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Abstract

Active speaker detection (ASD) seeks to detect who is
speaking in a visual scene of one or more speakers. The suc-
cessful ASD depends on accurate interpretation of short-term
and long-term audio and visual information, as well as audio-
visual interaction. Unlike the prior work where systems make
decision instantaneously using short-term features, we propose
a novel framework, named TalkNet, that makes decision by tak-
ing both short-term and long-term features into consideration.
TalkNet consists of audio and visual temporal encoders for fea-
ture representation, audio-visual cross-attention mechanism for
inter-modality interaction, and a self-attention mechanism to
capture long-term speaking evidence. The experiments demon-
strate that TalkNet achieves 3.5% and 3.0% improvement over
the state-of-the-art systems on the AVA-ActiveSpeaker valida-
tion and test dataset, respectively. We will release the codes, the
models and data logs.

1. Introduction
As the short-term audio and visual features represent the salient
cues for ASD, most of the existing studies are focused on
segment-level information, e.g., a video segment of 200 to 600
ms. A better way to capture the long-term temporal context is
to encode the history of audio or video frame sequence. In this
report, we study an audio-visual ASD framework, denoted as
TalkNet. We make the following contributions.

• We propose a feature representation network to capture
the long-term temporal context from audio and visual
cues;

• We propose a backend classifier network that employs
audio-visual cross-attention, and self-attention to learn
the audio-visual inter-modality interaction;

• We propose an effective audio augmentation technique
to improve the noise-robustness of the model.

2. TalkNet
TalkNet is an end-to-end pipeline that takes the entire cropped
face video and corresponding audio as input, and decide if the
person is speaking in each video frame. It consists of a fea-
ture representation frontend, and a speaker detection backend
classifier, as illustrated in Figure 1. The frontend contains an
audio temporal encoder and a video temporal encoder. They
encode the frame-based input audio and video signals into the
time sequence of audio and video embeddings, that represent
temporal context. The backend classifier consists of an inter-
modality cross-attention mechanism to dynamically align audio
and visual content, and a self-attention mechanism to observe
speaking activities from the temporal context at the utterance
level.

2.1. Visual Temporal Encoder

The visual temporal encoder consists of the visual frontend and
the visual temporal network. The visual frontend consists of
a 3D convolutional layer (3D Conv) followed by a ResNet18
block [1] to encode the video frame stream into a sequence of
frame-based embedding. The visual temporal network consists
of a video temporal convolutional block (V-TCN), which has
five residual connected rectified linear unit (ReLU), batch nor-
malization (BN) and depth-wise separable convolutional layers
(DS Conv1D) [2], followed by a Conv1D layer. It aims to repre-
sent the temporal content in a long-term visual spatio-temporal
structure. We seek to encode the visual stream into a sequence
of visual embeddings Fv that have the same time resolution.

2.2. Audio Temporal Encoder

The audio temporal encoder seeks to learn an audio content rep-
resentation from the temporal dynamics. It is a 2D ResNet34
network with squeeze-and-excitation (SE) module introduced
in [3]. An audio frame is first represented by a vector of Mel-
frequency cepstral coefficients (MFCCs). The audio temporal
encoder takes the sequence of audio frames as the input, gen-
erate the sequence of audio embeddings Fa as the output. The
ResNet34 are designed with dilated convolutions such that the
time resolution of audio embeddings Fa matches that of the vi-
sual embeddings Fv to facilitate subsequent attention mecha-
nism.

2.3. Audio-visual Cross-Attention and Self-Attention

The core part of the cross-attention network is the cross-
attention layer, in which one modality applies the query from
another modality as the target. The attention layer is followed
by the feed-forward layer. Residual connection and layer nor-
malization are also applied after these two layers to generate the
whole cross-modal attention network. The outputs are concate-
nated together along the temporal direction. A self-attention
network is applied after the cross-attention network to model
the audio-visual utterance-level temporal information. This net-
work is similar to the cross-attention network except that the
query, key and value in the attention layer all come from the
joint audio-visual feature Fav .

2.4. Loss Function

We finally apply a fully connected layer followed by a softmax
operation to project the output of the self-attention network to
an ASD label sequence. We view ASD as a frame-level classi-
fication task instead of a short instance-level classification task.
The predicted label sequence is compared with the ground truth
label sequence by binary cross-entropy loss.
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Figure 1: An overview of our TalkNet, which consists of visual and audio temporal encoders followed by cross-attention and self-
attention for ASD prediction. It predicts the entire score sequence from the entire input video without splitting.

2.5. Audio Augmentation with Negative Sampling

we use one video as the input data during training, and then we
randomly select the audio track from another video in the same
batch as the noise to perform audio augmentation. Such aug-
mented data effectively have the same label, e.g., active speaker
or inactive speaker, as the original sound track. This approach
involves the in-domain noise and interference speakers from the
training set itself. It does not require data outside the training
set.

3. Experiments
We build the TalkNet using the PyTorch library with the Adam
optimizer. The initial learning rate is 10−4, and we decrease it
by 5% for every epoch. The dimension of MFCC is 13. All
the faces are reshaped into 112 × 112. We set the dimensions
of the audio and visual feature as 128. Both cross-attention and
self-attention network contain one transformer layer with eight
attention heads. We randomly flip, rotate and crop the original
images to perform visual augmentation. Finally, we evaluate the
performance using the official tool from ActivityNet. There is
no any pre-train model and we train only about 7 hours with 20
epochs to get the best result in AVA Validation set from scratch
by using one Quadro RTX 6000 GPU with 22G memory.

4. Results
We summarize the results on the AVA-ActiveSpeaker validation
dataset in Table 1. We observe that TalkNet achieves 92.3%
mAP and outperforms the best competitive system, i.e., MAAS-
TAN [4], by 3.5% on the validation set.

Table 1: Comparison with the state-of-the-art on the AVA-
ActiveSpeaker validation set in terms of mean average precision
(mAP).

Method mAP (%)

Roth et al. [4, 5] 79.2
Zhang et al. [6] 84.0

MAAS-LAN [4] 85.1
Alcazar et al. [7] 87.1
Chung et al [8] 87.8

MAAS-TAN [4] 88.8
TalkNet (proposed) 92.3

We obtain the evaluation results of the ‘secret’ test set in

Table 2. Our 90.8% mAP also outperforms the best prior work
by 3.0%, cf., Chung et al. [8].

TalkNet only uses the AVA-ActiveSpeaker training set to
train the single face videos from scratch without any additional
post-processing. We believe that pre-training [6, 8] and other
advanced techniques [4, 7] will further improve TalkNet, which
is beyond the scope of this work.

Table 2: Comparison with the state-of-the-art on the AVA-
ActiveSpeaker test set in terms of mAP.

Method mAP (%)

Roth et al. [5] 82.1
Zhang et al. [6] 83.5

Alcazar et al. [7] 86.7
Chung et al. [8] 87.8

TalkNet (proposed) 90.8
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