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Abstract

We present a new co-inductive syntactic theagger normal
form bisimilarity, for the untyped call-by-value lambda calculus
extended with continuations and mutable references.

We demonstrate that the associated bisimulation proof principle
is easy to use and that it is a powerful tool for proving equivalences
between recursive imperative higher-order programs.

The theory is modular in the sense that eager normal form
bisimilarity for each of the calculi extended with continuations

and/or mutable references is a fully abstract extension of eager

normal form bisimilarity for its sub-calculi. For each calculus, we
prove that eager normal form bisimilarity is a congruence and is

sound with respect to contextual equivalence. Furthermore, for the
calculus with both continuations and mutable references, we show

that eager normal form bisimilarity is complete: it coincides with
contextual equivalence.
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1. Introduction
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Syntactic reduction calculi and equational theories are easy to
use but they exclude many important program equivalences.

The broadest notion of program equivalence is Morris-style
contextual equivalence which equates two terms if they behave the
same in all program contexts. The quantification over all program
contexts makes it impractical to use the definition directly to prove
programs contextually equivalent.

Syntactic methods based on operational semantics—context
lemmas, applicative bisimulation, and operationally-based logi-
cal relations—generally incur modest “mathematical overhead”
and are easy to use for certain classes of program equivalences.
For instance, applicative bisimulation is very useful for proving
the equivalence of programs that output infinite data structures.
However, all these proof principles are weak for program equiva-
lences involving general higher-order functions because, somewhat
like the definition of contextual equivalence, they involve univer-
sal quantifications over all continuations, stores, and/or function
arguments.

For example, fixed-point combinators are higher-order func-
tions that make essential use of higher-order arguments. What does
it take to prove the equivalence of two different fixed-point combi-
nators? A proof obligation that involves a universal quantification
over all possible arguments to the fixed-point combinators is about
as difficult as proving that the fixed-point combinators are contex-
tually equivalent from first principles.

This example is easily solved using a different class of syntactic
theories which originate from the theories obH8n tree equiva-
lence and Evy-Longo tree equivalence. They can be presented as
bisimulation theories, calledormal form bisimulatior(originally

Program equivalence is a fundamental concept in programming introduced by Sangiorgi under the name “open applicative bisim-
language semantics, and new and better frameworks and techniqueslation™), without explicit reference to trees. Normal form bisim-

for reasoning about program equivalence are continually being

ulation is based on symbolic evaluation of open terms to normal

developed. Nonetheless, there are still no general and easy to uséorms. It does not involve any universal quantification over func-
methods that capture the features and subtleties of actual programsion arguments and is therefore, in some respects, a more powerful
in languages that combine general recursion, higher-order functionsproof principle for proving equivalences between recursive higher-

and objects, mutable state, and non-local control flow.
Denotational semantics and domain theory cover many pro-
gramming language features but straightforward models fail to cap-

ture certain important aspects of program equivalence, especially

concerning mutable state. The solutions to these “full abstraction”
problems, including game semantics, are complex.
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order functions than other operationally-based syntactic methods.
However, normal form bisimulation has only been developed for
state-less\-calculi and is, in general, not fully abstract.

In this article we address these shortcomings by extending eager
normal form bisimulation, a variant of normal form bisimulation
for the call-by-value-calculus. We present new syntactic bisim-
ulation theories for the untyped call-by-valtecalculus extended
with continuations and mutable references.

1. The theories all extend eager normal form (enf) bisimulation
for the pure call-by-value-calculus [19].

2. The extension with continuations, namely an untyped call-by-
value version of Parigot’au-calculus [26], is based on the sec-
ond author’s normal form bisimulation theory for the untyped
Ap-calculus [21].



3. The extension with mutable references, which we callihe and (lambda (z y) (+ y z)) in the Aup-calculus should be
calculus (essentially Felleisen and Hieh'salculus with state equivalent—but this fails for encodings of arithmetic in thep-
[8]; their “p-application” is a primitive in our calculus hence calculus, hence the resulting proof principles are only sound, not
we name it ‘Ap”), is based on bisimulations as sets of relations. complete. There does not seem to be a satisfactory direct defini-
This idea of “relation-sets bisimulation” is adapted from bisim- tion of normal form bisimulation (or Bhm-tree equivalence) for
ulation theories for imperative calculi [13, 16] and existential untyped calculi with constants. In future joint work with Paul Blain
types [32]. Levy we plan, instead, to address this shortcoming in extensions

; : ; : of normal form bisimulation to typed calculi with recursive types.

4. Finally, we extend the theories to a combinegp-calculus. This work is related to recent game models by Levy [22].
The resulting bisimulation proof principle for proving semanti-

cal equivalences between terms inherits the best properties of nor-

mal form bisimulation and relation-sets bisimulation, namely 1.1 Related work

e like other kinds of normal form bisimulation, the enf bisimula- There exists a large body of work on syntactic theories and seman-
tion proof obligations for continuations and mutable references tic models (domains and games) foicalculi with continuations
require no universal quantifications over function arguments or and mutable references. We only survey a few works on syntactic
continuations or stores, and theories most closely related to the results in this article.

As mentioned in the introduction, our results build directly on
recent work on normal form bisimulation for call-by-value [19] and
the \u-calculus [21] and on relation-sets bisimulation for existen-
We demonstrate the power and ease of use of the resulting enftial types [32] and untyped imperativecalculus [13, 16].
bisimulation proof principle for continuations and mutable refer- One particular inspiration for the work presented in this article
ences by proving the correctness of Friedman and Haynes’s encod-s the seminal research by Felleisetral. on syntactic theories for
ing of call /cc in terms of “one-shot” continuations [9]. Despite the  sequential control and state [8]. The calculidp.cit. are enriched
subtlety of their encoding and the mix of higher-order functions, with constants and-reduction but otherwise the state calculus is
first-class continuations, and mutable references, the bisimulationessentially what we call th&p-calculus in this article. The control
proof is remarkably straightforward, as we hope the reader will ap- calculus differs from the\u-calculus but they are comparable.
preciate. (Their relationship is analyzed by de Groote [12] and by Ariola and

The enf bisimulation theories for the puxecalculus and the ex- Herbelin [3]. We found that it was easiest to define eager reduction
tensions with continuations and/or mutable references are modular:on open terms, enfs, and enf bisimilarity for the-calculus.) The
enf bisimilarity for each of the extended calculi is a fully abstract syntactic theories of successi¥ecalculus extensions by Felleisen
extension of enf bisimilarity for its sub-calculi. This is similar to et al. [8] are modular (conservative extensions), like our syntactic
the relationship between Felleisen and Hieb’s syntactic theories for theories. An important difference is that the syntactic theories in
control and state [8] but contrasts the situation for contextual equiv- op.cit. are inductive in the sense that all equations are derived
alence because each language extension makes contextual equivanductively from equational axioms and inference rules, whereas
lence more discriminative on terms of the sub-calculi. our bisimulation theories areo-inductiveand therefore equate

One of the main technical contributions of the work behind this many more programs.
article is a proof that enf bisimilarity for the calculus extended with Another body of related work is Mason and Talcott's CIU
continuations and/or mutable references is a congruence. As an im-(“closed instantiations of uses”) characterizations of contextual
mediate consequence of congruence, enf bisimilarity is included in equivalence for functional languages with mutable references and
contextual equivalence for each calculus. For the puealculus as continuations [23, 33]. (The context lemmas for ecalculus by
well as the two extensions with only continuations and only muta- Bierman [5] and by David and Py [6] are essentially CIU character-
ble references, enf bisimilarity is strictly smaller than contextual izations.) The CIU equivalences are complete syntactic theories but
equivalence, that is, enf bisimulation is a sound but incomplete the resulting proof methods are in many cases weaker than normal
method for proving contextual equivalence. However, for the full form bisimulation.
calculus with both continuations and mutable references, we prove  Most co-inductive syntactic programming language theories in
that enf bisimilarity is fully abstract in the sense that it coincides the literature are variants and extensions of Abramsky’s applica-
with contextual equivalence. tive bisimulation [1]. However, there are no fully abstract applica-

