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Abstract. We present a generalization of the Perceptron algorithra.riEw al-

gorithm performs a Perceptron-style update whenever thhgimaf an example
is smaller than a predefined value. We derive worst case keistaunds for our
algorithm. As a byproduct we obtain a new mistake bound ferRlerceptron
algorithm in the inseparable case. We describe a multielgsssion of the algo-
rithm. This extension is used in an experimental evaludtiamhich we compare
the proposed algorithm to the Perceptron algorithm.

1 Introduction

The Perceptron algorithm [1, 15, 14] is a well studied anduytexpclassification learn-
ing algorithm. Despite its age and simplicity it has proveibé quite effective in prac-
tical problems, even when compared to the state-of-thiesge margin algorithms [9].
The Perceptron maintains a single hyperplane which segsapatsitive instances from
negative ones. Another influential learning paradigm wisiciploys separating hyper-
planesis Vapnik's Support Vector Machine (SVM) [16]. Leiamalgorithms for SVMs
use quadratic programming for finding a separating hypagpédtaining the maximal
margin Interestingly, theanalysisof the Perceptron algorithm [14] also employs the
notion of margin. However, the algorithm itself does notlekpany margin informa-
tion. In this paper we try to draw a connection between thegpmroaches by analyzing
a variant of the Perceptron algorithm, called Ballseptranich utilizes the margin. As
a byproduct, we also get a new analysis for the original R¢roe algorithm.

While the Perceptron algorithm can be used as linear pragiagmsolver [4] and
can be converted to a batch learning algorithm [9], it wagioally studied in theon-
line learning model which is also the main focus of our paper. linerlearning, the
learner receives instances in a sequential manner whifgutiitg a prediction after
each observed instance. For concretenessy' let R* denote our instance space and
letyY = {+1,—1} denote our label space. Our primary goal is to learn a claatifn
functionf : X — Y. We confine most of our discussion to linear classificatiarcfu
tions. That isf takes the forny (x) = sign(w-x) wherew is a weight vector iR"™. We
briefly discuss in later sections how to use Mercer kerndls thie proposed algorithm.
Online algorithms work in rounds. On roun@n online algorithm receives an instance
x; and predicts a labe}, according to its current classification functign: X — ). In
our casef; = f:(x¢) = signw; - x;), wherew; is the current weight vector used by
the algorithm. The true labej, is then revealed and the online algorithm may update



its classification function. The goal of the online algomitiis to minimize its cumula-
tive number of prediction mistakes which we denoteb¥he Perceptron initializes its
weight vector to be the zero vector and employs the updatewyl; = w; + 7yix;
wherer; = 1if §; # y; andr; = 0 otherwise.

Several authors [14, 3, 13] have shown that whenever theePomn is presented
with a sequence of linearly separable examples, it suffdyfstanded number of pre-
diction mistakes which does not depend on the length of theesece of examples.
Formally, let(x1,41), ..., (xr,yr) be a sequence of instance-label pairs. Assume that
there exists a unit vectar (Jju| = 1) and a positive scalay > 0 such that for all
t, yi(u-x¢) > ~. In words,u separates the instance space into two half-spaces such
that positively labeled instances reside in one half-spdtiée the negatively labeled
instances belong to the second half-space. Moreover, ttandie of each instance to
the separating hyperplad& : u- x = 0}, is at leasty. We refer toy as the margin
attained byu on the sequence of examples. Throughout the paper we ashattbd
instances are of bounded norm andfet max; ||x;|| denote the largest norm of an
instance in the input sequence. The number of predictiotak®s,s, the Perceptron
algorithm makes on the sequence of examples is at most

. < (g)Q. 1)

Interestingly, neither the dimensionality &fnor the number of examples directly effect
this mistake bound. Freund and Schapire [9] relaxed therability assumption and
presented an analysis for the inseparable case. Theirkaisiaund depends on the
hinge-lossattained by any vecton. Formally, letu be any unit vector (ju|| = 1).
The hinge-loss of1 with respect to an instance-label pé&k;, y;) is defined ag; =
max{0,y — ysu - x;} where~ is a fixed target margin value. This definition implies
that¢; = 0 if x; lies in the half-space correspondingygpoand its distance from the
separating hyperplane is at legsOtherwise/, increases linearly with-y; (u-x;). Let
D, denote the two-norm of the sequence of hinge-losses sdffgra on the sequence
of examples,

