
A Complete, Co-Inductive Syntactic Theory
of Sequential Control and State

Kristian Støvring
BRICS, Dept. of Comp. Science, University of Aarhus

kss@brics.dk

Soren B. Lassen
Google, Inc.

soren@google.com

Abstract
We present a new co-inductive syntactic theory,eager normal
form bisimilarity, for the untyped call-by-value lambda calculus
extended with continuations and mutable references.

We demonstrate that the associated bisimulation proof principle
is easy to use and that it is a powerful tool for proving equivalences
between recursive imperative higher-order programs.

The theory is modular in the sense that eager normal form
bisimilarity for each of the calculi extended with continuations
and/or mutable references is a fully abstract extension of eager
normal form bisimilarity for its sub-calculi. For each calculus, we
prove that eager normal form bisimilarity is a congruence and is
sound with respect to contextual equivalence. Furthermore, for the
calculus with both continuations and mutable references, we show
that eager normal form bisimilarity is complete: it coincides with
contextual equivalence.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Operational semantics; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic—Lambda cal-
culus and related systems

General Terms Languages, Theory

Keywords Bisimulation, Continuations, Mutable References

1. Introduction
Program equivalence is a fundamental concept in programming
language semantics, and new and better frameworks and techniques
for reasoning about program equivalence are continually being
developed. Nonetheless, there are still no general and easy to use
methods that capture the features and subtleties of actual programs
in languages that combine general recursion, higher-order functions
and objects, mutable state, and non-local control flow.

Denotational semantics and domain theory cover many pro-
gramming language features but straightforward models fail to cap-
ture certain important aspects of program equivalence, especially
concerning mutable state. The solutions to these “full abstraction”
problems, including game semantics, are complex.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00.

Syntactic reduction calculi and equational theories are easy to
use but they exclude many important program equivalences.

The broadest notion of program equivalence is Morris-style
contextual equivalence which equates two terms if they behave the
same in all program contexts. The quantification over all program
contexts makes it impractical to use the definition directly to prove
programs contextually equivalent.

Syntactic methods based on operational semantics—context
lemmas, applicative bisimulation, and operationally-based logi-
cal relations—generally incur modest “mathematical overhead”
and are easy to use for certain classes of program equivalences.
For instance, applicative bisimulation is very useful for proving
the equivalence of programs that output infinite data structures.
However, all these proof principles are weak for program equiva-
lences involving general higher-order functions because, somewhat
like the definition of contextual equivalence, they involve univer-
sal quantifications over all continuations, stores, and/or function
arguments.

For example, fixed-point combinators are higher-order func-
tions that make essential use of higher-order arguments. What does
it take to prove the equivalence of two different fixed-point combi-
nators? A proof obligation that involves a universal quantification
over all possible arguments to the fixed-point combinators is about
as difficult as proving that the fixed-point combinators are contex-
tually equivalent from first principles.

This example is easily solved using a different class of syntactic
theories which originate from the theories of Böhm tree equiva-
lence and Ĺevy–Longo tree equivalence. They can be presented as
bisimulation theories, callednormal form bisimulation(originally
introduced by Sangiorgi under the name “open applicative bisim-
ulation”), without explicit reference to trees. Normal form bisim-
ulation is based on symbolic evaluation of open terms to normal
forms. It does not involve any universal quantification over func-
tion arguments and is therefore, in some respects, a more powerful
proof principle for proving equivalences between recursive higher-
order functions than other operationally-based syntactic methods.
However, normal form bisimulation has only been developed for
state-lessλ-calculi and is, in general, not fully abstract.

In this article we address these shortcomings by extending eager
normal form bisimulation, a variant of normal form bisimulation
for the call-by-valueλ-calculus. We present new syntactic bisim-
ulation theories for the untyped call-by-valueλ-calculus extended
with continuations and mutable references.

1. The theories all extend eager normal form (enf) bisimulation
for the pure call-by-valueλ-calculus [19].

2. The extension with continuations, namely an untyped call-by-
value version of Parigot’sλµ-calculus [26], is based on the sec-
ond author’s normal form bisimulation theory for the untyped
λµ-calculus [21].

3. The extension with mutable references, which we call theλρ-
calculus (essentially Felleisen and Hieb’sλ-calculus with state
[8]; their “ρ-application” is a primitive in our calculus hence
we name it “λρ”), is based on bisimulations as sets of relations.
This idea of “relation-sets bisimulation” is adapted from bisim-
ulation theories for imperative calculi [13, 16] and existential
types [32].

4. Finally, we extend the theories to a combinedλµρ-calculus.

The resulting bisimulation proof principle for proving semanti-
cal equivalences between terms inherits the best properties of nor-
mal form bisimulation and relation-sets bisimulation, namely

• like other kinds of normal form bisimulation, the enf bisimula-
tion proof obligations for continuations and mutable references
require no universal quantifications over function arguments or
continuations or stores, and

• the relation-set structure represents the “possible worlds” nec-
essary to capture the behaviour of mutable references.

We demonstrate the power and ease of use of the resulting enf
bisimulation proof principle for continuations and mutable refer-
ences by proving the correctness of Friedman and Haynes’s encod-
ing of call/cc in terms of “one-shot” continuations [9]. Despite the
subtlety of their encoding and the mix of higher-order functions,
first-class continuations, and mutable references, the bisimulation
proof is remarkably straightforward, as we hope the reader will ap-
preciate.

The enf bisimulation theories for the pureλ-calculus and the ex-
tensions with continuations and/or mutable references are modular:
enf bisimilarity for each of the extended calculi is a fully abstract
extension of enf bisimilarity for its sub-calculi. This is similar to
the relationship between Felleisen and Hieb’s syntactic theories for
control and state [8] but contrasts the situation for contextual equiv-
alence because each language extension makes contextual equiva-
lence more discriminative on terms of the sub-calculi.

One of the main technical contributions of the work behind this
article is a proof that enf bisimilarity for the calculus extended with
continuations and/or mutable references is a congruence. As an im-
mediate consequence of congruence, enf bisimilarity is included in
contextual equivalence for each calculus. For the pureλ-calculus as
well as the two extensions with only continuations and only muta-
ble references, enf bisimilarity is strictly smaller than contextual
equivalence, that is, enf bisimulation is a sound but incomplete
method for proving contextual equivalence. However, for the full
calculus with both continuations and mutable references, we prove
that enf bisimilarity is fully abstract in the sense that it coincides
with contextual equivalence.

In summary, we present a complete, co-inductive syntactic the-
ory for a calculus with higher-order functions, continuations, and
mutable references, and we demonstrate the power and ease-of-use
of the bisimulation proof method for proving equivalences between
recursive programs.

Our results provide further illustration of the promise of normal
form bisimulation as a basis for syntactic theories and proof prin-
ciples, demonstrated by earlier results for other pure and extended
λ-calculi in the literature (Sangiorgi [31] and Lassen [18, 20, 21]).
However, we note one caveat: Although our theory for the com-
binedλµρ-calculus captures key functional and imperative aspects
of the programming language Scheme, it lacks constants such as
nil, cons, numerals, and arithmetic operators. These constants need
to be encoded in our calculus, e.g., using standardλ-calculus en-
codings [4], but such encodings are in general not faithful to the
constants’ equational properties. For instance, addition of values
should be commutative, up to contextual equivalence—that is, the
representations of the Scheme terms(lambda (x y) (+ x y))

and (lambda (x y) (+ y x)) in the λµρ-calculus should be
equivalent—but this fails for encodings of arithmetic in theλµρ-
calculus, hence the resulting proof principles are only sound, not
complete. There does not seem to be a satisfactory direct defini-
tion of normal form bisimulation (or B̈ohm-tree equivalence) for
untyped calculi with constants. In future joint work with Paul Blain
Levy we plan, instead, to address this shortcoming in extensions
of normal form bisimulation to typed calculi with recursive types.
This work is related to recent game models by Levy [22].

1.1 Related work

There exists a large body of work on syntactic theories and seman-
tic models (domains and games) forλ-calculi with continuations
and mutable references. We only survey a few works on syntactic
theories most closely related to the results in this article.

As mentioned in the introduction, our results build directly on
recent work on normal form bisimulation for call-by-value [19] and
theλµ-calculus [21] and on relation-sets bisimulation for existen-
tial types [32] and untyped imperativeλ-calculus [13, 16].

One particular inspiration for the work presented in this article
is the seminal research by Felleisenet al. on syntactic theories for
sequential control and state [8]. The calculi inop.cit.are enriched
with constants andδ-reduction but otherwise the state calculus is
essentially what we call theλρ-calculus in this article. The control
calculus differs from theλµ-calculus but they are comparable.
(Their relationship is analyzed by de Groote [12] and by Ariola and
Herbelin [3]. We found that it was easiest to define eager reduction
on open terms, enfs, and enf bisimilarity for theλµ-calculus.) The
syntactic theories of successiveλ-calculus extensions by Felleisen
et al. [8] are modular (conservative extensions), like our syntactic
theories. An important difference is that the syntactic theories in
op.cit. are inductive in the sense that all equations are derived
inductively from equational axioms and inference rules, whereas
our bisimulation theories areco-inductiveand therefore equate
many more programs.

Another body of related work is Mason and Talcott’s CIU
(“closed instantiations of uses”) characterizations of contextual
equivalence for functional languages with mutable references and
continuations [23, 33]. (The context lemmas for theλµ-calculus by
Bierman [5] and by David and Py [6] are essentially CIU character-
izations.) The CIU equivalences are complete syntactic theories but
the resulting proof methods are in many cases weaker than normal
form bisimulation.

Most co-inductive syntactic programming language theories in
the literature are variants and extensions of Abramsky’s applica-
tive bisimulation [1]. However, there are no fully abstract applica-
tive bisimulation theories for generalλ-calculi with continuations
and/or mutable references.