In summary, we present a complete, co-inductive syntactic the- tive bisimulation theories for generalcalculi with continuations
ory for a calculus with higher-order functions, continuations, and and/or mutable references.
mutable references, and we demonstrate the power and ease-of-use Ritter and Pitts [30] define a form of applicative bisimilarity for
of the bisimulation proof method for proving equivalences between a functional language with mutable references. It is sound but not
recursive programs. complete. In fact, it does not equate many of the well-known, subtle

Our results provide further illustration of the promise of normal contextual equivalences between programs with state [25].
form bisimulation as a basis for syntactic theories and proof prin- Wand and Sullivan [34] define a CPS language with mutable
ciples, demonstrated by earlier results for other pure and extendedreferences and show that applicative bisimilarity is both sound and
A-calculi in the literature (Sangiorgi [31] and Lassen [18, 20, 21]). complete. They use the CPS language as a semantic meta-language
However, we note one caveat: Although our theory for the com- and CPS translate a source language with state into the CPS lan-
bined App-calculus captures key functional and imperative aspects guage. But they do not give an independent characterization of the
of the programming language Scheme, it lacks constants such adnduced syntactic theory on source terms via the CPS transform.
nil, cons, numerals, and arithmetic operators. These constants need Koutavas and Wand'’s relation-sets bisimulation theory [13] is
to be encoded in our calculus, e.g., using standacdlculus en- complete for a general “direct-style” imperative calculus. How-
codings [4], but such encodings are in general not faithful to the ever, it involves a universal quantification over closed function ar-
constants’ equational properties. For instance, addition of values guments, unlike our normal form bisimulation theories.
should be commutative, up to contextual equivalence—that is, the ~ Merro and Biasi [24] present a complete bisimulation theory
representations of the Scheme terthenbda (z y) (+ z y)) for a CPS calculus. It can be viewed as a kind of applicative

e the relation-set structure represents the “possible worlds” nec-
essary to capture the behaviour of mutable references.



bisimulation, presented as a labelled transition system in the style and the Turing call-by-value fixed-point combina@y:
of Gordon [10], and also leads to a context lemma.

Pitts and Stark [28, 29] develop syntactic theories based on
operationally-based logical relations that address many of the sub-
tleties of contextual equivalences between programs with muta- These two fixed-point combinators are enf bisimilar, i.e., there
ble references. The relation-sets bisimulation theories for mutable exists an enf bisimulatiof such thatY,, ©,) € S [19]. We invite
state, in general, are alternative approaches with a very differentthe reader to try to prove this equivalence by constructing such an
meta-theory. For logical relations the key proof obligation is exis-  g: one starts with the singletdi{Y,, ©,)} and then iteratively adds
tence, whereas the key proof obligation for the bisimulation theo- pairs in order to satisfy the definition of an enf bisimulation above.
fies Is congruence. (In Section 5, a similar, but more complicated, equivalence between

Fina"y, we note that the modularity of the enf bISImllarlty Yv and a store-based ﬂxed_point combinator is Shown')

E=Xg M .f (Qz.letz1=gginlet zo=2z1 f in 22 x)

O, ===

theories for control and state resembles the modularity of game
semantics for control and state [2, 14].

2. Eager normal form bisimulation

Let us briefly reintroduce the definition of enf bisimulation for
the pure call-by-value\-calculus [19]. Consider a variant of the
call-by-valueX-calculus in which computations must be explicitly
sequenced by means ofa-construct:

VARIABLES z,y, 2
VALUES v == z | Az.t
TERMS t == v | letz=t1 inta | vivg

We identify terms up to renaming of bound variables.
Reduction is defined by means of evaluation contexts:

EVALUATION CONTEXTS E = []| | Elletz=][]in ]
EAGER NORMAL FORMS(ENFS) e == v | E[zv]

(R1) Efletz=v in t] — E[t[v/x]]
(R2) E[(Az.t)v] — E[t[Y/x]]

The reflexive-transitive closure of the reduction relatieris writ-
ten—*. For every terny, there are two possibilities: eitherdi-
vergesin the sense that there is an infinite reduction sequence start-
ing from ¢, or elset convergesn the sense that —* e for some
(unique) eager normal form The notation: —* means that di-
verges. Eager normal forms are truly normal forms with respect to
reduction: they do not reduce to anything.

For a syntactic phrasg, let Fv(¢) denote the set of free vari-
ables ofp (the formal definitions are omitted).

Definition 1. A binary relationS on terms is arenf bisimulation
if S C B(S), where

B(S) = {(t,t)|eithert — andt’
ort —* eandt’ —* ¢’ where(e,e’) € M(S)}
M(8) = {(v,v") | (v,v) € V(9)}
U{(E[zv], E'[zv]) | (E,E") € K(S) &
(v,0") € V(S)}
V(8) = {(z,2)} U {(v,v") | 3y & Fv(v) UFV(v').
(v*y,v' xy) € S}
{1, DY U{(E,E") | 3y ¢ FV(E) UFV(E').
(Exy,E' xy) e S}

¢,

K(S5)

with z xy = zy, (Ay.t) xz y, and

Ellety=[] in t] x x = E[t[®]].
The intuition behind enf bisimulation is that two related open
terms either (1) both diverge, or (2) reduce to matching eager

normal forms whose components are again related. As an example
define the Curry call-by-value fixed-point combinaty.

Uif] = Ag. f(Az. letz=g g in zx)
Yo = A Uf] O[]

[lxy

Remark. The following construction, derived from the Turing call-
by-value fixed-point combinator, is convenient for defining func-
tions by recursion: For all values v1, andv., define

D[v1,v2] = let 21=0, in let z2=21 v1 in 22 V2
fix[v] = A\x.D[v, z]
Thenfix[v] x —" let z=v fix[v] in z z.
Contextual equivalence is defined in the standard way. Infor-
mally, two termst andt’ are contextually equivalent if for every

many-holed term contex®|[] such thatC[t] andC[t'] are closed
terms,C|t] converges if and only i€[t'] converges.

Theorem 2 ([19]). If (¢,t") € S for some enf bisimulatio, then
t andt’ are contextually equivalent.

Remark. The definition of an enf bisimulation is slightly different
from the one in the original presentation [19]. In particular, the vari-
ant defined here is equivalent to what is called an enf bisimulation
up ton in the original presentation.

In the sequel we omit the “enf” qualifier for bisimulations and
instead qualify them by calculi. We will refer to the bisimulations
for the pure)-calculus in Definition 1 asX-bisimulations”.

3. The\p-calculus

We now extend enf bisimulation to thg:-calculus. This extension
is new, but based on head normal form bisimulation for Xie
calculus [21].

VARIABLES x,%, 2

NAMES a,b

VALUES v == z | Az.t

NAMED TERMS nt = [a]t

TERMS t == v | letx=tiinte | vive | pa.nt

We identify syntactic phrases up to renaming of bound variables
and names. For a syntactic phragelet FN(¢) denote the set of
free names ob.

Names in the\u-calculus represent continuations. Names are
not first-class, but we will represent a nameas the first-class
valuea = Az. ub. [a]z. The familiarcall/cc control operator can
be encoded in th&u-calculus as

call/cc = A\f. pa. [a]f a.
The operational semantics of the:-calculus is defined by a
reduction relation on named terms:

NAMED EVAL. CONTEXTS NE ::= [a][] | NE[letz=[] in t]
NAMED ENFS ne ::= [a]v | NEz v]

(Rpl) NE[let z=v in t] — NE[t[V/x]]

(Rp2) NE[(Az.t) v] — NE[t[V/z]]

(Ru3) NE[pa.nt] — nt[NEa]

Here $[NE/] denotes capture-avoiding substitution of named eval-

uation contexts for names: for example,bif ¢ FN(NE), then
(sb. [a]t)[NEa] = pub. NEF].