T 1/2
Dy = <Z ef) . (2)
t=1

Freund and Schapire [9] have shown that the number of predictistakes the Percep-
tron algorithm makes on the sequence of examples is at most,

eg<R§m)2. @)

This mistake bound does not assume that the data is linegrgrable. However, when-
ever the data is linearly separable with margjrDs is 0 and the bound reduces to the
bound given in Eqg. (1). In this paper we also provide analiysisrms of the one-norm
of the hinge losses which we denote by and is defined as,

T
Di=) t . (4)
t=1



Fig. 1. An illustration of the three modes constituting the Ballsep's update. The poink is
labeled+1 and can be in one of three positions. Le&fis classified correctly by with a margin
greater tharr. Middle: x is classified incorrectly byv. Right: x is classified correctly but the
ball of radiusr is intersected by the separating hyper-plane. The poistused for updatingv.

While the analysis of the Perceptron employs the notion pasaion with margin,
the Perceptron algorithm itself is oblivious to the absek#lue of the margin attained
by any of the examples. Specifically, the Perceptron doesnuatify the hyperplane
used for classification even for instances whose marginrissraall so long as the pre-
dicted label is correct. While this property of the Percepthas numerous advantages
(see for example [8]) it also introduces some deficiencigshvpurred work on algo-
rithms that incorporate the notion of margin (see the refegs below). For instance, if
we know that the data is linearly separable with a marginezalwe can deduce that
our current hyperplane is not optimal and make use of thisifagpdating the current
hyperplane. In the next section we present an algorithmupdates its weight vector
whenever it either makesmediction mistaker suffers amargin error. Formally, let
r be a positive scalar. We say that the algorithm suffers a imargor with respect to
r if the current instance; is correctly classified but it lies too close to the sepacatin
hyper-plane, that is,

O<yt(&-xt> < 7r. (5)

[[we |

Analogously to the definition of, we denote by the number of margin errors our
algorithm suffers on the sequence of examples.

Numerous online margin-based learning algorithms shar#asities with the work
presented in this paper. See for instance [12, 10, 11, 2, &hy\f the algorithms can be
viewed as variants and enhancements of the Perceptroiithigorowever, the mistake
bounds derived for these algorithms are not directly comiplarto that of the Percep-
tron, especially when the examples are not linearly separabcontrast, under certain
conditions discussed in the sequel, the mistake bound éoaltporithm described in
this paper is superior to that of the Perceptron. Moreowaramalysis carries over to
the original Perceptron algorithm.

The paper is organized as follows. We start in Sec. 2 with arg#sn of our new
online algorithm, the Ballseptron. In Sec. 3 we analyze ther&ghm using the mistake
bound model and discuss the implications on the originaiéfgron algorithm. Next, in
Sec. 4, we describe a multiclass extension of the Ballseptigorithm. This extension
is used in Sec. 5 in which we present few experimental rethdtsunderscore some of
the algorithmic properties of the Ballseptron algorithrthia light of its formal analysis.
Finally, we discuss possible future directions in Sec. 6.



2 TheBallseptron algorithm

In this section we present the Ballseptron alg
rithm which is a simple generalization of the clag
sical Perceptron algorithm. As in the Perceptrg
algorithm, we maintain a single vector which is
initially set to be the zero vector. On roundwe

QD

PARAMETER: radiusr
lrllNITIALIZE: w1 =0
ort=1,2,...

Receive an instance;
Predict:j; = sign(w - x¢)

first receive an instance and output a prediction If ye(we - x¢) < 0
according to the current vectgg, = sign(w;-x;). Update:wrs1 = wi + yixe
We then receive the correct labgl In case of a Else I yo(we - x¢) /|| wel| < r
prediction mistake, i.ej: # y;, we suffer a unit Set:k; = xi — yerwe/||we|
loss and updater; by adding to it the vectoy; x;. Update:w, 11 = Wi + yi%q
The updated vector constitutes the classifier to be Else// No margin mistake
used on the next round, thes, . 1 = wy; + yx;. Update:w; 1 = wy