Ritter and Pitts [30] define a form of applicative bisimilarity for
a functional language with mutable references. It is sound but not
complete. In fact, it does not equate many of the well-known, subtle
contextual equivalences between programs with state [25].

Wand and Sullivan [34] define a CPS language with mutable
references and show that applicative bisimilarity is both sound and
complete. They use the CPS language as a semantic meta-language
and CPS translate a source language with state into the CPS lan-
guage. But they do not give an independent characterization of the
induced syntactic theory on source terms via the CPS transform.

Koutavas and Wand’s relation-sets bisimulation theory [13] is
complete for a general “direct-style” imperative calculus. How-
ever, it involves a universal quantification over closed function ar-
guments, unlike our normal form bisimulation theories.

Merro and Biasi [24] present a complete bisimulation theory
for a CPS calculus. It can be viewed as a kind of applicative

bisimulation, presented as a labelled transition system in the style
of Gordon [10], and also leads to a context lemma.

Pitts and Stark [28, 29] develop syntactic theories based on
operationally-based logical relations that address many of the sub-
tleties of contextual equivalences between programs with muta-
ble references. The relation-sets bisimulation theories for mutable
state, in general, are alternative approaches with a very different
meta-theory. For logical relations the key proof obligation is exis-
tence, whereas the key proof obligation for the bisimulation theo-
ries is congruence.

Finally, we note that the modularity of the enf bisimilarity
theories for control and state resembles the modularity of game
semantics for control and state [2, 14].

2. Eager normal form bisimulation
Let us briefly reintroduce the definition of enf bisimulation for
the pure call-by-valueλ-calculus [19]. Consider a variant of the
call-by-valueλ-calculus in which computations must be explicitly
sequenced by means of alet-construct:

VARIABLES x, y, z
VALUES v ::= x | λx. t
TERMS t ::= v | letx=t1 in t2 | v1 v2
We identify terms up to renaming of bound variables.

Reduction is defined by means of evaluation contexts:

EVALUATION CONTEXTS E ::= [] | E[letx=[] in t]
EAGER NORMAL FORMS(ENFS) e ::= v | E[x v]

(R1) E[letx=v in t] 7→ E[t[v/x]]
(R2) E[(λx. t) v] 7→ E[t[v/x]]

The reflexive-transitive closure of the reduction relation7→ is writ-
ten 7→∗. For every termt, there are two possibilities: eithert di-
vergesin the sense that there is an infinite reduction sequence start-
ing from t, or elset convergesin the sense thatt 7→∗ e for some
(unique) eager normal forme. The notationt 7→ω means thatt di-
verges. Eager normal forms are truly normal forms with respect to
reduction: they do not reduce to anything.

For a syntactic phraseφ, let FV(φ) denote the set of free vari-
ables ofφ (the formal definitions are omitted).

Definition 1. A binary relationS on terms is anenf bisimulation
if S ⊆ B(S), where

B(S) = {(t, t′) |eithert 7→ω andt′ 7→ω,
or t 7→∗ e andt′ 7→∗ e′ where(e, e′) ∈M(S)}

M(S) = {(v, v′) | (v, v′) ∈ V (S)}
∪ {(E[x v], E′[x v′]) | (E,E′) ∈ K(S) &

(v, v′) ∈ V (S)}
V (S) = {(x, x)} ∪ {(v, v′) | ∃y /∈ FV(v) ∪ FV(v′).

(v ? y, v′ ? y) ∈ S}
K(S) = {([], [])} ∪ {(E,E′) | ∃y /∈ FV(E) ∪ FV(E′).

(E ? y,E′ ? y) ∈ S}

with x ? y = x y, (λy. t) ? x = t[x/y], [] ? y = y, and
E[let y=[] in t] ? x = E[t[x/y]].

The intuition behind enf bisimulation is that two related open
terms either (1) both diverge, or (2) reduce to matching eager
normal forms whose components are again related. As an example,
define the Curry call-by-value fixed-point combinatorYv:

Ψ[f] = λg. f (λx. let z=g g in z x)

Yv = λf.Ψ[f] Ψ[f]

and the Turing call-by-value fixed-point combinatorΘv:

Ξ = λg.λf.f (λx. let z1=g g in let z2=z1 f in z2 x)

Θv = ΞΞ.

These two fixed-point combinators are enf bisimilar, i.e., there
exists an enf bisimulationS such that(Yv,Θv) ∈ S [19]. We invite
the reader to try to prove this equivalence by constructing such an
S: one starts with the singleton{(Yv,Θv)} and then iteratively adds
pairs in order to satisfy the definition of an enf bisimulation above.
(In Section 5, a similar, but more complicated, equivalence between
Yv and a store-based fixed-point combinator is shown.)
Remark.The following construction, derived from the Turing call-
by-value fixed-point combinator, is convenient for defining func-
tions by recursion: For all valuesv, v1, andv2, define

D[v1, v2] = let z1=Θv in let z2=z1 v1 in z2 v2

fix[v] = λx.D[v, x]

Thenfix[v]x 7→∗ let z=v fix[v] in z x.
Contextual equivalence is defined in the standard way. Infor-

mally, two termst and t′ are contextually equivalent if for every
many-holed term contextC[] such thatC[t] andC[t′] are closed
terms,C[t] converges if and only ifC[t′] converges.

Theorem 2 ([19]). If (t, t′) ∈ S for some enf bisimulationS, then
t andt′ are contextually equivalent.

Remark. The definition of an enf bisimulation is slightly different
from the one in the original presentation [19]. In particular, the vari-
ant defined here is equivalent to what is called an enf bisimulation
up toη in the original presentation.

In the sequel we omit the “enf” qualifier for bisimulations and
instead qualify them by calculi. We will refer to the bisimulations
for the pureλ-calculus in Definition 1 as “λ-bisimulations”.

3. Theλµ-calculus
We now extend enf bisimulation to theλµ-calculus. This extension
is new, but based on head normal form bisimulation for theλµ-
calculus [21].

VARIABLES x, y, z
NAMES a, b
VALUES v ::= x | λx. t
NAMED TERMS nt ::= [a]t
TERMS t ::= v | letx=t1 in t2 | v1 v2 | µa. nt
We identify syntactic phrases up to renaming of bound variables
and names. For a syntactic phraseφ, let FN(φ) denote the set of
free names ofφ.

Names in theλµ-calculus represent continuations. Names are
not first-class, but we will represent a namea as the first-class
value â = λx. µb. [a]x. The familiarcall/cc control operator can
be encoded in theλµ-calculus as

call/cc = λf. µa. [a]f â.

The operational semantics of theλµ-calculus is defined by a
reduction relation on named terms:

NAMED EVAL . CONTEXTS NE ::= [a][] | NE[letx=[] in t]
NAMED ENFS ne ::= [a]v | NE[x v]

(Rµ1) NE[letx=v in t] 7→ NE[t[v/x]]
(Rµ2) NE[(λx. t) v] 7→ NE[t[v/x]]
(Rµ3) NE[µa. nt] 7→ nt[NE/a]

Hereφ[NE/a] denotes capture-avoiding substitution of named eval-
uation contexts for names: for example, ifb /∈ FN(NE), then
(µb. [a]t)[NE/a] = µb.NE[t].

Definition 3. A binary relationS on namedλµ-terms is aλµ-
bisimulationif S ⊆ Bµ(S), where

Bµ(S) = {(nt, nt′) | eithernt 7→ω andnt′ 7→ω,
or nt 7→∗ ne andnt′ 7→∗ ne′

where(ne, ne′) ∈Mµ(S)}
Mµ(S) = {([a]v, [a]v′) | (v, v′) ∈ Vµ(S)}

∪ {(NE[x v],NE′[x v′]) | (NE,NE′) ∈ Kµ(S) &
(v, v′) ∈ Vµ(S)}

Vµ(S) = {(x, x)}
∪ {(v, v′) | ∃y /∈ FV(v) ∪ FV(v′).

(v ? y, v′ ? y) ∈ Tµ(S)}
Kµ(S) = {([a][], [a][])}

∪ {(NE,NE′) | ∃y /∈ FV(NE) ∪ FV(NE′).
(NE? y,NE′ ? y) ∈ Tµ(S)}

Tµ(S) = {(t, t′) | ∃a /∈ FN(t) ∪ FN(t′).
([a]t, [a]t′) ∈ S}

with [a][] ? y = [a]y and NE[letx=[] in t] ? y = NE[t[y/x]].

Definition 4. Say thatt andt′ areλµ-bisimilar, writtent hµ t
′, if

there exists aλµ-bisimulationS such that(t, t′) ∈ Tµ(S).

We show in Section 10 thatλµ-bisimilar terms are contextually
equivalent.

Recall thatâ = λx. µb. [a]x. To illustrateλµ-bisimilarity we
define the termψ = fix[P], where

P = λf. λx. µa. [a] let y=x â in f y.

The termψ takes a functionx as argument and appliesx to succes-
sive arguments

x â1 â2 . . .

until x applies one of thêai to an argumentv, in which casev
is returned as the result ofψ x. On the other hand,ψ x diverges
if x never applies any of its arguments, e.g., ifx = λy.Ω or
x = fix[λf. λy. f].
Remark. A term with the behavior ofψ cannot be expressed in
the pure call-by-valueλ-calculus. To see this, consider the two
functions

v = λy. let z=y y in Ω and v′ = λy.Ω.

whereΩ = (λx.x x)(λx.x x). They are contextually equivalent in
the pure call-by-valueλ-calculus. (This can be established using
the operational extensionality property of the pure call-by-valueλ-
calculus [7, 27], because the termlet z=v0 v0 in Ω diverges ifv0
is any closed pure value.) Butψ can tell them apart:ψ v converges
whileψ v′ diverges.