Definition 3. A binary relationS on named\u-terms is a\u-
bisimulationif S C B, (S), where
B.(S) = {(nt,nt") | eithernt —* andnt’ —*,
ornt —* ne andnt’ —"* ne’
where(ne,ne’) € M, (S)}
M,u(S) = {(la]v, [a]v) | (v,v) € Viu(S)}
U {(NE[zv], NE[zv']) | (NE,NE) € K,.(S) &
(v, ") € Vu(S)}
Vu(8) = {(z,z)}
U{(v,v") | 3y & Fv(v) UFV(v').
(vxy, v *y) € Tu(S)}
Ku(S) = {([all], [al[D}
U {(NE,NE) | 3y ¢ FV(NE) U FV(NE).
(NExy,NE xy) € T,.(S)}
{(t,t") | Ja ¢ FN(t) UFN(t).
(la]t, [a]t") € S}
with [a][] xy = [a]y and NE[letz=[] in ] x y = NE[t[y/]].
Definition 4. Say thatt andt’ are \p-bisimilar, writtent =<, ¢, if
there exists ap-bisimulationS such thaf(t,¢') € T,.(9).

We show in Section 10 thatu-bisimilar terms are contextually
equivalent.

Recall thata = Ax. ub. [a]z. To illustrate Ap-bisimilarity we
define the term) = fix[P], where

T (S)

P =M\f.Az.ua.[a]lety=zain fy.

The termm) takes a function: as argument and applieso succes-
sive arguments

X Cf1 sz .
until « applies one of thei; to an argumen, in which casev
is returned as the result af x. On the other handy = diverges
if « never applies any of its arguments, e.g.zif= A\y.Q or
x = fix[]Af. Ay. f].
Remark. A term with the behavior of) cannot be expressed in

the pure call-by-value\-calculus. To see this, consider the two
functions

v=MAy. letz=yyinQ and v = \y.Q.

whereQ = (Az.z z)(Az.x z). They are contextually equivalent in
the pure call-by-value\-calculus. (This can be established using
the operational extensionality property of the pure call-by-value
calculus [7, 27], because the tetat z=vg v in Q diverges ifvg

is any closed pure value.) Butcan tell them apart) v converges
while ¢ v diverges.

A potential optimization of) is the following variant)’ which
returns straight to its final “return address” whenapplies an
argument (rather than returning from all the recursive invocations
of the recursive functiony’ = Az. pa. [a] fix[P'] z, where

P' = \f. Az lety=xain fy

The optimization is correct up to enf bisimilarity, thatis~,, v,
because

S = {(la]¥, [a]¢'), ([a]D[P, z], [a]pa. [alfix[P"] ),
([b]ub. [a]z, pib. [a]z), ([alfix[P]y, [alfix[P']y)}
is a A\u-bisimulation.

4. The \p-calculus
The Ap-calculus is obtained from the pure call-by-valrealculus

by adding constructs for allocating a number of new reference cells,

for storing a value in a reference cell, and for fetching the value
from a reference cell.

VARIABLES z,7, 2
REFERENCES?®, J

VALUES v == z | Az.t
TERMS t = v | letx=tiinta | vive | ps.t | u=v;t |l
STORES s = {11:=v1,...,%:=Un} (t1,...,1, are distinct)

Stores are identified up to reordering, and therefore a store can be
considered as a finite map from references to values. Terms are
identified up to renaming of bound variables and references: in
the termps. t, the references in the domain efare considered
bound in the range of and int. For a syntactic phrasg let FR(¢)
be the set of references occurring freejinA syntactic phrase is
reference-closed it contains no free references. Wriden(s) for
the domain of the store. If s ands’ have disjoint domainss-s’
denotes their disjoint union. ¥ = {u:=v}-s, let s(z) = v and
sl=v"] = {u=0}-5".

Reduction is defined ononfigurations which are pairgs, t)
of stores and terms such tre(¢t) C donts). (Configurations are
not identified up to renaming of the domains of the stores, hence a
configuration(s, t) should not be thought of as a tepm. ¢.)

EVALUATION CONTEXTS E = [] | Elletz=][]in ]
EAGER NORMAL FORMS(ENFS) e == v | E[zv]

(Rpl) (s, Efletz=wv in t]) — (s, E[t[V/x]])
(Rp2) (s, E[(Az. 1) v]) — (s, E[t[/z]])
(RPS) (51 E[_psl' t]) = (8'8/7 E[t])'

if (dom(s) UFR(s) UFR(E)) Nndom(s’) =0
(Rp4) (s, E[v:=v;t]) — (s[e:=v], E[t]) if 2+ € dom(s)
(Re5) (s, E[l4)) — (s, Els(2)]) if 2 € dom(s)

Eager normal form bisimulation for thep-calculus is based on
the relation-sets bisimulation idea [13, 16, 32]. Briefly, instead of
defining a bisimulation as a single binary relation on terms, one
defines a bisimulation as setof such relations, each associated
with a “world”: here, a pair of stores. The requirement is that if two
terms are related in a certain world, then the eager normal forms
(if any) of these two terms are related in a “future world” where
the two stores may have changed. Moreover, everything that was
related in the old world must still be related in the new world.

Now for the formal definitions. LefX, Y, Z range over finite
sets of variables and let range over finite sets of references. We
write XY for the disjoint union ofX andY. When the meaning
is clear from the context, we write a singleton éet as justz. We
use the same notational conventions for finite sets of references.

Notation X, J ¢, ¢, ... means the syntactic phrasgsy’, ...
have free variables iX and free references ih We omitX and/or
J on the left oft- if it is empty.

Let R range over sets of triple6X|t,t'), more specifically
subsets oRe(Y, J, J') for someY’, J and.J’, where

RelY, J,J') =
((X|L) | XNY =0 & XY, JHt & XY, J Ft'}

We identify triples that differ only up to renaming of the variables
from the first componenk: in the triple(X|t, '), the variables in
X are considered bound irandt’. A triple (0|¢,t) where the first
component is empty is also writtéft, t').

A term relation tupleis a quadruplg X|s, s’, R) where X +
s,s’ andR C Rel X, dom(s),dom(s’)). We identify term relation
tuples that differ only up to renaming of the variables from the first
componentX and up to renaming of references. l@frange over
term relation setsthat is, sets of term relation tuples.



Definition 5. Q is ap-bisimulationiff @ C B,(Q), where

B,(Q) = {(X|s0, 50, Ro) |
forall (Y|t t') € RO, either
(807 )H & (507 ) w? or
351,81,6 6 Rl 3 R(), X1 3 X'Y.

(s0,1) *(81, e) & (sp,t') =" (s1,€') &

(e,€') € Mp(R1) & (X1ls1,51, R1) € Q}
M,(R) = {(v,2"), (E[fE o], E'[zv']) |

(v,v") € V,(R) & (E,E') € K,(R)}

Vo(R) = {(z, =)}
U{(v,v") | Jy & Fv(v) UFV(v').
(ylvxy,v" xy) € R}
Kp(R) =A{((,[D}
U{(E,E") | 3y ¢ FV(E) UFV(E").
(y|E*y, E'xy) € R}
Definition 6. Reference-closedp-termst andt’ are\p-bisimilar,

writtent ~,, ', iff there exists a\p-bisimulation@ which contains
a quadruplé X |{}, {}, R) with (|¢,t) € R.

We show in Section 9 thakp-bisimilarity is a congruence.
Therefore, as explained in Section 2)-bisimilar terms are con-
textually equivalent.

5. Example: imperative fixed-point combinator

It is well-known that a store that may contain functional values can
be used to define functions by recursion. Abbreviate

II[f,2] = Az. let 21
and consider the term:
YP = )‘f p{Z::H[.ﬁ Z]} fH[f7 7’]'
Y, can be used to define functions by recursion inXpecalculus.
The technique of defining recursive functions by means of a “cir-
cular store” is due to Landin [15].

We now show that the fixed-point combinatoy is A p-bisimilar
to the Curry call-by-value fixed-point combinat¥®y, (defined in

=lvinletza=f 21 in 22

The two resulting eager normal forms afdl[f,+] and f D[f].
The variables in function position match (both &ig so consider
the argumentd][f,:] andD[f]. Since

II[f,2] = Az. letz1=lo in let zo=f 21 in zo &
and
D[f] = Ax. let z=Y[f] ¥[f] in z x,

the definition of a\p-bisimulation indicates that one should con-
tinue by reducing the bodies of these twabstractions:

({w:=I0[f, 1]}, let z1=l2 in let zo=f 21 in 22 x)
" ({=TI[J, ]}, let 2= TI[£,1] in 22 )
and

({},letz=T[f] V[f] in zz) =" ({},letz=Ff D[f] in z x)
= ({},letze=f D[f] in z2 x)
The resulting two eager normal forms are

let zo=fT1I[f,2] in z2z and letze=f D[f] in 22 x.