In contrast to the Perceptron algorithm, we also End
update the classifier whenever the margin attainigendfor
onx; is smaller than a pre-specified parameter
Formally, denote by3(x,,) the ball of radius- | Fig.2. The Ballseptron algorithm.
centered ak,. We impose the assumption that alt
the points inB(x;, ) must have the same label as

the centerx; (see also [6]). We now check if there is a pointhx;, ) which is mis-
classified byw;,. If such a point exists thew; intersectsB(x;, r) into two parts. We
now generate a pseudo-instance, dengteahich corresponds to the point Bi(x;, r)
attaining the worst (negative) margin with respeciéto (See Fig. 1 for an illustration.)
This is obtalned by moving units away fromx;, in the direction of—y,wy, that is
X = Xy — ”w TWe- To show this formally, we solve the following constrainedin
mization problem,

X; = argmin y;(wy-Xx) . (6)
x€B(x¢,r)

To find X; we recast the constraint € B(x:,r) as|x — x;||*> < r2. Note that both
the objective functiony, (w, - x) and the constraintx — x,||? < r2 are convex inx.
In addition, the relative interior of th8(x;, r) is not empty. Thus, Slater’s optimality
conditions hold and we can fing; by examining the saddle point of the problem’s
Lagrangian which isL(x, o) = y:(w¢-x) +a (||x — x¢[|* — r?). Taking the derivative
of the Lagrangian w.r.t. each of the components @ind setting the resulting vector to
Zero gives,

ywy + 2a(x —x;) =0 . (7

Sincey;(w; - x;) > 0 (otherwise, we simply undergo a simple Perceptron update)
we have thatv; # 0 anda > 0. Hence we get that the solution of Eq. (7)xis =

— (y¢/2a)wy. To find o we use the complementary slackness condition. That is,
sincea > 0 we must have thdix — x; || = r. Replacingk — x; with ytwt/(2oz), the
slackness condmon yields théﬁ“z’”—t = r which let us expres§1— as—— Hw T We thus get
thatx; = x; — ”w TWe. By construction, ify;(w; - ;) > 0 we know that all the points
in the ball of radiug- centered ak, are correctly classified and we set,; = wy.



(See also the left-most plot in Fig. 1.) If on the other hagpdv; - x;) < 0 (right-most
plotin Fig. 1) we usek; as a pseudo-example and sat,; = w; + y;X;.

Note that we can rewrite the conditigin(w; - X;) < 0 asy;(wy - x¢)/||we|| < r.
The pseudocode of the Ballseptron algorithm is given in Bigand an illustration of
the different cases encountered by the algorithm is giveRign 1. Last, we would
like to note in passing that; can be written as a linear combination of the instances,
w; = S'"1 ayx;, and thereforew;-x; = .'_] ai(x;-x;). The inner products; -x;
can be replaced with an inner products defined via a Merceekek (x;, x; ), without
any further changes to our derivation. Since the analysthemnext section does not
depend on the dimensionality of the instances, all of the&dresults still hold when
the algorithm is used in conjunction with kernel functions.

3 Analysis

In this section we analyze the Ballseptron algorithm. Agalgs to the Perceptron
bounds, the bounds that we obtain do not depend on the diorenéithe instances
but rather on the geometry of the problem expressed via thgimaf the instances
and the radius of the sphere enclosing the instances. Adonedtabove, most of our
analysis carries over to the original Perceptron algoridmah we therefore dedicate the
last part of this section to a discussion of the implicatiorsthe original Perceptron
algorithm. A desirable property of the Ballseptron would/ddeen that it does not
make more prediction mistakes than the Perceptron algorithmfortunately, without
any restrictions on the radiughat the Ballseptron algorithm employs, such a property
cannot be guaranteed. For example, suppose that the iastare drawn fronR and

all the input-label pairs in the sequeneea, v1), . .., (xr,yr) are the same and equal
to (x,y) = (1,1). The Perceptron algorithm makes a single mistake on thisesex.
However, if the radius that is relayed to the Ballseptron algorithnRishen the algo-
rithm would makeT'/2 prediction mistakes on the sequence. The crux of this filur
to achieve a small number of mistakes is due to the fact threatabiusr was set to
an excessively large value. To achieve a good mistake boende&d to ensure that
r is set to be less than the target margiemployed by the competing hypothesis
Indeed, our first theorem implies that the Ballseptron astéie same mistake bound as
the Perceptron algorithm provided thas small enough.