A potential optimization ofψ is the following variantψ′ which
returns straight to its final “return address” whenx applies an
argument (rather than returning from all the recursive invocations
of the recursive function):ψ′ = λx. µa. [a] fix[P′]x, where

P′ = λf. λx. let y=x â in f y

The optimization is correct up to enf bisimilarity, that is,ψ hµ ψ
′,

because

S = {([a]ψ, [a]ψ′), ([a]D[P, x], [a]µa. [a]fix[P′]x),

([b]µb. [a]x, µb. [a]x), ([a]fix[P] y, [a]fix[P′] y)}
is aλµ-bisimulation.

4. Theλρ-calculus
Theλρ-calculus is obtained from the pure call-by-valueλ-calculus
by adding constructs for allocating a number of new reference cells,

for storing a value in a reference cell, and for fetching the value
from a reference cell.

VARIABLES x, y, z
REFERENCES ı,
VALUES v ::= x | λx. t
TERMS t ::= v | letx=t1 in t2 | v1 v2 | ρs. t | ı:=v; t | !ı
STORES s ::= {ı1:=v1, . . . , ın:=vn} (ı1, . . . , ın are distinct)

Stores are identified up to reordering, and therefore a store can be
considered as a finite map from references to values. Terms are
identified up to renaming of bound variables and references: in
the termρs. t, the references in the domain ofs are considered
bound in the range ofs and int. For a syntactic phraseφ, let FR(φ)
be the set of references occurring free inφ. A syntactic phrase is
reference-closedif it contains no free references. Writedom(s) for
the domain of the stores. If s ands′ have disjoint domains,s·s′
denotes their disjoint union. Ifs = {ı:=v}·s′, let s(ı) = v and
s[ı:=v′] = {ı:=v′}·s′.

Reduction is defined onconfigurations, which are pairs(s, t)
of stores and terms such thatFR(t) ⊆ dom(s). (Configurations are
not identified up to renaming of the domains of the stores, hence a
configuration(s, t) should not be thought of as a termρs. t.)

EVALUATION CONTEXTS E ::= [] | E[letx=[] in t]
EAGER NORMAL FORMS(ENFS) e ::= v | E[x v]

(Rρ1) (s, E[letx=v in t]) 7→ (s, E[t[v/x]])
(Rρ2) (s, E[(λx. t) v]) 7→ (s, E[t[v/x]])
(Rρ3) (s, E[ρs′. t]) 7→ (s·s′, E[t]),

if (dom(s) ∪ FR(s) ∪ FR(E)) ∩ dom(s′) = ∅
(Rρ4) (s, E[ı:=v; t]) 7→ (s[ı:=v], E[t]) if ı ∈ dom(s)
(Rρ5) (s, E[!ı]) 7→ (s, E[s(ı)]) if ı ∈ dom(s)

Eager normal form bisimulation for theλρ-calculus is based on
the relation-sets bisimulation idea [13, 16, 32]. Briefly, instead of
defining a bisimulation as a single binary relation on terms, one
defines a bisimulation as aset of such relations, each associated
with a “world”: here, a pair of stores. The requirement is that if two
terms are related in a certain world, then the eager normal forms
(if any) of these two terms are related in a “future world” where
the two stores may have changed. Moreover, everything that was
related in the old world must still be related in the new world.

Now for the formal definitions. LetX,Y, Z range over finite
sets of variables and letJ range over finite sets of references. We
write X·Y for the disjoint union ofX andY . When the meaning
is clear from the context, we write a singleton set{x} as justx. We
use the same notational conventions for finite sets of references.

NotationX, J ` φ, φ′, ... means the syntactic phrasesφ, φ′, ...
have free variables inX and free references inJ . We omitX and/or
J on the left of` if it is empty.

Let R range over sets of triples(X|t, t′), more specifically
subsets ofRel(Y, J, J ′) for someY , J andJ ′, where

Rel(Y, J, J ′) =
{(X|t, t′) | X ∩ Y = ∅ & X·Y, J ` t & X·Y, J ′ ` t′}

We identify triples that differ only up to renaming of the variables
from the first componentX: in the triple(X|t, t′), the variables in
X are considered bound int andt’. A triple (∅|t, t′) where the first
component is empty is also written(|t, t′).

A term relation tupleis a quadruple(X|s, s′, R) whereX `
s, s′ andR ⊆ Rel(X, dom(s), dom(s′)). We identify term relation
tuples that differ only up to renaming of the variables from the first
componentX and up to renaming of references. LetQ range over
term relation sets, that is, sets of term relation tuples.

Definition 5. Q is aλρ-bisimulationiff Q ⊆ Bρ(Q), where

Bρ(Q) = {(X|s0, s′0, R0) |
for all (Y |t, t′) ∈ R0, either
(s0, t) 7→ω & (s′0, t

′) 7→ω, or
∃s1, s′1, e, e′, R1 ⊇ R0, X1 ⊇ X·Y.

(s0, t) 7→∗ (s1, e) & (s′0, t
′) 7→∗ (s′1, e

′) &
(e, e′) ∈Mρ(R1) & (X1|s1, s′1, R1) ∈ Q}

Mρ(R) = {(v, v′), (E[x v], E′[x v′]) |
(v, v′) ∈ Vρ(R) & (E,E′) ∈ Kρ(R)}

Vρ(R) = {(x, x)}
∪ {(v, v′) | ∃y /∈ FV(v) ∪ FV(v′).

(y|v ? y, v′ ? y) ∈ R}
Kρ(R) = {([], [])}

∪ {(E,E′) | ∃y /∈ FV(E) ∪ FV(E′).
(y|E ? y,E′ ? y) ∈ R}

Definition 6. Reference-closedλρ-termst andt′ areλρ-bisimilar,
written t hρ t

′, iff there exists aλρ-bisimulationQ which contains
a quadruple(X|{}, {}, R) with (|t, t′) ∈ R.

We show in Section 9 thatλρ-bisimilarity is a congruence.
Therefore, as explained in Section 10,λρ-bisimilar terms are con-
textually equivalent.

5. Example: imperative fixed-point combinator
It is well-known that a store that may contain functional values can
be used to define functions by recursion. Abbreviate

Π[f, ı] = λx. let z1=!ı in let z2=f z1 in z2 x

and consider the term:

Yρ = λf. ρ{ı:=Π[f, ı]}. f Π[f, ı].

Yρ can be used to define functions by recursion in theλρ-calculus.
The technique of defining recursive functions by means of a “cir-
cular store” is due to Landin [15].

We now show that the fixed-point combinatorYρ isλρ-bisimilar
to the Curry call-by-value fixed-point combinatorYv (defined in
Section 2 above). This equivalence can be shown directly from the
definition of aλρ-bisimulation, but it is more convenient to apply
the following general lemma:

Lemma 7. Define ρ̂s. t = ρs. t for s 6= {}, and ρ̂{}. t = t.
Assume that there exists aλρ-bisimulation containing a tuple
(X|s, s′, R) where(|t, t′) ∈ R, and letx1, . . . , xn ∈ X. Then
λx1. . . λxn. ρ̂s. t hρ λx1. . . λxn. ρ̂s

′. t′.

The lemma follows from Corollary 36 in Section 9.

Proposition 8. Yρ hρ Yv.

Proof. By definition,Yρ = λf. ρ{ı:=Π[f, ı]}. f Π[f, ı] andYv =
λf.Ψ[f] Ψ[f]. The proof therefore consists of constructing aλρ-
bisimulationQ containing a tuple({f}|{ı:=Π[f, ı]}, {}, R) where
(|f Π[f, ı], Ψ[f] Ψ[f]) ∈ R, and then using Lemma 7.

Instead of specifyingQ right away, we show how one would
in practice constructQ: by starting from the two configura-
tions ({ı:=Π[f, ı]}, f Π[f, ı]) and({},Ψ[f] Ψ[f]) and iteratively
adding tuples in order to satisfy the conditions in the definition of
a λρ-bisimulation. In that way, the main part of the equivalence
proof consists in a number of calculations of reduction sequences.

AbbreviateD[f] = λx. let z=Ψ[f] Ψ[f] in z x. Now calcu-
late:

({ı:=Π[f, ı]}, f Π[f, ı]) 7→∗ ({ı:=Π[f, ı]}, f Π[f, ı])

({},Ψ[f] Ψ[f]) 7→∗ ({}, f D[f]).

The two resulting eager normal forms aref Π[f, ı] and f D[f].
The variables in function position match (both aref), so consider
the arguments,Π[f, ı] andD[f]. Since

Π[f, ı] = λx. let z1=!ı in let z2=f z1 in z2 x

and

D[f] = λx. let z=Ψ[f] Ψ[f] in z x,

the definition of aλρ-bisimulation indicates that one should con-
tinue by reducing the bodies of these twoλ-abstractions:

({ı:=Π[f, ı]}, let z1=!ı in let z2=f z1 in z2 x)

7→∗ ({ı:=Π[f, ı]}, let z2=f Π[f, ı] in z2 x)

and

({}, let z=Ψ[f] Ψ[f] in z x) 7→∗({}, let z=f D[f] in z x)

= ({}, let z2=f D[f] in z2 x)

The resulting two eager normal forms are

let z2=f Π[f, ı] in z2 x and let z2=f D[f] in z2 x.

Again, the variables in function position match (both aref), and
the evaluation contexts are identical (both arelet z2=[] in z2 x).
The function arguments,Π[f, i] andD[f], areλ-abstractions, and
therefore one should continue reducing the bodies of these two
λ-abstractions. But this is exactly what was already done in the
previous two reduction sequences.

Using the results of these calculations it is possible to construct
the required bisimulationQ. First, define

R = {(|f Π[f, ı], Ψ[f] Ψ[f]),

(x| let z1=!ı in let z2=f z1 in z2 x,
let z=Ψ[f] Ψ[f] in z x)}.

Let x1, x2, . . . be distinct variables, and define, for everyn ≥ 0,

Sn = {(z2|z2 xk, z2 xk) | 1 ≤ k ≤ n}.