Again, the variables in function position match (both g)e and
the evaluation contexts are identical (both ktezo=[] in 22 ).
The function argumentd][f, ] and D[f], are A\-abstractions, and
therefore one should continue reducing the bodies of these two
A-abstractions. But this is exactly what was already done in the
previous two reduction sequences.

Using the results of these calculations it is possible to construct
the required bisimulatio). First, define

R={(|f1[f,2], ©[f]w[f)),
(z|let z1=lz in let 2o=/f z1 in 2z,
let z=W[f] ¥ [f] inzx)}.

Letz1, z2, ... be distinct variables, and define, for every> 0,
Sn = {(2z2]|z2 2k, z22k) | 1 < k <n}.
Finally, define@ as the set of all tuples
(frzr, - ma{e=10f, 00}, {}, RU SR)

Section 2 above). This equivalence can be shown directly from the Wheren > 0. Then@ is ap-bisimulation, as can be verified using

definition of a\p-bisimulation, but it is more convenient to apply
the following general lemma:

Lemma 7. Defineps.t = ps.t for s # {}, and p{}.t =t.

Assume that there exists J¥p-bisimulation containing a tuple
(X|s, s, R) where(|t,t') € R, and letz1,...,z, € X. Then
AT1. .. ATy St =p AT1. .. ATy ps . E.

The lemma follows from Corollary 36 in Section 9.
Proposition 8. Y, =, Y..

Proof. By definition,Y, = A\f. p{u:=I1
Af.®[f] ¥[f]. The proof therefore consists of constructinga
bisimulation@ containing a tuplé{ f }|{::=II[f, ]}, {}, R) where
(IfII[f,2], ¥[f] ¥[f]) € R, and then using Lemma 7.

Instead of specifying? right away, we show how one would
in practice construct): by starting from the two configura-
tions ({«:=I1[f, ]}, fII[f,]) and ({}, ¥[f] ¥[f]) and iteratively
adding tuples in order to satisfy the conditions in the definition of
a Ap-bisimulation. In that way, the main part of the equivalence

[f, 2]} FII[f,2] andY, =

proof consists in a number of calculations of reduction sequences.

Abbreviate D[f] = Az. let z=U[f] ¥[f] in zz. Now calcu-
late:

({u=111f,4}, f T[S, 20)

{3 w1l

=" ({e=11[f, 40}, fII[f,2])
=" ({}, f DIfD-

the calculations above.

Note that) contains the tuplé{ f }|{+:=II[f,]}, {}, R) where
(|f I f, }, U[f]¥[f]) € R. Therefore, Lemma 7 implies that
~ O

Yo =p

6. TheAup-calculus

The \up-calculus combines the control aspects of Xpecalculus
with the state aspects of thep-calculus. The definition of\up-
bisimilarity is a natural combination of the definitions af:-
bisimilarity and of Ap-bisimilarity. However, unlike the cases for
the calculi considered previously in the articheyp-bisimilarity

is not only contained in contextual equivalence, it coincides with
contextual equivalence, as will be shown in Section 10.

VARIABLES x,%, 2

NAMES a,b

REFERENCES?1,

VALUES v == z | Az.t

NAMED TERMS nt ::= [a]t

TERMS t == v | letz=t1ints | vive | pa.nt |
ps.t | v=v;t | h

STORES s = {11:=v1,...,0n:=0Un}

Reduction is defined oronfigurationswhich are now pairés, nt)
of stores and named terms such thafnt) C dom(s).



NAMED EVAL. CONTEXTS NE ::= [a][] | NE[letz=[] in t]
NAMED ENFS ne = [a]v | NEz v]

(Rppl) (s,NE[letz=v in t]) — (s, NE[t[V/z]])
(Rup2) (s, NEI(\z. ) o]) v+ (5, NE[Y/])
(Rup3) (s, NE[pa.nt]) — (s, nt[NEa])
(Rup4) (s,NE[ps’.t]) — (s-s', NE[t]),

if (dom(s) U FR(s) UFR(NE)) Ndom(s’) =0
(Rpp5) (s, NE[s:=v;t]) — (s[e:=v],NE[t]) if « € dom(s)
(Rup6) (s,NE[!7]) — (s,NE[s(2)]) if 2 € dom(s)

Now XY, Z range over finite sets of variables and names. Let
NRrange over sets of triplgs\|nt, nt’), more specifically subsets
of NRelY, J, J') for someY’, J andJ’, where

NRelY, J, J') =
{X|nt,nt) | XNY =0& XY, JFnt& XY, J +nt'}

We identify triples that differ only up to renaming of the variables
and names from the first componexit

A named term relation tuplis a quadruplé X |s, s, NR) where
X F s,s" andNR C NRel X, don(s),dom(s’)). We identify
named term relation tuples that differ only up to renaming of
the variables and names from the first compon&naind up to
renaming of references. #amed term relation sés$ a set of named
term relation tuples. LYQ range over named term relations sets.

Definition 9. NQis a\up-bisimulationiff NQ C B,.,(NQ), where

Bup(NQ) = {(X|s0, 56, NRy) |
forall (Y|nt,nt') € NRy, either
(s0,nt) = & (sp,nt’) —*, or
Js1, s, ne,ne’,NR D NRy, X1 D X‘Y.
(so,nt) —* (s1,ne) &
(so,nt’) —* (s1,ne’) &
(ne,ne’) € M,,(NRy) &
(X1s1,51,NRy) € NQ}
My,(NR) = {(la]v, [a]v"), (NE[z v], NE[zv']) |
(v,v") € V., (NR) & (NE,NE) € K,,,(NR)}
Vip(NR) = {(z, )}
U{(v,v") | 3y & Fv(v) UFV(v').
Ja ¢ FN(v) UFN(v).
(a-ylla](v*y), [a](v" xy)) € NR}
Kup(NR) = {([al[], [al[])}
U {(NE,NE) | Jy ¢ FV(NE) U FV(NE)).
(yINEx y,NE %) € NR}
Definition 10. Reference-closed named termisandnt’ arepp-
bisimilar, written nt =, nt', iff there exists a\pp-bisimulation
NQ which contains a quadrupleX|{}, {}, NR) with (|nt,nt') €
NR Reference-closed termsandt’ are \up-bisimilar, written
t =, t', iff there exists a\pp-bisimulationNQ which contains
a quadruplg X |{}, {}, NR) with (,#') € T,.,(NR), where
Tup(NR) = {(¢,t') | 3a & FN(t) UFN(t). (a|[a]t, [a]t") € NR}.
We show in Section 9 thatup-bisimilarity is a congruence.

7. Example: one-shot continuations

We confirm the correctness of this program by a formal proof us-
ing the enf bisimulation method. The equivalence proof below can
be viewed as a formalization of Friedman and Haynes'’s informal
argument.

One cannot directly use theup-calculus to prove correctness
of this encoding of call/cc, since thg.p-calculus does not contain
one-shot continuations as a primitive. Instead, we define one-shot
continuations in terms of unrestricted continuations using another,
but simpler, construction due to Friedman and Haynes. We then
show the correctness of the encoding of call/cc by means of one-
shot continuations relative to this encoding of one-shot continua-
tions.

First, we need to encode a conditional operator in Xipg-
calculus. Since the evaluation order in thgp-calculus is call-by-
value, the encoding is done using “thunks”:

T=Xx.\y.zl
F=MXz. \y.yl

if[tl, ta, t3} =let z1=t%1in
let zo=21 ()\Z.tg)in
ZQ()\Z. t3)

wherel = A\z. z, and wherez; andzs are not free irty, t2, oOrts.
Recall the definition of call/cc:

call/cc = Af. pa. [a]f &
wherea = Ax. ub. [a]z. Now define the one-shot variant of call/cc:

call/ccl = Af. (call/cc
(Ak. p{u:=T}. f (Az.if[le, (1:=F; kx),Q])))

The requirement that every captured continuatiois applied at
most once is enforced by means of the local reference

Now for the encoding of unrestricted continuations by means of
one-shot continuations. For every referepceefine

®, = Ag. \f.lety=call/ccl
(Ak. (9:=k; f Azx.lety=ly
inyx)))
in call/ccl (AK'. g (\k.K'y)).