Theorem 1. Let (x1,41),..., (X7, yr) be a sequence of instance-label pairs where
x; € R", g, € {—1,+1},and||x¢|| < Rforall ¢t. Letu € R" be a vector whose norm
is1,0 < v < R an arbitrary scalar, and denoté, = max{0,v — y;u - x;}. Let Dy

be as defined by Eq. (2). Assume that the Ballseptron algoiighrun with a parameter

r which satisfie$) < r < (v/2 — 1)~. Then, the number of prediction mistakes the
Ballseptron makes on the sequence is at most,

( R+ D, )2

5 .
Proof. We prove the theorem by boundimgr; - u from below and above while com-
paring the two bounds. Starting with the upper bound, we teedamine three differ-




ent cases for evewy If y;(w; - x;) < 0thenw,; = w; + y;x; and therefore,
[wipal? = [Iwell® + 11 + 2ge(we - x0) < [lwi? + [1xe)l® < [lwe? + R?

In the second case wheyg(w; - x;) > 0 yet the Ballseptron suffers a margin mistake,
we know thaty; (w; - %) < 0 and thus get

[Wertll® = llwe +yXel|* = [[wel|? + [|Zel|? + 200 (we - %) < Jlwe]|” + |||
Recall thatk; = x; — y,rw,/||w¢|| and therefore,
1%el1? = Ilxel|® + 7% = 2ger(xe - we) /Wil < [l +71° < R+ 7% .

Finally in the third case wherg,(w; - ;) > 0 we have||w;1]|? = ||w¢*. We can
summarize the three different scenarios by defining twoaldes:7, € {0, 1} which
is 1iff y,(w; - x;) < 0 and similarly7; € {0,1} which is1 iff y;(w; - x;) > 0 and
y+(W¢ -%X¢) < 0. Unraveling the bound on the normefr; while using the definitions
of 7, and7, gives,

T T
HWT-f-l”Q < R2Z7}+(R2+T2)Z7~} .
t=1

t=1

Let us now denote by = 57, 7, the number of mistakes the Ballseptron makes and

analogously by = Zthl 7, the number of margin errors of the Ballseptron. Using the
two definitions along with the Cauchy-Schwartz inequaliglgs that,

wrir-u < wrp| lul| = [wrpl < VeR2+E(R2+12) . (8)

This provides us with an upper bound en-,; - u. We now turn to derive a lower
bound onwr, 1 - u. As in the derivation of the upper bound, we need to conslteet
cases. The definition df, immediately implies that; > v — y;x; - u. Hence, in the
first case (a prediction mistake), we can bowd ; - u as follows,

Wipiou = (Wetyxe)-u > we-u+y—4

In the second case (a margin error) the Ballseptron’s upslate ; = w;+y:X; which
results in the following bound,

N Wy
Wip1 U= (W +yXt) - u = Wt"‘ytxt_rm .u
t

Wi
Zwt'u‘f"}/—ft—T(—-u)
[[we]
Since the norm of1 is assumed to bg, by using Cauchy-Schwartz inequality we can
boundﬁ -u by 1. We thus getthatw, 1 -u > w;-u+~—¥¢; —r. Finally, on rounds
for which there was neither a prediction mistake nor a maggior we immediately get



that,w;, 1 -u = w;-u. Combining the three cases while using the definitions af;, ¢
andé we get that,

T
Wrp-u > 57—1—5(7—7“)—2(%4—%)& . 9
=1

We now apply Cauchy-Schwartz inequality once more to oliteih

t=1 t=1 t=1

T T 3T 3
Z(Tt"‘%t)ét < (Z(Tt—i_ﬁ)z) (Z(ZtV) = Dg\/&'-ﬁ-&:.