Finally, defineQ as the set of all tuples

({f, x1, . . . , xn}|{ı:=Π[f, ı]}, {}, R ∪ Sn)

wheren ≥ 0. ThenQ is aλρ-bisimulation, as can be verified using
the calculations above.

Note thatQ contains the tuple({f}|{ı:=Π[f, ı]}, {}, R) where
(|f Π[f, ı], Ψ[f] Ψ[f]) ∈ R. Therefore, Lemma 7 implies that
Yρ hρ Yv.

6. Theλµρ-calculus
Theλµρ-calculus combines the control aspects of theλµ-calculus
with the state aspects of theλρ-calculus. The definition ofλµρ-
bisimilarity is a natural combination of the definitions ofλµ-
bisimilarity and ofλρ-bisimilarity. However, unlike the cases for
the calculi considered previously in the article,λµρ-bisimilarity
is not only contained in contextual equivalence, it coincides with
contextual equivalence, as will be shown in Section 10.

VARIABLES x, y, z
NAMES a, b
REFERENCES ı,
VALUES v ::= x | λx. t
NAMED TERMS nt ::= [a]t
TERMS t ::= v | letx=t1 in t2 | v1 v2 | µa. nt |

ρs. t | ı:=v; t | !ı

STORES s ::= {ı1:=v1, . . . , ın:=vn}

Reduction is defined onconfigurations, which are now pairs(s, nt)
of stores and named terms such thatFR(nt) ⊆ dom(s).

NAMED EVAL . CONTEXTS NE ::= [a][] | NE[letx=[] in t]
NAMED ENFS ne ::= [a]v | NE[x v]

(Rµρ1) (s,NE[letx=v in t]) 7→ (s,NE[t[v/x]])
(Rµρ2) (s,NE[(λx. t) v]) 7→ (s,NE[t[v/x]])
(Rµρ3) (s,NE[µa. nt]) 7→ (s, nt[NE/a])
(Rµρ4) (s,NE[ρs′. t]) 7→ (s·s′,NE[t]),

if (dom(s) ∪ FR(s) ∪ FR(NE)) ∩ dom(s′) = ∅
(Rµρ5) (s,NE[ı:=v; t]) 7→ (s[ı:=v],NE[t]) if ı ∈ dom(s)
(Rµρ6) (s,NE[!ı]) 7→ (s,NE[s(ı)]) if ı ∈ dom(s)

NowX,Y, Z range over finite sets of variables and names. Let
NRrange over sets of triples(X|nt, nt′), more specifically subsets
of NRel(Y, J, J ′) for someY , J andJ ′, where

NRel(Y, J, J ′) =
{(X|nt, nt′) | X ∩ Y = ∅ &X·Y, J ` nt &X·Y, J ′ ` nt′}

We identify triples that differ only up to renaming of the variables
and names from the first componentX.

A named term relation tupleis a quadruple(X|s, s′,NR) where
X ` s, s′ and NR ⊆ NRel(X, dom(s), dom(s′)). We identify
named term relation tuples that differ only up to renaming of
the variables and names from the first componentX and up to
renaming of references. Anamed term relation setis a set of named
term relation tuples. LetNQ range over named term relations sets.

Definition 9. NQ is aλµρ-bisimulationiff NQ⊆ Bµρ(NQ), where

Bµρ(NQ) = {(X|s0, s′0,NR0) |
for all (Y |nt, nt′) ∈ NR0, either
(s0, nt) 7→ω & (s′0, nt

′) 7→ω, or
∃s1, s′1, ne, ne′,NR1 ⊇ NR0, X1 ⊇ X·Y.

(s0, nt) 7→∗ (s1, ne) &
(s′0, nt

′) 7→∗ (s′1, ne
′) &

(ne, ne′) ∈Mµρ(NR1) &
(X1|s1, s′1,NR1) ∈ NQ}

Mµρ(NR) = {([a]v, [a]v′), (NE[x v],NE′[x v′]) |
(v, v′) ∈ Vµρ(NR) & (NE,NE′) ∈ Kµρ(NR)}

Vµρ(NR) = {(x, x)}
∪ {(v, v′) | ∃y /∈ FV(v) ∪ FV(v′).

∃a /∈ FN(v) ∪ FN(v′).
(a·y|[a](v ? y), [a](v′ ? y)) ∈ NR}

Kµρ(NR) = {([a][], [a][])}
∪ {(NE,NE′) | ∃y /∈ FV(NE) ∪ FV(NE′).

(y|NE? y,NE′ ? y) ∈ NR}
Definition 10. Reference-closed named termsnt andnt′ areλµρ-
bisimilar, writtennt hµρ nt

′, iff there exists aλµρ-bisimulation
NQ which contains a quadruple(X|{}, {},NR) with (|nt, nt′) ∈
NR. Reference-closed termst and t′ are λµρ-bisimilar, written
t hµρ t′, iff there exists aλµρ-bisimulationNQ which contains
a quadruple(X|{}, {},NR) with (t, t′) ∈ Tµρ(NR), where

Tµρ(NR) = {(t, t′) | ∃a /∈ FN(t) ∪ FN(t′). (a|[a]t, [a]t′) ∈ NR}.
We show in Section 9 thatλµρ-bisimilarity is a congruence.

7. Example: one-shot continuations
As an extended example, we show the correctness of Friedman
and Haynes’s encoding of call/cc in terms of “one-shot continua-
tions” [9].

A one-shot continuation is a continuation which may be applied
at most once. Friedman and Haynes showed that, perhaps surpris-
ingly, call/cc can be encoded in terms of its restricted one-shot vari-
ant. They did this by exhibiting an “extraordinarily difficult pro-
gram” [9, p.248] together with an informal equivalence argument.

We confirm the correctness of this program by a formal proof us-
ing the enf bisimulation method. The equivalence proof below can
be viewed as a formalization of Friedman and Haynes’s informal
argument.

One cannot directly use theλµρ-calculus to prove correctness
of this encoding of call/cc, since theλµρ-calculus does not contain
one-shot continuations as a primitive. Instead, we define one-shot
continuations in terms of unrestricted continuations using another,
but simpler, construction due to Friedman and Haynes. We then
show the correctness of the encoding of call/cc by means of one-
shot continuations relative to this encoding of one-shot continua-
tions.

First, we need to encode a conditional operator in theλµρ-
calculus. Since the evaluation order in theλµρ-calculus is call-by-
value, the encoding is done using “thunks”:

T = λx. λy. x I

F = λx. λy. y I

if[t1, t2, t3] = let z1=t1in

let z2=z1 (λz. t2)in

z2(λz. t3)

whereI = λx. x, and wherez1 andz2 are not free int1, t2, or t3.
Recall the definition of call/cc:

call/cc = λf. µa. [a]f â

whereâ = λx. µb. [a]x. Now define the one-shot variant of call/cc:

call/cc1 = λf. (call/cc
(λk. ρ{ı:=T}. f (λx. if[!ı, (ı:=F; k x),Ω])))

The requirement that every captured continuationk is applied at
most once is enforced by means of the local referenceı.

Now for the encoding of unrestricted continuations by means of
one-shot continuations. For every reference, define

Φ = λg. λf. let y=call/cc1
(λk. (:=k; f (λx. let y=!

in y x)))
in call/cc1 (λk′. g (λk.k′y)).

Then define

call/cc∗ = λf. ρ{ :=I}. fix[Φ] f.

(See the original presentation of the encoding [9] for an informal
explanation of how it works.)

The aim of this section is to show that

call/cc hµρ call/cc∗.
It follows thatcall/cc andcall/cc∗ are contextually equivalent, and
hence thatcall/cc∗ is as an encoding ofcall/cc by means of one-
shot continuations.

As in Section 5, the equivalence could be shown directly from
the definition of a bisimulation, but it is more convenient to use the
following generalization of Lemma 7 to theλµρ-calculus:

Lemma 11. Define ρ̂s. t = ρs. t for s 6= {}, and ρ̂{}. t = t.
Assume that there exists aλµρ-bisimulation containing a tuple
(X|s, s′,NR) where(|[a]t, [a]t′) ∈ NR, and letx1, . . . , xn ∈ X.
If a ∈ X does not occur free in any ofs, s′, t, and t′, then
λx1. . . λxn. ρ̂s. t hµρ λx1. . . λxn. ρ̂s

′. t′.

The lemma follows from Corollary 36 in Section 9.

Proposition 12. call/cc hµρ call/cc∗.

Proof. By definition, call/cc = λf. µa. [a]f â and call/cc∗ =
λf. ρ{ :=I}. fix[Φ] f . We therefore construct a bisimulation con-

taining a tuple

(f ·a|{}, {:=I},NR)

where(|[a]µa. [a]f â, [a]fix[Φ] f) ∈ NR. The conclusion then
follows from Lemma 11.

The main part of the proof consists in a number of calculations
of reduction sequences. One starts from the two configurations
({}, [a]µa. [a]f â) and({:=I}, [a]fix[Φ] f) and iteratively tries
to add tuples in order to satisfy the conditions in the definition of a
λµρ-bisimulation.

First, define the named evaluation context

NE0 = [a] letx=[] in call/cc1 (λk′. fix[Φ] (λk.k
′x))

and for every referenceı, define the term

C[ı] = λx. if[!ı, (ı:=F ; (λx. µb.NE0[x])x),Ω].

Now calculate, for any stores and any valuev:

(1) (s·{:=v}, [a]fix[Φ] f)
7→∗

(s·{:=C[ı], ı:=T},NE0[f (λx. let y=! in y x)]).

(2) (s·{:=C[ı], ı:=T}, [b] let y=! in y x)
7→∗

(s·{:=C[ı], ı:=F}, [a]call/cc1 (λk′. fix[Φ] (λk.k
′x))).

(3) (s·{:=C[ı]}, [a]call/cc1 (λk′. fix[Φ] (λk.k
′x)))

7→∗

(s·{:=C[ı′], ı0:=F, ı′:=T}, [a]x).

