 0.94573 0.94569 1.10874
Trader's advantage 0.00000 0.31863 0.62531 0.62531 0.56826 0.55311 0.58379 0.42194 0.49915
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