Combining the above inequality with Eq. (9) we get the foliogvlower bound on
W41 -4,

Wryp-u > ey+E(y—1)— Dave+éE . (20)

We now tie the lower bound oy, ; - u from Eq. (10) with the upper bound
from Eq. (8) to obtain that,

VER2+E(R2+12) > ey +é&(y—71)— Dove+ 2 . (11)

Let us now denote by(e, €) the difference between the two sides of the above equation,
that is,

gle,é) =ey+E&(y—r) —/eR2+E(R2 +12) — Dyve ¢ . (12)

Eqg. (11) implies thaty(e,£) < 0 for the particular values of andé¢ obtained by
the Ballseptron algorithm. We now use the this fact to shoat thcannot exceed
((R+ Dy)/~)?. First note that i = 0 theng is a quadratic function iR/z and there-
fore \/z is at most the positive root of the equatigfz,0) = 0 which is(R + D) /7.
We thus get,

2
9(,0) <0 = e < <R+D2) .
Y

If € > 1ande + & < ((R+ D3)/v)? then the bound stated in the theorem immediately
holds. Therefore, we only need to analyze the case in whighl ande + ¢ > ((R +
D3)/~)2. In this case we derive the mistake bound by showing firstttrafunction
g(e, €) is monotonically increasing ié and thereforg(s,0) < g(¢,£) < 0. To prove
the monotonicity ofy we need the following simple inequality which holds for> 0,

b > 0andc > 0,

C C

< .
Va+b+c++Va+b 2\/a

Va+b+c—Va+b = (13)



Let us now examineg(e, £ + 1) — g(g, €). Expanding the definition of from Eq. (12)
and using Eq. (13) we get that,

g(e,6+1) —g(e,&) =y — 1 — \/eR2 + &(R? 4 r2) + R + 2
+V/eR2+E(R2+12) — Dove + E+ 1+ DoVe + &
R2+T2 D2
>y —r— = — =
2RVe+€ 2v/e+E€
. —T—R+D2+T2/R
-7 2ve+¢€ '

We now use the assumption that £ > ((R + D3)/v)? and thaty < R to get that,

B B r R+ Dy r? )
e+1)—gee)zvy(1——— -
9EE+) g8 =y ( v 2yW/e+é 2R(R+ D»)

2
>7<1—g—%—%(§)> . (14)

The condition that < (v/2—1) v implies that the term.5 —r /v —0.5(r/v)? is strictly
positive. We have thus shown thg, € + 1) — g(e,€) > 0 hencey is monotonically
increasing ire. Therefore, from Eq. (11) we get that> g(e,¢) > g(e,0). Finally, as
already argued above, the conditid® g(,0) ensures that < ((R + Ds)/7)?. This
concludes our proof. a

The above bound ensures that whenevés less than(v/2 — 1), the Ballseptron
mistake bound is as good as Freund and Schapire's [9] mistakad for the Per-
ceptron. The natural question that arises is whether thiségaton entertains any ad-
vantage over the less complex Perceptron algorithm. As weargue, the answer is
yes so long as the number of margin erraisis strictly positive. First note that if
e+ & < ((R+ D2)/v)? andé > 0 thene < ((R + D2)/v)? — & which is strictly
smaller than the mistake bound from [9]. The case wherE > ((R+ Ds)/v)? needs
some deliberation. To simplify the derivation [¢t= 0.5 —r/v—0.5 (r/w)z. The proof
of Thm. 1 implies thay(s,£ 4+ 1) — g(e, &) > B~. From the same proof we also know
thatg(e,€) < 0. We thus get thag(s,0) + 8y < g(g,€) < 0. Expanding the term
g(e,0) + €6~y we get the following inequality,

ey —VeR2 — Doe+ By = ey—Ve(R+D2)+éBy < 0 . (15)

The left-hand side of Eq. (15) is a quadratic functiona. Thus,/e cannot exceed
the positive root of this function. Therefore, the numbeprdiction mistakes;, can



be bounded above as follows,

e <R+D2 + /(R + Dy)? —45%5)2

2y
- (R+ D2)?2 +2(R+ Ds) \/(R+ D2)? — 43722 + (R + D3)? — 43y%¢
< 2
D 2
< (R—i— 2) _ B
0

We have thus shown that whenever the number of margin efrsrictly positive, the
number of prediction mistakes is smaller th@® + D-)/~)?, the bound obtained by
Freund and Schapire for the Perceptron algorithm. In otleedsy the mistake bound
we obtained puts a cap on a function which depends bothasd oné. Margin errors
naturally impose more updates to the classifier, yet theyecatnthe expense of sheer
prediction mistakes. Thus, the Ballseptron algorithm istiiely to suffer a smaller
number of prediction mistakes than the standard Perceptgamithm. We summarize
these facts in the following corollary.