These calculations dictate the following construction of aλµρ-
bisimulation: let

NR0 ={(|[a]µa. [a]f â, [a]fix[Φ] f),

(y | [a]y, [a]call/cc1 (λk′. fix[Φ] (λk.k
′y))),

(y·b | [b]µb.[a]y, [b] let z=! in z y)}
and letNQ consist of the tuple

(f ·a|{}, {:=I}, {(|[a]µa. [a]f â, [a]fix[Φ] f)})
together with all named term relation tuples of the form

(X|{}, s,NR0)

where{f, a} ⊆ X, wheres is a store such that ∈ dom(s), and
where there exists anı ∈ dom(s) such that

s() = C[ı] and s(ı) = T.

ThenNQ is aλµρ-bisimulation, as can be verified using the calcu-
lations (1)-(3) above. By Lemma 11,call/cc hµρ call/cc∗.

8. Enf bisimulation for terms with free references
So far in this article, eager normal form bisimulation has been
used as a proof principle for proving equivalence ofreference-
closedterms. In this section it is shown how to extend eager normal
form bisimulation to terms which may contain free references.
Besides allowing one to prove equivalences about terms with free
references, this extension is also used in the congruence proof for
enf bisimilarity in Section 9. As a part of that proof, it must be
shown that the following holds: Ift hµρ t′ andv hµρ v′, then
ρ{ı:=v}. t hµρ ρ{ı:=v′}. t′ andı:=v; t hµρ ı:=v

′; t′. Here the
referenceı will in general occur free in the termst, t′, v, andv′,
and, of course, in the termsı:=v; t andı:=v′; t′.

The modification needed to take free references into account
can be explained as follows. Suppose that the free references of the
termst andt′ are contained inJ , and that one wants to prove thatt
andt′ are equivalent. According to the previous definition, one re-
quirement is that[a]t and[a]t′ should either both diverge, or reduce
to matching named eager normal forms. But one cannot reduce[a]t

and[a]t′ without providing values for the references inJ , i.e., the
references which are free int and t′. The solution is to initialize
the references inJ with a number of fresh variablesz

∈J . This
initialization takes care of the “input” aspect of the free references;
the “output” aspect is taken care of by an extra requirement: if both
({ :=z

∈J}, [a]t) and({ :=z
∈J}, [a]t′) reduce to named ea-

ger normal forms, then in the two resulting stores, the references
from J must contain values which are pairwise related.

Now for the formal definitions. Named term relation sets are
generalized as follows: let

NUJ = {(X|s, s′,NR) |
X, J ` s, s′ &
NR⊆ NRel(X, J ·dom(s), J ·dom(s′))}.

We identify quadruples that differ only up to renaming of the vari-
ables and names from the first componentX and up to renaming of
references fromdom(s) anddom(s′). Notice thatNU∅ = NU.

Definition 13. NQ⊆ NUJ is aJ-bisimulationiff NQ⊆ BJ(NQ),
where

BJ(NQ) =
{(X|s0, s′0,NR0) ∈ NUJ |
for all distinct variableszı

ı∈J

and all(Y |nt, nt′) ∈ NR0, either
({ı:=zı

ı∈J}·s0, nt) 7→ω & ({ı:=zı
ı∈J}·s′0, nt′) 7→ω, or

∃ne, ne′, (vı, v
′
ı)

ı∈J , s1, s
′
1,NR1 ⊇ NR0, X1 ⊇ X·Y ·zı

ı∈J .
({ı:=zı

ı∈J}·s0, nt) 7→∗ ({ı:=vı
ı∈J}·s1, ne) &

({ı:=zı
ı∈J}·s′0, nt′) 7→∗ ({ı:=v′ı

ı∈J}·s′1, ne′) &
(ne, ne′) ∈Mµρ(NR1) &
∀ı ∈ J. (vı, v

′
ı) ∈ Vµρ(NR1) &

(X1|s1, s′1,NR1) ∈ NQ}

Say that two termst and t′ are J-bisimilar if there exists a
J-bisimulation containing a tuple(X|{}, {},NR) where(t, t′) ∈
Tµρ(NR).

We now generalize the previously given definition of enf bisim-
ilarity for reference-closed terms:

Definition 14. Let t andt′ beλµρ-terms. Say thatt andt′ areλµρ-
bisimilar, writtent hµρ t

′, if there exists a finite setJ of references
such thatt andt′ areJ-bisimilar.

Example 15. It is easy to show that

let z=! in (:=I; :=z; f x) hµρ f x

while on the other hand

let z=! in (:=I; let y=f x in (:=z; y)) 6hµρ f x.

The proofs of this equivalence and this non-equivalence illustrate
a basic sequentiality property of the calculi considered in this ar-
ticle: in order for two terms to be equivalent, it is enough that the
contents of the free references are equivalent at certain “synchro-
nization points”, but in-between these points the contents of the
free references can be modified arbitrarily.

Proposition 16. LetJ0 andJ be finite sets of references such that
J0 ⊆ J . Any two terms which areJ0-bisimilar are alsoJ-bisimilar.

9. Congruence
This section contains an outline of the proof thatλµρ-bisimilarity
is a congruence: it is an equivalence relation which is furthermore
compatible. A binary relationS on terms and named terms of the
λµρ-calculus iscompatibleif it is closed under the term formation
rules of theλµρ-calculus. For example, ift1 S t′1 and t2 S t′2,
then also(letx=t1 in t2) S (letx=t′1 in t′2), and ifnt S nt′, then
µa. nt S µa. nt′. The straightforward formal definition is omitted.

Proposition 17. For every finite setJ of references, there exists a
greatestJ-bisimulationBJ .

Proof. The definition ofBJ immediately implies that the union of
an arbitrary family ofJ-bisimulations is also aJ-bisimulation.
In particular, the union of allJ-bisimulations is the greatest
J-bisimulation.

At this point it is useful to change the definitions of aλµρ-
bisimulation and of aJ-bisimulation slightly: in those definitions,
replace the operatorsVµρ andKµρ with V ′

µρ andK′
µρ:

V ′
µρ(NR) = {(v, v′) | ∃y /∈ FV(v) ∪ FV(v′).

∃a /∈ FN(v) ∪ FN(v′).
(a·y|[a]v y, [a]v′ y) ∈ NR}.

K′
µρ(NR) = {(NE,NE′) | ∃y /∈ FV(NE) ∪ FV(NE′).

(y|NE[y],NE′[y]) ∈ NR}.

These modifications do not change the relation ofλµρ-bisimilarity;
in fact, the greatestJ-bisimulation is unchanged. The two operators
V ′

µρ andK′
µρ are more convenient in the congruence proof below,

while the other two operators are more convenient when usingλµρ-
bisimulation as a proof principle.

We first show thatλµρ-bisimilarity is an equivalence relation.

Definition 18. Let NQ⊆ NUJ .

1. NQ is closed under weakeningif whenever(X0|s, s′,NR) ∈
NQandX0 ⊆ X for some finite setX of names and variables,
also(X|s, s′,NR) ∈ NQ.

2. NQ is closed under context extrusionif (X|s, s′,NR) ∈ NQ
and (Z1·Z2|nt, nt′) ∈ NR imply that there existsNR′ ⊇
NR∪ {(Z2|nt, nt′)} such that(X·Z1|s, s′,NR′) ∈ NQ.

Lemma 19. The greatestJ-bisimulation is closed under weaken-
ing and context extrusion.

Lemma 20. λµρ-bisimilarity is an equivalence relation.

Proof sketch.Reflexivity and symmetry follow easily from the def-
inition of BJ . As for transitivity, assume thatt hµρ t′ and that
t′ hµρ t

′′; we must show thatt hµρ t
′′ (and similarly for named

terms). Proposition 16 implies that there exists someJ such thatt
andt′ areJ-bisimilar andt′ andt′′ areJ-bisimilar. Now consider
a general composition construction on named term relation sets.
Given NR1 ⊆ NRel(Y, J, J1) andNR2 ⊆ NRel(Y, J, J2), define
their composition as

NR1; NR2 = {(X|nt1, nt2) | ∃nt.(X|nt1, nt) ∈ NR1 &
(X|nt, nt2) ∈ NR2},

and givenNQ1,NQ2 ⊆ NUJ , define

NQ1; NQ2 = {(X|s1, s2,NR1; NR2) |
∃s.(X|s1, s,NR1) ∈ NQ1 &

(X|s, s2,NR2) ∈ NQ2}.
Then the following property holds: ifNQ1 and NQ2 are J-
bisimulations closed under weakening, then so isNQ1; NQ2.

It remains to show thatλµρ-bisimilarity is compatible. The
proof of this fact is structured as follows:

• First, we show that a restricted variant ofλµρ-bisimilarity is
substitutivein a sense defined below. (The restricted variant
does not validate certain common extensionality rules for call-
by-value calculi.)

• Second, we use a syntactic translation to show that fullλµρ-
bisimilarity is substitutive. It follows thatλµρ-bisimilarity is
compatible.

9.1 Substitutions

A substitutionis a finite mapσ with a domain consisting of vari-
ables and names, and such thatσ maps each variable in its domain
to a λµρ-calculus value, and each name in its domain to aλµρ-
calculus named evaluation context. Letσ range over substitutions.
Whenφ is a syntactic phrase (store, value, term, or named term),
φσ denotes the result of “carrying out the substitution”σ onφ (we
omit the formal definitions). Also, define

NR(σ, σ′) = {(Z|ntσ, nt′σ′) | (Z|nt, nt′) ∈ NR}

(where the variables and names occurring free in the ranges ofσ
andσ′ are not inZ).