Then define

call/ccx = A f. p{y:=I}. fix[D,] f.

(See the original presentation of the encoding [9] for an informal
explanation of how it works.)
The aim of this section is to show that

call/cc =, call/ccx.

It follows thatcall /cc andcall /ccx are contextually equivalent, and
hence thatall /ccx is as an encoding afall/cc by means of one-
shot continuations.

As in Section 5, the equivalence could be shown directly from
the definition of a bisimulation, but it is more convenient to use the
following generalization of Lemma 7 to theup-calculus:

Lemma 11. Defineps.t = ps.t for s # {}, and p{}.t =t¢.
Assume that there exists Jup-bisimulation containing a tuple
(X|s, s',NR) where(|[alt, [a]t') € NR, and letry,...,z, € X.

As an extended example, we show the correctness of Friedmanif ¢« € X does not occur free in any of, s’, ¢, and ¢/, then

and Haynes’s encoding of call/cc in terms of “one-shot continua-
tions” [9].
A one-shot continuation is a continuation which may be applied

AZ1. o ATn. P8t =pp AZ1. .. ATy ps’. .

The lemma follows from Corollary 36 in Section 9.

at most once. Friedman and Haynes showed that, perhaps surprisProposition 12. call/cc ~,, call/cc*.

ingly, call/cc can be encoded in terms of its restricted one-shot vari-

ant. They did this by exhibiting an “extraordinarily difficult pro-
gram” [9, p.248] together with an informal equivalence argument.

Proof. By definition, call/cc = Af.pa.[a]fa andcall/ccx =
Af.p{y:=I1}.fix[®,] f. We therefore construct a bisimulation con-



taining a tuple and[a]t’ without providing values for the references.ni.e., the

(f-al{}, {7=1},NR) references which are free fnandt’. The solution is to initialize

the references i/ with a number of fresh variables?<”. This
initialization takes care of the “input” aspect of the free references;
the “output” aspect is taken care of by an extra requirement: if both
({7 :=2,°%"}, [a]t) and ({3 :=2,"€7}, [a]t) reduce to named ea-
ger normal forms, then in the two resulting stores, the references
from J must contain values which are pairwise related.
Now for the formal definitions. Named term relation sets are

generalized as follows: let

NU; = {(X|s,s’,NR) |

where (|[a]pa. [a] f @, [a]fix[®,] f) € NR The conclusion then
follows from Lemma 11.

The main part of the proof consists in a number of calculations
of reduction sequences. One starts from the two configurations
({}, [a]pa. [a]f @) and ({3:=I}, [a]fix[®,] f) and iteratively tries
to add tuples in order to satisfy the conditions in the definition of a
App-bisimulation.

First, define the named evaluation context

NEy = [a] let z=[] in call/ccl (\K'. fix[®@,] (\k.k'z)) X Tl s s &
and for every reference define the term NR C NRel X, J-dom(s), J-dom(s’))}.
Cle) = . if[ls, (:=F; (Az. ub. NEy[z]) ), ©]. We identify quadruples that differ only up to renaming of the vari-
) ables and names from the first compon&n&nd up to renaming of
Now calculate, for any storeand any value: references frondom(s) anddonts’). Notice thatNUy = NU.
@) (s-{5=v}; [alfix[®] f) Definition 13. NQ C NUy is a.J-bisimulationiff NQ C B;(NQ),
— where
s{7:=Cl],:=T},NE[f (\z. lety=!yin yx)]).
(s-{9:=C[¢] } [f( . y=lyin yx)]) By (NQ) =
2) (S‘jj::C[Z], u=T},[b]lety=!yin yz) {(X|s0, sh,NR) € NU, |
= _ for all distinct variables, "<’
(s-{7:=C[1], 2:=F}, [a]call /ccl (AK'. fix[®,] (\k.k'z))). and all(Y|nt, nt') € NRy, either
(3) (s-{7:=C[4]}, [a]call /ccl (AK'. fix[®,] (\k.K'x))) ({r:=2,"%"}-s50,nt) = & ({1:=2,"€"}-sp,nt’) —*, or
=" , ) Ine,ne’, (v, v])*¢7 51,51, NRt D NRy, X1 D XY 2,7,
(s-{2:=C[t'], 20:=F,7":=T}, [a] ). ({1:=2,""}-s50,nt) =" ({2:=0,"S"}-s1,n€) &
These calculations dictate the following construction ofgo- ({ZIZZZIZGJ}'SG’M') =" ({u=v]""}sl,ne) &
bisimulation: let (ne,ne() € M)W(Nng & &
R ) Vi € J. (v,,v)) € Vi, (NR
NRo ={(|[a]pa. [a]f a, [alfix[®,] f), (X1|s1, 54, NRy) eﬁQ} '
(y | [aly, [a]call/ccl (AK'. fix[®,] (Ak.k'y))), , o .
(y-b | [blub.[aly, [b]letz=1yi Say that two termg and ¢’ are J-bisimilar if there exists a
Y pb.[a]y, [b]let z=!jin zy)} > : . ’
. J-bisimulation containing a tupléX |{}, {}, NR) where(t,t') €
and letNQ consist of the tuple T,,(NR).
(f-al{}, {r:=1} {(lla]pa. [a] f &, [alfix[®;] f)}) _ We now generalize the previously given definition of enf bisim-
together with all named term relation tuples of the form ilarity for reference-closed terms:
(X|{}, 5, NR) Definition 14. Lett andt’ be A\up-terms. Say thatandt’ arelup-
isimilar, writtent =, t', if there exists a finite sef of references
o bisimil i up ', ifth i finite sef of ref
where{f,a} C X, wheres is a store such that € don(s), and such that andt’ areJ-bisimilar.

where there exists anc dons) such that
s()) =Cl] and s(z) =T.

ThenNQis aAup-bisimulation, as can be verified using the calcu-
lations (1)-(3) above. By Lemma 14dall/cc <, call/ccx. O

Example 15. Itis easy to show that
letz=!lyin (y:=l;:=2; fx) =~up fx
while on the other hand

let z=!yin (:=l; lety=f z in (3:=2; y)) Zpup [ .
8. Enf bisimulation for terms with free references The proofs of this equivalence and this non-equivalence illustrate

So far in this article, eager normal form bisimulation has been a basic sequentiality property of the calculi considered in this ar-

used as a proof principle for proving equivalencereference- ticle: in order for two terms to be equivalent, it is enough that the

closedterms. In this section it is shown how to extend eager normal contents of the free references are equivalent at certain “synchro-
form bisimulation to terms which may contain free references. nization points”, but in-between these points the contents of the
Besides allowing one to prove equivalences about terms with free free references can be modified arbitrarily.

references, this extension is also used in the congruence proof forProposition 16. Let.J, andJ be finite sets of references such that

enf bisimilarity in Sec_tion 9. As a part of that proof, it must be Jo C .J. Any two terms which aré,-bisimilar are alsoJ-bisimilar.
shown that the following holds: If ~,, ¢ andv ~,, v', then -

plu=v}.t =u, p{e=v'}.t andu=v;t =,, 1:=v';t'. Here the
ré{feren};:a Wiﬁpin éenera}l occur free in th;pterrrts t', v, andv’, 9. Congruence
and, of course, in the terms=v; ¢t andu:=v'; t'. This section contains an outline of the proof thatp-bisimilarity

The modification needed to take free references into accountis a congruence: it is an equivalence relation which is furthermore
can be explained as follows. Suppose that the free references of theeompatible. A binary relatioty on terms and named terms of the
termst andt’ are contained i/, and that one wants to prove that Aup-calculus iscompatibleif it is closed under the term formation
andt’ are equivalent. According to the previous definition, one re- rules of theAup-calculus. For example, if; S t; andts S t5,
quirement is thafa]t and[a]t’ should either both diverge, or reduce then alsd(let z=t1 in t2) S (letz=t] in t5), and ifnt S nt’, then
to matching named eager normal forms. But one cannot rddifce  pa. nt S pa. nt’. The straightforward formal definition is omitted.