Corollary 1. Underthe same assumptions of Thm. 1, the number of pretlivigtakes
the Ballseptron algorithm makes is at most,

(12 (55 56))

whereé is the number of margin errors of the Ballseptron algorithm.

Thus far, we derived mistake bounds that depen@pn and D, which is the square-
root of the sum of the squares of hinge-losses. We now turm analogous mistake
bound which employ®), instead ofDs. Our proof technique is similar to the proof of
Thm. 1 and we thus confine the next proof solely to the modifinatthat are required.

Theorem 2. Under the same assumptions of Thm. 1, the number of preditiistakes
the Ballseptron algorithm makes is at most,

(=)

gl

Proof. Following the proof outline of Thm. 1, we start by modifyirtgetlower bound
onwyr, - u. First, note that the lower bound given by Eq. (9) still holatsaddition,

7 + 7 < 1 for all ¢ since on each round there exists a mutual exclusion between a
prediction mistake and a margin error. We can therefore lefyripg. (9) and rewrite it
as,wriq-u > ey — Zthl ¢y + £(y — r). Combining this lower bound oW1 - u

with the upper bound owr. - u givenin Eq. (8) we get that,

T
ey +E(y—1) =D b < ERZ+E(R>+12) . (16)
t=1



Similar to the definition ofy from Thm. 1, we define the following auxiliary function,

q(e,8) =ey+é(y—7) — /eR2+E(R2 +12) — Dy .

Thus, Eq. (16) yields that(e,£) < 0. We now show thag(e,£) < 0 implies thate
cannot exceed(R + /vD1)/~v)?. First, note that i€ = 0 theng becomes a quadratic
function in /. Therefore, /e cannot be larger than the positive root of the equation
q(,0) = 0 whichis,

R+ +\/R2+4vyD, < R+ vD:
2y - v '

We have therefore shown that,

R+ \/’}/Dl)2
77 )

q(,00<0 = e < (

We thus assume that> 1. Again, if ¢ + £ < (R/v)? then the bound stated in the
theorem immediately holds. We are therefore left with theeeat+ £ > (R/~)? and

¢ > 0. To prove the theorem we show thgk, £) is monotonically increasing ia.
Expanding the functiop and using as before the bound given in Eq. (13) we get that,

qe,6+1) —q(e,8) =y —r — VeR2+ (E+ 1)(R2 +12) + \/eR2 + &(R% + r2)

oy_p_ ¥ R+rR
7 2,/(e + &) R? 7 2/ +&

Using the assumption that+ £ > (R/v)? and thaty < R let us further bound the
above as follows,

2 2
- ~ vy ooor 1 r 1/r
1) — — - > 5| — === —
ge,€+1) —qle,8) >y —r—g—5m = 7(2 5 2<7) )

The assumption that < (v/2 — 1)~ yields thaty(e, £ + 1) — ¢(¢,£) > 0 and therefore
q(e,€) is indeed monotonically increasing infor e + £ > R?/~2. Combining the
inequalityq(e, &) < 0 with the monotonicity property we get thats, 0) < ¢(e,8) <0
which in turn yields the bound of the theorem. This conclun@sproof. a

The bound of Thm. 2 is similar to the bound of Thm. 1. The nadiguastion that arises
is whether we can obtain a tighter mistake bound wheneverrnegvkhe number of
margin errors. As for the bound based ab,, the answer for thé,-based bound is
affirmative. Recall that we define the valuelgR — r/v — 1/2(r/~)? by 3. We now
show that the number of prediction mistakes is bounded abpve

<R+fm >2 — &8 . 17)

e <

First, if e + & < (R/v)? then the bound above immediately holds. In the proof of
Thm. 2 we have shown that  + ¢ > (R/v)? theng(e,é + 1) — ¢(s,8) > 7.



Thereforeg(e,£) > q(e,0) + £68~. Recall that Eqg. (16) implies thate,£) < 0 and
thus we get thag(e, 0) + €6~ < 0 yielding the following,

ey—Rye—Dy+éBy <0 .