Let dom(σ) denote the domain ofσ. Say that

X ` σ Σ(NR) σ′ : Y

whendom(σ) = dom(σ′) = Y , and:

1. For every variablex ∈ Y , (σ(x), σ′(x)) ∈ V ′
µρ(NR).

2. For every namea ∈ Y , (σ(a), σ′(a)) ∈ K′
µρ(NR).

3. The free variables and names in the ranges ofσ and σ′ are
contained inX.

Say that two substitutionsσ andσ′ areλµρ-bisimilar (notation:
σ hµρ σ′) if there exists aJ-bisimulation containing a tuple
(X · Y |{}, {},NR) such thatX ` σ Σ(NR) σ′ : Y . In the
next sections we show thatλµρ-bisimilarity is substitutivein the
following sense:

1. If t hµρ t
′ andσ hµρ σ

′, thentσ hµρ t
′σ′.

2. If nt hµρ nt
′ andσ hµρ σ

′, thenntσ hµρ nt
′σ′.

9.2 Non-η bisimulation

In order to show thatλµρ-bisimilarity is substitutive, we first
show the analogous result for a certain restricted variant ofλµρ-
bisimilarity. The variation consists in a change in the definition of
the operatorsV andK (which are used to define relations on values
and named evaluation contexts, respectively).

Definition 21. Let NRbe a named term relation.

M†(NR) = {([a]v, [a]v′), (NE[x v],NE′[x v′]) |
(v, v′) ∈ V †(NR) & (NE,NE′) ∈ K†(NR)}

V †(NR) = {(x, x) | x is a variable}
∪ {(λx. t, λx. t′) | ∃a /∈ FN(t) ∪ FN(t′).

(x·a|[a]t, [a]t′) ∈ NR}
K†(NR) = {([a][], [a][]) | a is a name}

∪ {(NE[letx=[] in t],NE′[letx=[] in t′]) |
x /∈ FV(NE) ∪ FV(NE′) &
(x|NE[t],NE′[t′]) ∈ NR}

Definition 22.

1. For every named term relation setNQ⊆ NUJ , the named term
relation setB†

J(NQ) is defined in the same way asBJ(NQ),
except thatM† andV † are used instead ofMµρ andVµρ.

2. NQ is anon-η J-bisimulationif NQ⊆ B†
J(NQ).

3. Two reference-closedλµρ-termst and t′ arenon-η bisimilar
(notation:t h† t′) if there exist a finite set of referencesJ and
a non-η J-bisimulation containing a tuple(X|{}, {},NR) such
that (t, t′) ∈ Tµρ(NR). Non-η bisimilarity of named terms is
defined similarly.

Remark.The reason for the name “non-η” is that non-η bisimilarity
does not satisfy two common extensionality rules for call-by-value

calculi, namely theηv-rule and theletη-rule: λx. y x 6h† y and
(letx=y z in x) 6h† y z.

Let B†J be the greatest non-η J-bisimulation. The key to show-
ing that non-η bisimilarity is substitutive is to show thatB†J is
closed under substitutionsin the sense defined next.

Definition 23.

1. For everyNQ⊆ NUJ , let

F †(NQ) = {(X|sσ, s′σ′,NR(σ, σ′)) |
∃Y. (X·Y |s, s′,NR) ∈ NQ &

X ` σ Σ†(NR) σ′ : Y }

whereΣ†(NR) is defined in the same way asΣ(NR), except that
V † andK† are used in place ofV ′

µρ andK′
µρ in the definition.

2. A named term relation setNQ⊆ NUJ is closed under substitu-
tions if F †(NQ) ⊆ NQ.

We now proceed to show that for everyJ , the greatest non-η
J-bisimulation is closed under substitutions. Define thesubstitutive
closureof NQ as

S†(NQ) =
[

n<ω

(F †)n(NQ).

It is the least fixed point ofF † containingNQ.

Main Lemma. Let NQ⊆ NUJ be a non-η J-bisimulation which
is closed under context extrusion. Let(X|s, s′,NR) ∈ (F †)n(NQ)
and(Z|nt, nt′) ∈ NR and(v, v

′
) ∈ V †(NR) for all ∈ J .

1. Assume that({:=v
∈J}·s, nt) 7→? ({:=w

∈J}·s1, ne1) in
m or fewer steps. Then there existX1 ⊇ X·Z, s′1, ne′1,w′

∈J ,

and NR1 ⊇ NR such that

({:=v′∈J
 }·s′, nt′) 7→? ({:=w′

∈J}·s′1, ne′1),

(X1|s1, s′1,NR1) ∈ S†(NQ), (ne1, ne
′
1) ∈ M†(NR1), and

(w, w
′
) ∈ V †(NR1) for all ∈ J .

2. Conversely, assume that

({:=v′∈J
 }·s′, nt′) 7→? ({:=w′

∈J}·s′1, ne′1)

in m or fewer steps. Then there existX1 ⊇ X·Z, s1, ne1,
w

∈J , and NR1 ⊇ NR such that

({:=v
∈J}·s, nt) 7→? ({:=w

∈J}·s1, ne1)
etc.

Proof sketch.By induction on the pairs(m,n), ordered lexico-
graphically.

Corollary 24. The greatest non-η J-bisimulationB†J is closed
under substitutions.

Proof sketch.The Main Lemma implies that

(F †)n(B†J) ⊆ B†
J(S†(B†J))

for all n ≥ 0. By definition of S† and the fact that non-η
bisimulations are closed under unions,S†(B†J) ⊆ B†

J(S†(B†J)).
This means thatS†(B†J) is a non-η J-bisimulation, and there-
fore F †(B†J) ⊆ S†(B†J) ⊆ B†J , sinceB†J is the largest non-η
J-bisimulation.

9.3 Non-η bisimilarity is substitutive

In order to show that non-η bisimilarity is substitutive, one needs
the following construction for combining named term relation sets:

Definition 25. GivenNQ1,NQ2 ⊆ NUJ , define

NQ1 + NQ2 = {(X|s1·s2, s′1·s′2,NR1 ∪ NR2) |
(X|s1, s′1,NR1) ∈ NQ1 &
(X|s2, s′2,NR2) ∈ NQ2 &
dom(s1) ∩ dom(s2) =
dom(s′1) ∩ dom(s′2) = ∅}.

Lemma 26. If NQ1 and NQ2 are non-η J-bisimulations closed
under weakening, then so is NQ1 + NQ2.

Corollary 27. The greatest non-η J-bisimulationB†J satisfies that
B†J = B†J + B†J .

Finally, non-η bisimilarity is substitutive:

Theorem 28.

1. If t h† t′ andσ h† σ′, thentσ h† t′σ′.
2. If nt h† nt′ andσ h† σ′, thenntσ h† nt′σ′.

Proof sketch.We show the second implication—the first is com-
pletely similar. Assume thatnt h† nt′ andσ h† σ′, and letJ be
the set of free references innt, nt′, σ, andσ′. Then the great-
est non-η J-bisimulationB†J contains a tuple(X1|{}, {},NR1)
such that(|nt, nt′) ∈ NR1 and a tuple(X2 · Y |{}, {},NR2)
such thatX2 ` σ Σ†(NR2) σ

′ : Y . Then by Corollary 27,B†J
also contains the tuple(X1 ∪ X2 ∪ Y |{}, {},NR1 ∪ NR2). Fi-
nally, sinceB†J is closed under substitutions, it also contains the
tuple ((X1 \ Y) ∪ X2|{}, {},NR1(σ, σ

′) ∪ NR2(σ, σ
′)) where

(|ntσ, ntσ′) ∈ NR1(σ, σ
′). Hencentσ h† nt′σ′.

9.4 λµρ-bisimilarity is substitutive

The fact thatλµρ-bisimilarity is substitutive can be derived from
the analogous result for non-η bisimilarity, Theorem 28, by means
of a syntactic translation involving an “infiniteη-expansion” com-
binatorH.

Fix a finite set of referencesJ = {1, . . . n}. For every value
v and every termt, define the term

app[v, t] = letx1=!1 in . . . letxn=!n in
let y1=v x1 in . . . let yn=v xn in
(1:=y1; . . . n:=yn; t)

(wherex1, . . .xn, y1, . . . ,yn are not free inv or t). The operational
behavior ofapp[v, t] is to “applyv to every reference inJ” and then
continue according tot. Now define

H0 = λz.λf.λx.let y1=z x in
app[z, let y2=f y1 in app[z, z y2]]

H = fix[H0].

The combinatorH originates from a generalization of a “syntactic
minimal invariance” equation [17, 29].

Also, for every valuev and every named evaluation contextNE,
define

G[v] = λx. let y1=Hx in
app[H, let y2=v y1 in app[H,H y2]]

G[NE] = NE[letx=[] in app[H,Hx]].

Definition 29.

1. For every termt, let t‡ be the result of substitutingG[x] for
every free variablex in t, and substitutingG[[a][]] for every
free namea in t. For every named termnt, definent‡ similarly.

2. For every termt, define

t† = app[H, letx=t‡ in app[H,Hx]].

3. For every named termnt = [a]t, definent† = [a]t†.

Using the above syntactic constructs,λµρ-bisimilarity can be
characterized in terms of non-η bisimilarity:

Proposition 30. Let the free references oft, t′, v, and v′ be
contained inJ .

1. t hµρ t
′ iff t† h† t′†.

2. v hµρ v
′ iff G[v‡] h† G[v′‡].

3. nt hµρ nt
′ iff nt† h† nt′†.

If v is a value such that the free references ofv are contained in
J , thenv hµρ G[v] (but in generalv 6h† G[v]). As will be shown
next, a more general version of that property holds.

Definition 31. The binary relationR on terms, named evaluation
contexts, and named terms is defined inductively by means of the
inference rules in Figure 1.

t R t
v R v′

v R G[v′]

t R t′

λx. t R λx. t′

v1 R v′1 v2 R v′2

v1 v2 R v′1 v
′
2

v R v′ t R t′

(ı:=v; t) R (ı:=v′; t′)

t R t′ ∀ ∈ J0.s() R s′() dom(s) = dom(s′) = J0,
J0 ∩ J = ∅ρs. t R ρs′. t′

nt R nt′

µa. nt R µa. nt′ NER NE
NER NE′

NER G[NE′]

t R t′ NER NE′

NE[letx=[] in t] R NE′[letx=[] in t′]

NER NE′ t R t′

NE[t] R NE′[t′]

Figure 1. The relationR.