Proposition 17. For every finite set/ of references, there exists a
greatest/-bisimulations;.

Proof. The definition of B; immediately implies that the union of
an arbitrary family ofJ-bisimulations is also a/-bisimulation.
In particular, the union of all/-bisimulations is the greatest
J-bisimulation. O

At this point it is useful to change the definitions of\@p-
bisimulation and of a/-bisimulation slightly: in those definitions,
replace the operatofid,, and K., with V; , and K, ,:

Vip(NR) = {(v,v') | Iy ¢ Fv(v) UFV(v').
Ja ¢ FN(v) UFN(v').
(a-yllalvy, [alv"y) € NR}.
(NR) = {(NE,NE)) | 3y ¢ FV(NE) U FV(NE).
(yINE[y], NE'[y]) € NR}.

K/

up

These modifications do not change the relatiohf-bisimilarity;
in fact, the greatest-bisimulation is unchanged. The two operators
V., and K}, , are more convenient in the congruence proof below,
while the other two operators are more convenient when using
bisimulation as a proof principle.

We first show that\pp-bisimilarity is an equivalence relation.

Definition 18. Let NQ C NU,;.

1. NQ s closed under weakeniriff whenever(Xy|s, s’,NR) €
NQand X, C X for some finite seX of names and variables,
also(X|s,s’,NR) € NQ.

2. NQ is closed under context extrusidgh (X|s,s’,NR) € NQ
and (Z:1-Zs|nt,nt’) € NR imply that there existtNR D
NRU {(Z2|nt,nt’)} such tha{ X-Z1 s, s’, NR)) € NQ.

Lemma 19. The greatest/-bisimulation is closed under weaken-
ing and context extrusion.

Lemma 20. Aup-bisimilarity is an equivalence relation.

Proof sketch Reflexivity and symmetry follow easily from the def-
inition of B;. As for transitivity, assume that ~,, t' and that
t' =,, t"; we must show that =,,, ¢’ (and similarly for named
terms). Proposition 16 implies that there exists sah=ich that
andt’ are J-bisimilar andt’ and¢” are.J-bisimilar. Now consider

a general composition construction on named term relation sets.

GivenNR; C NRelY, J, J;) andNR; C NRelY, J, J2), define
their composition as

NR1; NR2 = {(X\ntl,ntg) ‘ Elnt.(X\ntl,mf) S NRl &
(X|nt,nt2) € NR:},

and giverNQ,, NQ, C NU,, define

NQ;; NQ, = {(X|s1,52,NRi;;NR;) |
3s.(X|s1,s,NRy) € NQ, &
(X|s, 52, NR:) € NQ, }.

Then the following property holds: iNQ, and NQ, are J-
bisimulations closed under weakening, then @ ; NQ,. [

It remains to show thahpp-bisimilarity is compatible. The
proof of this fact is structured as follows:

e First, we show that a restricted variant ®dfip-bisimilarity is
substitutivein a sense defined below. (The restricted variant
does not validate certain common extensionality rules for call-
by-value calculi.)

e Second, we use a syntactic translation to show thatXup-
bisimilarity is substitutive. It follows thakup-bisimilarity is
compatible.

9.1 Substitutions

A substitutionis a finite mapo with a domain consisting of vari-
ables and names, and such thahaps each variable in its domain
to a Aup-calculus value, and each name in its domain toug-
calculus named evaluation context. lbetange over substitutions.
When¢ is a syntactic phrase (store, value, term, or named term),
¢o denotes the result of “carrying out the substitutientn ¢ (we
omit the formal definitions). Also, define

NR(o,0') = {(Z|nto,nt'a’) | (Z|nt,nt’) € NR}

(where the variables and names occurring free in the ranges of
ando’ are not inZ).
Let dom(o) denote the domain of. Say that

XFoX(NR o :Y
whendom(o) = dom(¢’) = Y, and:
1.
2.
3.

For every variable € Y, (o(z),0'(z)) € V,;,(NR).
Foreveryname € Y, (o(a),o'(a)) € K,,,(NR).

The free variables and names in the ranges @ind o’ are
contained inX.

Say that two substitutions ando’ are\pp-bisimilar (notation:
o ~u, o') if there exists aJ-bisimulation containing a tuple
(X - Y|{},{},NR) such thatX + o Z(NR) ¢’ : Y. In the
next sections we show thaiup-bisimilarity is substitutivein the
following sense:

1. Ift =,, t' ando =~,, o', thento =, t'o’.

2. If nt =,, nt’ ando =~,, o', thennto =~,, nt'o’.

9.2 Non+ bisimulation

In order to show that\up-bisimilarity is substitutive, we first
show the analogous result for a certain restricted varialt.of-
bisimilarity. The variation consists in a change in the definition of
the operatory” and K (which are used to define relations on values
and named evaluation contexts, respectively).

Definition 21. Let NRbe a named term relation.

M'(NR) = {([a]v, [a]v"), (NE[z v], NE [z v']) |
(v,v") € VI(NR) & (NE,NE) € KT(NR)}
VI(NR) = {(z, z) | z is a variablé
U{(ax.t,  x.t') | Ja ¢ FN(t) U FN().
(z-al[alt, [a]t') € NR}
K'(NR) = {([a][] [a][]) | ais @ nam
U {(NE[let z=[] in ¢], NE'[let z=[] in t']) |
z ¢ FV(NE) UFV(NE) &
(z|NE[t],NE'[t']) € NR}

Definition 22.

1. For every named term relation $¢® C NU;, the named term
relation setB' (NQ) is defined in the same way d2;(NQ),
except that\/ T andV'T are used instead d#,,, andV,,,.

. NQis anon+ J-bisimulationif NQ C B (NQ).

. Two reference-closedp-termst andt’ arenon+ bisimilar
(notation:t =' t') if there exist a finite set of referencdsand
a non# J-bisimulation containing a tupleX|{}, {}, NR) such
that (¢,t') € T,,(NR). Non+ bisimilarity of named terms is
defined similarly.

N

Remark.The reason for the name “nayi4is that nons bisimilarity
does not satisfy two common extensionality rules for call-by-value



calculi, namely they,-rule and thelet,,-rule: Az.y = %' y and
(letz=yzinz) %' y 2.

Let BTJ be the greatest non-J-bisimulation. The key to show-
ing that nony bisimilarity is substitutive is to show thd‘BT, is

closed under substitutions the sense defined next.
Definition 23.
1. For everyNQ C NU, let
FT(NQ) = {(X|so,s'0’,NR(0, ")) |
Y. (X-Y][s,s’,NR) € NQ &
XFoXI(NR o : YV}
whereX'(NR) is defined in the same way B$NR), except that

VT andK' are used in place df;,, andKj,, in the definition.

2. A named term relation s&lQ C NU, is closed under substitu-
tionsif FT(NQ) C NQ.

We now proceed to show that for evedy the greatest non-
J-bisimulation is closed under substitutions. Defineghibstitutive
closureof NQ as

STINQ) = [ (F)"(NQ.
n<w
It is the least fixed point of"" containingNQ.

Main Lemma. Let NQC NU; be a nongy J-bisimulation which
is closed under context extrusion. L&f|s, s’, NR) € (F)"(NQ)
and(Z|nt,nt') € NR and(v,,v},) € VI(NR) forall y € J.

1. Assume that{y:=v,’<’}-s,nt) —* ({3:=w,’¢’}-s1,ne1) in

m or fewer steps. Then there exist D X-Z, s}, nef, wﬁ”e‘],

and NR D NR such that
(L=< }s" nt') =" ({3=w)"""}57, nel),
(X1|s1,51,NR) € ST(NQ), (nei,ne}) € MT(NRy), and
(w,,w)) € VI(NRy) forall y € J.
2. Conversely, assume that
({p=v b nt') = ({p=w)’""} 1, nel)

in m or fewer steps. Then there exi&, 2 X.-Z, si, ne,
w,”<?, and NR D NR such that

{r=v"}-s,mt) =" ({3:=w,"" }-s1,ne1)
etc.