The left-hand side of the above inequality is yet again a catacfunction iny/z. There-
fore, once morg/s is no bigger than the positive root of the equation and wetgmt t

R+ /R2 +4yDy — 44238
2y

Ve <

)

and thus,

e R? 4+ 2R\/R2 +4vDy — 47203 + R* + 4yD1 — 4923
< yoe:

R? + 2R\/vD; +vD, .
< 2 - 58 )
Y
which can be translated to the boundsofnom Eq. (17).

Summing up, the Ballseptron algorithm entertains two rkistaounds: the first is
based on the root of the cumulative square of losgg3 While the second is based di-
rectly on the cumulative sum of hinge lossé¥ §. Both bounds imply that the Ballsep-
tron would make fewer prediction mistakes than the origPaiceptron algorithm so
long as the Ballseptron suffers margin errors along its 8imce margin errors are likely
to occur for reasonable choicesiofthe Ballseptron is likely to attain a smaller number
of prediction mistakes than the Perceptron algorithm. édggdereliminary experiments
reported in Sec. 5 indicate that for a wide range of choices the number of online
prediction mistakes of the Ballseptron is significantly émthan that of the Perceptron.

The bounds of Thm. 1 and Thm. 2 hold for any< (v/2 — 1)y, in particular for
r = 0. Whenr = 0, the Ballseptron algorithm reduces to the Perceptron ehgor
In the case of Thm. 1 the resulting mistake boundifer 0 is identical to the bound
of Freund and Schapire [9]. Our proof technique though istrtially different than
the one in [9] which embeds each instance in a high dimenkgm@e rendering the
problem separable. Settingto zero in Thm. 2 yields a new mistake bound for the
Perceptron with,/yD; replacingD. in the bound. The latter bound is likely to be
tighter in the presence of noise which may cause large margans. Specifically, the
bound of Thm. 2 is better than that of Thm. 1 when

T T
t=1 t=1

We therefore expect the bound in Thm. 1 to be better whes small and otherwise
the new bound is likely to be better. We further investighte difference between the
two bounds in Sec. 5.

4 An Extension to Multiclass Problems

In this section we describe a generalization of the Balleepto the task of multiclass
classification. For concreteness we assume that thefedifferent possible labels and



denote the set of all possible labels By= {1, ..., k}. There are several adaptations
of the Perceptron algorithm to multiclass settings (seexample [5, 7, 16, 17]), many
of which are also applicable to the Ballseptron. We now oatbine possible multiclass
extension in which we associate a weight vector with eactsclBue to the lack of
space proofs of the mistake bound obtained by our construetie omitted. Letw"
denote the weight vector associated with a labet ). We also refer tow” as the
r'th prototype. As in the binary case we initialize each of pinetotypes to be the zero
vector. The predicted label of an instances defined as,

U = argmax wy - X
rey

Upon receiving the correct labg], if 4, # y, we perform the following update which
is a multiclass generalization of the Perceptron rule,

Wi =Wl x s wih = wl o xe wig = wy (e Y\ {y, i) . (18)

In words, we add the instaneg to the prototype of the correct label and subtract
from the prototype of);. The rest of the prototypes are left intactylf= y;, we check
whether we still encounter a margin error. ligtdenote the index of the prototype
whose inner-product witk; is the second largest, that is,

g = argmax (W} -x¢) .
Y7 Yt

Analogous to the definition af, in the binary classification problem, we defikgas
the solution to the following optimization problem,

X; = argmin (Wft x—wl -x) . (19)
xX€EB(x¢,r)

Note that ifw}* - x; > wf' - %, then all the points iB(x;, r) are labeled correctly and
there is no margin error. If this is the case we leave all tiéqtypes intact. If however
wi* %, < w{" - %, we perform the update given by Eq. (18) usingnstead ofx, and
g instead ofj;. The same derivation described in Sec. 2, yieldsthat x; +r(w}' —
w¥)/|[w¥ — wY*||. The analysis of the Ballseptron from Sec. 3 can be adaptétbto
multiclass version of the algorithm as we now briefly deseribet {u',...,u*} be

a set ofk prototype vectors such thgtjfz1 |u?||? = 1. For each multiclass example
(x¢, y;) define the hinge-loss of the above prototypes on this exaagle

{, = max {O, max (y — (u¥* —u¥) -xt)}

Y# Yt

We now redefindD, and D; using the above definition of the hinge-loss. In addition,
we need to redefin® to be R = /2max; ||x;||. Using these definitions, it can be
shown that slightly weaker versions of the bounds from SearBbe obtained.
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Fig. 3. Top plots: The fraction of prediction mistakes/{") as a function of the radius parameter
r for the MNIST (left) and USPS (right) datasets. Bottom pldthe behavior of the mistake
bounds as a function of a label noise rate (left) and an iostanise rate (right).