Two storess and s′ are related byR if they have the same
domainJ0 and ifs() R s′() for all ∈ J0.

Proposition 32. LetJ ′ ⊆ J . The named term relation set

{(X|s, s′,NR) ∈ NUJ′ |
s R s′ & NR⊆ {(Z|nt, nt′) | nt R nt′}}

is aJ ′-bisimulation.

In particular, takingJ ′ = J :

Corollary 33. Let the free references oft, t′, nt, and nt′ be
contained inJ .

1. t R t′ impliest hµρ t
′.

2. nt R nt′ impliesnt hµρ nt
′.

It follows thatλµρ-bisimilarity is substitutive:

Theorem 34.

1. If t hµρ t
′ andσ hµρ σ

′, thentσ hµρ t
′σ′.

2. If nt hµρ nt
′ andσ hµρ σ

′, thenntσ hµρ nt
′σ′.

Proof sketch.As a simple example, assume thatt hµρ t′ and
v hµρ v′; it must be shown thatt[v/x] hµρ t′[v

′
/x]. By Corol-

lary 33, t[v/x] hµρ t[G[G[v]]/x]. Hence by Proposition 30 and the
fact that non-η bisimilarity is substitutive:

(t[v/x])† h† (t[G[G[v]]/x])† = t†[G[v‡]/x]

h† t′†[G[v′‡]/x]

h† (t′[v
′
/x])†.

By Proposition 30 again,t[v/x] hµρ t
′[v

′
/x].

9.5 λµρ-bisimilarity is a congruence

Now it is shown thatλµρ-bisimilarity is compatible, using the fact
that it is substitutive.

Proposition 35. BJ = BJ + BJ .

Corollary 36. Let FR(nt)∪FR(nt′) ⊆ J , and lety
∈J be distinct

variables not free innt or nt′. Suppose that

({:=y
∈J}, nt) 7→∗ ({:=v

∈J}·s1, ne1),

({:=y
∈J}, nt′) 7→∗ ({:=v′

∈J}·s′1, ne′1),

and (X1|s1, s′1,NR1) ∈ BJ with (ne1, ne
′
1) ∈ Mµρ(NR1) and

(v, v
′
) ∈ Vµρ(NR1) for all ∈ J . Thennt hµρ nt

′.

Theorem 37. λµρ-bisimilarity is compatible.

Proof sketch.The most complicated case to show is thatλµρ-
bisimilarity is closed underρ-abstraction: ift hµρ t′ and also
v hµρ v

′
 for all ∈ J0, then

ρ{:=v
∈J0}. t hµρ ρ{:=v′

∈J0}. t′.
Here one proceeds in three steps:

1. If z /∈ FV(t), thenρs. t hµρ letx=ρs. λz. t in x I.
2. If v hµρ v′ and v hµρ v′ for all ∈ J0, and if the free

references of all these values are contained inJ ⊇ J0, then

ρ{:=G[v‡]
∈J0}.G[v‡] hµρ ρ{:=G[v′

‡
]
∈J0}.G[v′

‡
].

3. If the free references ofv andv
∈J0 are contained inJ ⊇ J0,

thenρ{:=v
∈J0}. v hµρ ρ{:=G[v‡]

∈J0}.G[v‡].

The third part follows from Proposition 32 and Corollary 36. The
proof of the second part uses Corollary 36 and the following con-
struction: for everyNQ ⊆ NUJ with J0 ⊆ J , let NQ\J0 be the
subset ofNUJ\J0 defined by

NQ\J0 = {(X1|{ :=w
∈J0}·s, { :=w′

∈J0}·s′, NR) |

(X|s, s′,NR) ∈ NQ&
X ⊆ X1 &
∀ ∈ J0. (w, w

′
) ∈ V †(NR)}.

The Main Lemma implies thatB†J\J0 ⊆ B†J\J0
.

The other cases of the proof are simpler and use Theorem 34
and Corollary 36.

In summary, the main result of this section:

Theorem 38. λµρ-bisimilarity is a congruence: an equivalence
relation which is furthermore compatible.

Corollary 39. Each ofλ-bisimilarity, λµ-bisimilarity, and λρ-
bisimilarity is a congruence.

Proof. It is easy to see that twoλµ-terms areλµ-bisimilar if and
only if they areλµρ-bisimilar, and similarly for the other inclusions
between the four calculi considered in this article. (Each extension
is “fully abstract”). The statement of the corollary immediately
follows. Suppose for example thatv1 hµ v′1 andv2 hµ v′2. Then
v1 hµρ v′1 andv2 hµρ v′2. Therefore, sinceλµρ-bisimilarity is
a congruence,v1 v2 hµρ v

′
1 v

′
2. Finally, sincev1 v2 andv′1 v

′
2 are

λµ-terms,v1 v2 hµ v
′
1 v

′
2.

Remark. Non-η bisimilarity is also a congruence. The relation be-
tween non-η bisimilarity andλµρ-bisimilarity is analogous to the
relation between B̈ohm tree equivalence and Böhm tree equiva-
lence up toη for the pureλ-calculus.

10. Full abstraction
In this section we show thatλµρ-bisimilarity coincides with con-
textual equivalence for theλµρ-calculus.

First, let us say that a variable-closed and reference-closed
named termnt terminates, written nt⇓, iff ∃s, ne. ({}, nt) 7→∗

(s, ne). Then we define that termst andt′ arecontextually equiv-
alent, written t ∼=µρ t′, iff for all namesa and term contextsC
such thatC[t] andC[t′] are variable-closed and reference-closed,
[a]C[t]⇓ ⇔ [a]C[t′]⇓. It is easy to see that∼=µρ is a congruence
and, moreover, it is the largest congruence relation which satisfies
thatt ∼=µρ t

′ implies [a]t⇓ ⇔ [a]t′⇓ for all namesa and variable-
closed and reference-closed termst andt′. Sinceλµρ-bisimilarity
is a congruence, it is immediate from its definition that it is included
in contextual equivalence, viz. thatλµρ-bisimilarity is sound with
respect to contextual equivalence.

Theorem 40 (Soundness).hµρ ⊆ ∼=µρ.

Similarly, λ-bisimilarity, λµ-bisimilarity, andλρ-bisimilarity
are included in contextual equivalence for their respective calculi.

To prove the converse of Theorem 40, we will form a bisimu-
lation which relates all contextually equivalent terms. The task is
similar to the B̈ohm-out proof of the separability theorem in the
call-by-nameλ-calculus. For readers familiar with the Böhm-out
proof, we briefly compare our approach: The Böhm-out proof sub-
stitutes, for each free variable, a function that takes many argu-
ments. This makes it possible to control the function’s behaviour
separately each time it is called. We need the same level of con-
trol over the behaviour of the functions and continuations that are
substituted for the free variables and names in the contextually
equivalent terms we want to prove bisimilar. However, instead of
using functions that take many arguments, we use stateful func-
tions and continuations. They use mutable references to execute
pre-programmed strategies that specify how they will behave each
time they are invoked. Moreover, we use the expressive power of
theλµ-calculus to capture not only the argument when a function
substituted for a free variable is invoked but also the continuation.
The presence of mutable references introduces one complication,
namely it requires us to store every argument and continuation we
see so that we can invoke them multiple times to expose stateful
behaviour.

We will need to accumulate values in lists and random access
list entries. We encode the empty list as the identity functionI and
we encode the listv with elementsv1, . . . , vn appended as:

〈v|v1, . . . , vn〉 =
λz. letx0=v z in letx1=x0 v1 in . . . in xn−1 vn

wherez, x0, . . . , xn−1 are not free inv, v1, . . . , vn. Whenv = I,
we write just〈v1, . . . , vn〉. We access theq’th element in the listv
with v#q = µa. [a]v λx1 . . . λxq−1. â, wherea is not free inv.

We use a designated reference0 to store a list with all the
argumentsv and continuationsNE we see along the way (eachNE
is stored as the valueλx. µa.NE[x] with x, a not free inNE). We
letw range over both pairs of values and pairs of named evaluation
contexts. Given such a pair, letwV be the pair of values and letwNR

be the singleton named term relation defined as:

wV =

�
(v1, v2) if w = (v1, v2)
(λx. µa.NE1[x], λx. µa.NE2[x]) if w = (NE1,NE2)

wNR =

�
(a·x|[a](v1 ? x), [a](v2 ? x)) if w = (v1, v2)
(x|NE1 ? x,NE2 ? x) if w = (NE1,NE2)

wherex anda are not free inv1, v2,NE1,NE2.
For each free variablexi and nameaj , we associate a reference

ıi andj , respectively. Each reference stores astrategyp which is

a sequence ofmovesm, one for each successive invocation of the
variablexi or nameaj , ending in “success”> or “failure” ⊥:

STRATEGIES p ::= > | ⊥ | m; p
MOVES m ::= move(q, p1, p2) (q ≥ 1)

A move move(q, p1, p2) “plays” the q’th value or continuation
from the list stored in0 and associates the strategyp1 with a vari-
able, which is used as argument, andp2 with a name, which is used
as continuation. These ideas are expressed in the following encod-
ings. Given a referenceı and a strategyp, we define the function
[[p]](ı), which takes a function argumentx and a continuationy as
arguments, and for every movem, we define the term[[m]], as fol-
lows.