Proof sketchBy induction on the pair§m,n), ordered lexico-
graphically. O

Corollary 24. The greatest nom- J-bisimulation B} is closed
under substitutions.

Proof sketch.The Main Lemma implies that
(F'™(BY) € By(s"(B)))

for all n > 0. By definition of ST and the fact that non-
bisimulations are closed under unior,(8') C B (ST(B)).
This means thatST(B") is a nony J-bisimulation, and there-
fore F1(B) C ST(BY) C BY, sinceB) is the largest nony
J-bisimulation. O

9.3 Non+ bisimilarity is substitutive

In order to show that non-bisimilarity is substitutive, one needs
the following construction for combining named term relation sets:

Definition 25. GivenNQ,,NQ, C NU;, define
NQ, + NQ, = {(X|51'52,8/1-S/2, NR; UNRy) |

(X]s1,51,NR) € NQ, &
(X|s2,55,NRe) € NQ, &
dom(s;) Ndom(sz) =
dom(s}) Ndom(sy) = (}.

Lemma 26. If NQ, and NQ, are non# J-bisimulations closed

under weakening, then so is N@ NQ,.

Corollary 27. The greatest nomrJ-bisimuIationB} satisfies that
B, = B' + 87,

Finally, non+ bisimilarity is substitutive:
Theorem 28.

1. Ift =t ¢ ando = ¢, thento =T o’
2. If nt =T nt’ ando =t o/, thennto =T nt'c’.

Proof sketchWe show the second implication—the first is com-
pletely similar. Assume thait ~' nt’ ande = o', and letJ be
the set of free references mx, nt’, o, ando’. Then the great-
est nonn J-bisimulation 8%, contains a tuplg X1 |{}, {},NR:)
such that(|nt,nt') € NR; and a tuple(X: - Y|{},{},NR:)
such thatX, + o ©f(NR,) o’ : Y. Then by Corollary 2751
also contains the tupleX; U X> U Y|{}, {},NRi U NRy). Fi-
nally, sinceBTJ is closed under substitutions, it also contains the
tuple (X1 \ Y) U Xol{}, {}sNRi(0,0") U NR:(c,0")) where
(Into,nta’) € NRy(o,0’). Hencento = nt'c’. O

9.4 \up-bisimilarity is substitutive

The fact that\up-bisimilarity is substitutive can be derived from
the analogous result for napbisimilarity, Theorem 28, by means
of a syntactic translation involving an “infinite-expansion” com-
binatorH.
Fix a finite set of reference$ = {1, ... . }. For every value
v and every ternt, define the term
app[v, t] = letz1=ly1 in ... letz,=ly, in

letyi=vziin ...lety,=vz, in

(1=Y15 .. Jn1=Yn; t)
(wherez1, ...zn, y1,...,yn are notfree irv ort). The operational
behavior ofapp|v, t] is to “applyv to every reference id” and then
continue according t6. Now define

Ho = Az A f. Az letyi=zx in
app(z, letya=fy1 in app[z, zy2]|
H = fix[Ho].
The combinatoH originates from a generalization of a “syntactic
minimal invariance” equation [17, 29].
Also, for every value) and every named evaluation contBH,
define
Glv] = Az.letya1=Hz in
app[H, let y2=v y1 in app[H, Hy2]]
G[NE] = NEJlet z=[] in app[H, H z]].

Definition 29.

1. For every term, let t* be the result of substitutinG[z] for
every free variabler in ¢, and substitutings[[a][]] for every
free name: in t. For every named termi, definent* similarly.

2. For every ternt, define

th = app[H, let z=t* in app[H, Hz]].

3. For every named termt = [a]t, definent” = [a]t'.



Using the above syntactic construcigp-bisimilarity can be
characterized in terms of napbisimilarity:

Proposition 30. Let the free references af ¢/, v, and v’ be
contained inJ.
1.t =, tiff tT =TT,
2. v =y, v iff Got] =T G,
3. nt =, nt' iff ntt <t nt't,
If v is a value such that the free references afe contained in

J, thenv =, G[v] (but in generab %' G[v]). As will be shown
next, a more general version of that property holds.

Definition 31. The binary relationk on terms, named evaluation
contexts, and named terms is defined inductively by means of the

inference rules in Figure 1.

tRt
Ax.t Rz.t'
v R tRY
v1v2 R 1]/1 ’Ué (Z::’U; t) R (z::v'; tl)
V9 € Jo-s(3) Rs'(2) dom(s) = dom(s’) = Jo,
ps.t R ps'.t' JonJ =0
nt R nt' NE R NE
pa.nt R pa.nt' NE R NE NE R G[NE]
tRt NE R NF
NE[let z=[] in t] R NE'[let z=[] in t']
NE R NFE tRY
NE[t] R NE'[¢]

v R
v R G[v']

vo R v}

tRt

v1 R}

tRt

Figure 1. The relationR.
Two storess and s’ are related byR if they have the same
domain.Jo and ifs(y) R s'(y) for all 5 € Jo.
Proposition 32. LetJ’ C J. The named term relation set

{(X]s,s’,NR) € NU, |
s Rs' & NRC {(Z|nt,nt') | nt Rnt'}}

is a J'-bisimulation.
In particular, takingJ’ = J:

Corollary 33. Let the free references af ¢/, nt, and nt’ be
contained inJ.

1.t Rt impliest =, t'.
2. nt R nt’' impliesnt ~,, nt'.
It follows that App-bisimilarity is substitutive:
Theorem 34.
1. Ift =, t'ando =,, o', thento =, t'c’.

2. If nt =, nt’ ando ~,, o', thennto =, nt'c’.

Proof sketchAs a simple example, assume that~,, ¢ and
v ~pu, v'; it must be shown that[v/z] =~,, t'[v'/z]. By Corol-

lary 33,t[Vz] ~,, t[G[G[v]l]. Hence by Proposition 30 and the

fact that nong bisimilarity is substitutive:
(t[])" =1 (¢[CICII])T = ¢1[Glv? )]
SRS CErS
= (1)t
By Proposition 30 againt[V/z] =, t'[V'/z]. O

9.5 \up-bisimilarity is a congruence

Now it is shown that\up-bisimilarity is compatible, using the fact
that it is substitutive.

Proposition 35. By = Bs + B.

Corollary 36. LetFRr(nt) UFR(nt') C J, and lety,’<” be distinct
variables not free imt or nt’. Suppose that

L=y nt) =" ({3:=0,"%" V51, me1),
(=" }ont') =" ({g=v)""" )-8, net),

and (X1|S178/1,NR1) € By with (nehne'l) [S Mup(NR1) and
(vy,v)) € Vup(NRy) forall 5 € J. Thennt <, nt'.

Theorem 37. Aup-bisimilarity is compatible.

Proof sketch.The most complicated case to show is thatp-
bisimilarity is closed undep-abstraction: ift ~,, t' and also
v, ~up vy forall y € Jo, then

1€ J, € J
plo=v, 7Y t =y p{g=0)"" 0}t
Here one proceeds in three steps:

1. If 2 ¢ FV(t), thenps.t <., letz=ps. Az.t in z|.
2. If v =up, v andv, =, v for all 3 € Jo, and if the free
references of all these values are contained in Jy, then
€J _ 23t i
p{r=Glv;]" " }. Gv*] mup p{2:=Glv)’ ] " }. G,

3. If the free references afandv,’€7° are contained iy O Jo,
thenp{s:=v,""0}. v =y, p{s=G[v}"*"}. G[v*].

€Jo

The third part follows from Proposition 32 and Corollary 36. The
proof of the second part uses Corollary 36 and the following con-
struction: for everyNQ C NU; with Jo C J, let NQ\Jo be the
subset oNU ;\ 5, defined by

NQ\Jo = {(X1[{y :=w,"<"}-s, {3:=w)’*"}-s', NR) |
(X|s,s’,NR) € NQ&
XCXi &
Vg € Jo. (wy,w)) € VI(NR)}.