5 Experimental Results

In this section we present experimental results that detrateglifferent aspects of the
Ballseptron algorithm and its accompanying analysis. &fitst experiment we exam-
ine the effect of the radius employed by the Ballseptron on the number of prediction
mistakes it makes. We used two standard datasets: the MNi&Eet which consists of
60, 000 training examples and the USPS dataset whiclvRas training examples. The
examples in both datasets are images of handwritten didgieseveach image belongs
to one of thel 0 digit classes. We thus used the multiclass extension of #tledptron
described in the previous section. In both experiments ved asfifth degree polyno-
mial kernel with a bias term df/2 as our inner-product operator. We shifted and scaled
the instances so that the average instance becomes theezéwoand the average norm
over all instances becomésFor both datasets, we run the online Ballseptron algorithm
with different values for the radius In the two plots on the top of Fig. 3 we depigtT’,

the number of prediction mistakeslivided by the number of online roun@sas a func-
tion of r. Note thatr = 0 corresponds to the original Perceptron algorithm. As can be
seen from the figure, many choicesrofesult in a significant reduction in the number



of online prediction mistakes. However, as anticipatetlirapr to be excessively large
deteriorates the performance of the algorithm.

The second experiment compares the mistake bound of ThnihXheit of Thm. 2.
To facilitate a clear comparison, we set the parameter be zero hence we simply
confined the experiment to the Perceptron algorithm. We ewetpthe mistake bound
of the Perceptron from Eq. (3) derived by Freund and Schdpijreo the new mis-
take bound given in Thm. 2. For brevity we refer to the bounBrefund and Schapire
as theD,-bound and to the new mistake bound as thebound. We used two syn-
thetic datasets each consistingl6f000 examples. The instances in the two datasets,
were picked from the unit circle iR2. The labels of the instances were set so that the
examples are linearly separable with a margif.d6. Then, we contaminated the in-
stances with two different types of noise, resulting in iffedent datasets. For the first
dataset we flipped the label of each example with probability the second dataset
we kept the labels intact but added to each instance a randotonsampled from a
2-dimensional Gaussian distribution with a zero mean veatar a covariance matrix
o21. We then run the Perceptron algorithm on each of the datémedifferent values
of n ando. We calculated the mistake bounds given in Eq. (3) and in Thior each of
the datasets and for each valuenadndo. The results are depicted on the two bottom
plots of Fig. 3. As can be seen from the figure, thgbound is clearly tighter than the
Ds-bound in the presence of label noise. Specifically, wheminelabel noise level is
greater thari).03, the D,-bound is greater thah and therefore meaningless. Interest-
ingly, the D;-bound is also slightly better than th&-bound in the presence of instance
noise. We leave further comparisons of the two bounds todéutork.

6 Discussion and future work

We presented a new algorithm that uses the Perceptron adrastructure. Our algo-
rithm naturally employs the notion of margin. Previous nalimargin-based algorithms
yielded essentially the same mistake bound obtained by ¢neeptron. In contrast,
under mild conditions, our analysis implies that the mistakbund of the Ballseptron
is superior to the Perceptron’s bound. We derived two méstadunds, both are also
applicable to the original Perceptron algorithm. The fistihd reduces to the original
bound of Freund and Schpire [9] while the second bound is nawis likely to be
tighter than the first in many settings. Our work can be exterid several directions.
A few variations on the proposed approach, which replacestiginal example with a
pseudo-example, can be derived. Most notably, we can updabi@ased ork; even for
cases where there is a prediction mistake. Our proof tedkerigystill applicable, yield-
ing a different mistake bound. More complex prediction peats such as hierarchical
classification may also be tackled in a similar way to the psagl multiclass extension.
Last, we would like to note that the Ballseptron can be usedaslding block for find-
ing an arbitrarily close approximation to the max-margitugon in a separable batch
setting.
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