[[>]](ı) = λx. λy. I

[[⊥]](ı) = λx. λy.Ω

[[m; p]](ı) = λx. λy. let z=!0 in 0:=〈z|x, y〉; ı:=[[p]](ı); [[m]]

[[move(q, p1, p2)]] =
let z=!0 in letx=z#q in ρ{ı:=[[p1]](ı), :=[[p2]]()}. ̌ [x ı̂]

wherêı anď denote the value and the evaluation context

ı̂ = λx. µa. [a0] let y=!ı in let z=y x in z â

̌ = letx=[] in let y=! in let z=y x in z â0

and wherea0 is a designated “top-level” name.
These are the building blocks we use to “separate” terms. As in

[21], our separation proof is co-inductive. We define:

W = {(x1, . . . , xm, a1, . . . , an|s1, s2, {w1
NR, . . . , wq

NR})
| ∀ strategiesp1, . . . , pm, p

′
1, . . . , p

′
n.

∀ distinct referencesı1, . . . , ım, 1, . . . , n
/∈ dom(s1) ∪ dom(s2).

∀ movesm.
[a0]ρs·s′1σ. [[m]]⇓ ⇔ [a0]ρs·s′2σ. [[m]]⇓
wheres = {ı1:=[[p1]](ı1), . . . , ım:=[[pm]](ım),

1:=[[p′1]](1), . . . , n:=[[p′n]](n)},
σ = [̂ı1/x1, . . . , ı̂m/xm, [a0]̌1/a1, . . . , [a0]̌n/an],
s′i = si·{0:=〈vi1, . . . , viq〉},
(v11, v21) = w1

V, . . . , (v1q, v2q) = wq
V}

Lemma 41. W is aλµρ-bisimulation.

Proof. By detailed analysis of the possible operational behaviours
of the named terms in eachwi

NR triple.

Lemma 42. t1 ∼=µρ t2 impliest1 hµρ t2 if FR(t1) ∪ FR(t2) = ∅.

Proof. Supposet1 and t2 are reference-closed terms,t1 ∼=µρ t2,
and X ` t1, t2. Then, by the definition ofW and contex-
tual equivalence,t1 ∼=µρ t2 implies (X|{}, {}, {wNR}) ∈ W
wherew = (λx. t1, λx. t2) andx /∈ X. Observe thatwNR =
(a·x|[a]t1, [a]t2). We concludet1 hµρ t2 by Lemmas 41 and
19.

To extend this result to general terms, we define a term context
LJ that “translates” any termt with FV(t) ⊆ J = {ı1, . . . ın} to
the reference-closed closed term

LJ [t] = λx. ρ{ı1:=I, . . . , ın:=I}.
〈λx. t, get(ı1), set(ı1), . . . , get(ın), set(ın)〉

wherex /∈ FV(t), get(ıi) = λx. !ıi, andset(ıi) = λx. (ıi:=x; I).

Lemma 43. t1 hµρ t2 iff LJ [t1] hµρ LJ [t2].

Theorem 44 (Completeness).hµρ ⊇ ∼=µρ.

Proof. SupposeJ = FR(t1) ∪ FR(t2). Then

t1 ∼=µρ t2 ⇒ LJ [t1] ∼=µρ LJ [t2] ∼=µρ is a congruence
⇒ LJ [t1] hµρ LJ [t2] Lemma 42
⇒ t1 hµρ t2 Lemma 43.

Acknowledgments
We thank Olivier Danvy and Andrzej Filinski for guidance and
comments on this work. We also thank Matthias Felleisen and
the anonymous referees for comments and suggestions, and Radha
Jagadeesan, Paul Levy, and Corin Pitcher for discussions.

The first author is supported by BRICS (Basic Research in
Computer Science, funded by the Danish National Research Foun-
dation).

References
[1] S. Abramsky. The lazy lambda calculus. In D. Turner, editor,Re-

search Topics in Functional Programming, pages 65–116. Addison-
Wesley, 1990.

[2] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game
semantics for general references. InProc. 13th Annual IEEE
Symposium on Logic in Computer Science, pages 334–344, 1998.

[3] Z. M. Ariola and H. Herbelin. Minimal classical logic and control
operators. InICALP, volume 2719 ofLecture Notes in Computer
Science, pages 871–885. Springer-Verlag, 2003.

[4] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics.
Number 103 in Studies in Logic and the Foundations of Mathematics.
North-Holland, revised edition, 1984.

[5] G. M. Bierman. A computational interpretation of the lambda-mu
calculus. In L. Brim, J. Gruska, and J. Zlatuska, editors,Proc.
23rd Mathematical Foundations of Computer Science, Brno, Czech
Republic, volume 1450, pages 336–345. Springer-Verlag, 1998.

[6] R. David and W. Py.λµ-calculus and B̈ohm’s theorem.Journal of
Symbolic Logic, 66(1):407–413, 2001.

[7] L. Egidi, F. Honsell, and S. Ronchi della Rocca. Operational,
denotational and logical descriptions: a case study.Fundamenta
Informaticae, 16(2):149–169, 1992.

[8] M. Felleisen and R. Hieb. The revised report on the syntactic theories
of sequential control and state.Theoretical Computer Science,
103:235–271, 1992.

[9] D. P. Friedman and C. T. Haynes. Constraining control. InProc. 12th
ACM Symposium on Principles of Programming Languages, pages
245–254, 1985.

[10] A. D. Gordon. Bisimilarity as a theory of functional programming.
Theoretical Computer Science, 228(1–2):5–47, 1999.

[11] A. D. Gordon and A. M. Pitts, editors.Higher Order Operational
Techniques in Semantics. Publications of the Newton Institute.
Cambridge University Press, 1998.

[12] P. de Groote. On the relation between the lambda-mu-calculus and
the syntactic theory of sequential control. InLPAR ’94, volume 822 of
Lecture Notes in Artificial Intelligence, pages 31–43. Springer-Verlag,
1994.

[13] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. InProc. 33rd ACM Symposium on
Principles of Programming Languages, pages 141–152, 2006.

[14] J. Laird. Full abstraction for functional languages with control. In
Proc. 12th Annual IEEE Symposium on Logic in Computer Science,
pages 58–67, 1997.

[15] P. J. Landin. The mechanical evaluation of expressions.The Computer
Journal, 6(4):308–320, 1964.

[16] S. B. Lassen. Bisimulation up to context for imperative lambda
calculus. Unpublished note. Presented atThe Semantic Challenge of
Object-Oriented Programming, Schloss Dagstuhl, 1998.

[17] S. B. Lassen. Relational reasoning about contexts. In Gordon and
Pitts [11], pages 91–135.

[18] S. B. Lassen. Bisimulation in untyped lambda calculus: Böhm
trees and bisimulation up to context. InMFPS XV, volume 20 of
Electronic Notes in Theoretical Computer Science, pages 346–374.
Elsevier, 1999.

[19] S. B. Lassen. Eager normal form bisimulation. InProc. 20th Annual
IEEE Symposium on Logic in Computer Science, pages 345–354,
2005.

[20] S. B. Lassen. Normal form simulation for McCarty’s amb. In
MFPS XXI, volume 155 ofElectronic Notes in Theoretical Computer
Science, pages 445–465. Elsevier, 2005.

[21] S. B. Lassen. Head normal form bisimulation for pairs and theλµ-
calculus (extended abstract). InProc. 21th Annual IEEE Symposium
on Logic in Computer Science, 2006.

[22] P. B. Levy. Game semantics using function inventories. Talk given at
Geometry of Computation 2006, Marseille, 2006.

[23] I. A. Mason and C. L. Talcott. Equivalence in functional languages
with effects. Journal of Functional Programming, 1(3):297–327,
1991.

[24] M. Merro and C. Biasi. On the observational theory of the
CPS-calculus (extended abstract). InProc. 22nd Conference on
Mathematical Foundations of Programming Semantics, volume 158
of Electronic Notes in Theoretical Computer Science, pages 307–330.
Elsevier, 2006.

[25] A. R. Meyer and K. Sieber. Towards fully abstract semantics for
local variables: Preliminary report. InProc. 15th ACM Symposium
on Principles of Programming Languages, San Diego, CA, 1988.

[26] M. Parigot. λµ-calculus: An algorithmic interpretation of classical
natural deduction. In A. Voronkov, editor,Proceedings Intl. Conf.
on Logic Programming and Automated Reasoning, LPAR’92, St
Petersburg, volume 624 ofLecture Notes in Computer Science, pages
190–201. Springer-Verlag, 1992.

[27] R. P. Perez. An extensional partial combinatory algebra based on
λ-terms. In A. Tarlecki, editor,Proc. Mathematical Foundations
of Computer Science, volume 520 ofLecture Notes in Computer
Science, pages 387–396. Springer-Verlag, 1991.

[28] A. M. Pitts. Reasoning about local variables with operationally-based
logical relations. In P. W. O’Hearn and R. D. Tennent, editors,Algol-
Like Languages, volume 2, chapter 17, pages 173–193. Birkhauser,
1997. Reprinted fromProceedings Eleventh Annual IEEE Symposium
on Logic in Computer Science, 1996, pp 152–163.

[29] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions
with local state. In Gordon and Pitts [11], pages 227–273.

[30] E. Ritter and A. M. Pitts. A fully abstract translation between
a λ-calculus with reference types and Standard ML. InProc.
2nd International Conference on Typed Lambda Calculus and
Applications, Edinburgh, volume 902 ofLecture Notes in Computer
Science. Springer-Verlag, 1995.

[31] D. Sangiorgi. The lazy lambda calculus in a concurrency scenario.
Information and Computation, 111(1):120–153, 1994.

[32] E. Sumii and B. C. Pierce. A bisimulation for type abstraction
and recursion. InProc. 32nd ACM Symposium on Principles of
Programming Languages, pages 63–74, 2005.

[33] C. Talcott. Reasoning about functions with effects. In Gordon and
Pitts [11], pages 347–390.

[34] M. Wand and G. T. Sullivan. Denotational semantics using an
operationally-based term model. InProc. 24th ACM Symposium on
Principles of Programming Languages, pages 386–399, 1997.