The Main Lemma implies tha’,\.Jo C B, , .
The other cases of the proof are simpler and use Theorem 34
and Corollary 36. O

In summary, the main result of this section:

Theorem 38. A\pup-bisimilarity is a congruence: an equivalence
relation which is furthermore compatible.

Corollary 39. Each of A-bisimilarity, Au-bisimilarity, and Ap-
bisimilarity is a congruence.

Proof. It is easy to see that twau-terms are\u-bisimilar if and
only if they areApup-bisimilar, and similarly for the other inclusions
between the four calculi considered in this article. (Each extension
is “fully abstract”). The statement of the corollary immediately
follows. Suppose for example that =, vi andvs =, vy. Then

v1 ~pup v1 andvs =, vy. Therefore, since\up-bisimilarity is

a congruencey, ve =, vi vs. Finally, sincev; v2 andv] vy are
Ap-terms,vy va =, v Vh. O

Remark. Non- bisimilarity is also a congruence. The relation be-
tween nong bisimilarity and A pp-bisimilarity is analogous to the
relation between Bhm tree equivalence andoBm tree equiva-
lence up tay for the purei-calculus.



10. Full abstraction a sequence ahovesm, one for each successive invocation of the

In this section we show thatup-bisimilarity coincides with con-  Variablez; or namex;, ending in “successT or “failure” L:

textual equivalence for theup-calculus. STRATEGIES p == T | L | m;p

First, let us say that a variable-closed and reference-::losed MOVES m ::= move(q, p1, p2) (g>1)
named termnt terminates written nt{l, iff 3s, ne. ({},nt) — . ) ; N
(s, ne). Then we define that termisand¢’ arecontextually equiv- A Move move(q, p1,p2) “plays” the g'th value or continuation
alent written ¢ 2,,, ¢/, iff for all namesa and term contexts’ from the list stored iryo and associates the stratggywith a vari-

such thatC[t] andC[t'] are variable-closed and reference-closed, able, which is used as argument, andvith a name, which is used
[a]C[t]) < [a]C[t']l). Itis easy to see tha¥,, is a congruence as continuation. These ideas are expressed in the following encod-

and, moreover, it is the largest congruence relation which satisfiesings. Given a referenceand a strategy, we define the function

thatt =2, ¢’ implies[a]t| < [a]t'| for all namesz and variable- ~ [P](2), which takes a function argumentand a continuatiory as
closed and reference-closed tertrandt’. SinceAup-bisimilarity arguments, and for every move, we define the ternfm], as fol-
is a congruence, itis immediate from its definition that it is included lows.
in contextual equivalence, viz. thafip-bisimilarity is sound with [T]() = Az. Ay. |
respect to contextual equivalence.
[L](2) = Az. Ay.

Theorem 40 (Soundness)~,, C =,,. [m; pl(2) = Az. Ay. let z=lg0 in go:=(z|z,y); :=[p](2); [m]

Similarly, A-bisimilarity, Au-bisimilarity, and \p-bisimilarity [move(q, p1,p2)] =

are included in contextual equivalence for their respective calculi. let z=1y0 in letz=24£q in p{u=[p:](2), 1:=[p2] (1)} j[21]

To prove the converse of Theorem 40, we will form a bisimu- - \yhere; and;j denote the value and the evaluation context
lation which relates all contextually equivalent terms. The task is
similar to the Bhm-out proof of the separability theorem in the i = Az.pa. [ao]lety=lvin letz=y x in za
call-by-nameA-calculus. For readers familiar with thedbBm-out j=letz=[]inlety=!yin let z=y z in z do
proof, we briefly compare our approach: ThéHn-out proof sub- . . . .,
stitutes, for each free variable, a function that takes many argu- and whereu, is a designated “top-level” name. ) ,
ments. This makes it possible to control the function’s behaviour __These are the building blocks we use to “separate” terms. As in
separately each time it is called. We need the same level of con-[21], our separation proof is co-inductive. We define:
trol over the behaviour of the functions and continuations that are 4, _ {(

NR NR
v ; ' TlyeeeyTm, AL, .., anls1, 82, {wi ..., w )
substituted for the free variables and names in the contextually s Tmy Gy Bnl81, 52, { o Wa )

equivalent terms we want to prove bisimilar. However, instead of |V strategie, . . . s Pms DLy e e D

using functions that take many arguments, we use stateful func- v distinct references, . . ., tm, J1,- -, Jn

tions and continuations. They use mutable references to execute ¢ dom(s1) U dom(sz).
pre-programmed strategies that specify how they will behave each v movesin. ,

time they are invoked. Moreover, we use the expressive power of [ao]ps-sio. [m]{ < [ao]ps-szo. [m]{

the A\p-calculus to capture not only the argument when a function wheres = {21:=[p1](11), - - -, tm:=[Pm] (2m),
substituted for a free variable is invoked but also the continuation. g=pal (1), - - an=[Pn] ()},
The presence of mutable references introduces one complication, o= [Mfey, ... mfry, @0]Ti/ay, .. . [a0lin/a,],
namely it requires us to store every argument and continuation we s; = si-{g0:=(vi1, ..., Vig) },

see so that we can invoke them multiple times to expose stateful (v11,v21) = w1Y, ..., (Vig, V2g) = wy"}
behaviour.

We will need to accumulate values in lists and random access Lemma 41. W is a up-bisimulation.

list entries. We encode the empty list as the identity functiand . . . . .
el y Proof. By detailed analysis of the possible operational behaviours

we encode the list with elements, . .., v, appended as: . ;
! n 8PP of the named terms in eaeh, " triple. O
(v, ... vn) =
Az. letzg=vzinletzi=x0v1in...IN Tp_1vn Lemma 42. t, 2, t2 impliest, ~,, t2 if FR(t1) U FR(t2) = 0.
wherez, zo, ..., x,_1 are not free iv, v1, ..., v,. Whenv = | p ~
3205 7 La s . . roof. Suppose; andt, are reference-closed terms, =, to,
we write just(vy, . . ., v, ). We access thg'th element in the lisb PpOsen 2 S, Sup L2

and X + t1,t2. Then, by the definition ofW and contex-
tual equivalencet; 22, t» implies (X|{},{},{w"f}) € W
wherew = (Az.t1,)\z.t2) andz ¢ X. Observe thaw™® =
(a-z|[alt1, [a]t2). We concludet; ~,, t2 by Lemmas 41 and
O

with v#q = pa. [a]v Az1 ... Azq—1. G, wherea is not free inv.
We use a designated referengeto store a list with all the
arguments and continuationslE we see along the way (eabtE
is stored as the valukz. pa. NE[z] with z, a not free inNE). We
letw range over both pairs of values and pairs of named evaluation =~
contexts. Given such a pair, let’ be the pair of values and let"®

be the singleton named term relation defined as: To extend this result to general terms, we define a term context

L; that “translates” any termwith Fv(t) C J = {21,...2,} tO

v _ | (v1,v2) if w=(v1,v2) the reference-closed closed term
w = { (Az. pa.NE1[z], Az. pa. NEz[z])  if w = (NE,NE) Lolt] = v plasi=], ... ami=1}.
WR — { (a-z|[a](v1 * x), [a](v2 x2))  if w = (v1,v2) (Az.t, get(11),set(21), ..., get(n), set(n))
(INEy 2, NE; + 2) ifw = (N&,NE) wherezx ¢ FV(t), get(e:) = Az. lv;, andset(z;) = Az. (1:=z; ).
wherex anda are not free in, v2, NE, NEs. Lemma 43. t1 ~, to iff L[t1] =up Lslta).

For each free variable; and name:;, we associate a reference
1; andy;, respectively. Each reference storestrategyp which is Theorem 44 (Completeness)=~,, 2 =,,.



Proof. Suppose/ = FR(t1) U FR(¢2). Then

t1 2, to = Ly[t1] =,., Ls[t2] =,.,isacongruence

= Lj[t1] ~up Lylt2] Lemma42
=t Spp b2 Lemma 43. O
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