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Abstract

This report describes the approach underlying our sub-
mission to the active speaker detection task (task B-2) of Ac-
tivityNet Challenge 2019. We introduce a new audio-visual
model which builds upon a 3D-ResNet18 visual model pre-
trained for lipreading and a VGG-M acoustic model pre-
trained for audio-to-video synchronization. The model is
trained with two losses in a multi-task learning fashion:
a contrastive loss to enforce matching between audio and
video features for active speakers, and a regular cross-
entropy loss to obtain speaker / non-speaker labels. This
model obtains 84.0% mAP on the validation set of AVA-
ActiveSpeaker. Experimental results showcase the pre-
trained embeddings’ abilities to transfer across tasks and
data formats, as well as the advantage of the proposed
multi-task learning strategy.

1. Introduction
Research on audio-visual analysis of speech contents in

videos has received increasing attention for its academic
and practical value. Some important topics include visual
speech recognition or lipreading, and audio-visual speech
separation and enhancement. However, although there has
been a great amount of work in these fields, few works
have explored active speaker detection, which aims to de-
termine which, if any, of the visible people in a video is
speaking at any given time. This is a necessary and impor-
tant pre-processing step for visual speech recognition and
other downstream applications such as video conferencing.
Previous models for this task were often trained and evalu-
ated on videos recorded in constrained environments, which
hinders the construction of robust active speaker detection
models. In this paper, we introduce a new deep audiovi-
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sual model for the task and evaluate on the recently released
AVA-ActiveSpeaker dataset[4] to investigate its potentials
in real-life, in-the-wild settings.

Another open question is whether state-of-the-art models
trained for the lipreading task can be transferred directly to
the speaker detection task, since both tasks rely heavily on
the fine-grained analysis of lip motion. At present, while
commonly used training data for both tasks are branded as
“in-the-wild” datasets, they differ significantly in terms of
domain (e.g. news, documentaries, and drama vs. movies)
and quality (e.g. the presence of tiny faces, occlusion, and
extreme poses). We aim to answer this question using the
new AVA-ActiveSpeaker dataset.

2. Methods
The network is depicted in Fig. 1, composed of a vi-

sual subnetwork and an audio subnetwork which extract
per-frame features, a two-layer bidirectional GRU that oper-
ates on concatenated features, and a final classifier to obtain
speaker/non-speaker labels. During training and evaluation,
the inputs to the network are sequences of T frames and the
corresponding audio representations (which are of variable
lengths, due to difference in frame rates), and the network
outputs T speaker / non-speaker labels for each frame. We
next expand on the design of each module and explain our
training strategy.

2.1. Visual Features

The visual features are extracted with the 3D-ResNet18
model first proposed in [6], which has been widely adopted
for lipreading, and also used for audio-visual speech en-
hancement. It begins with a spatio-temporal convolu-
tion layer with kernel size 5 in the temporal dimension,
which effectively models the short-term dynamics of visual
speech, and then progressively reduces spatial dimension-
ality with an 18-layer residual network (ResNet-18). The
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Figure 1. Network architecture. We build upon 3D-ResNet and VGG-M subnetworks. For a window with T frames, we first extract
per-frame audio and visual features, and then feed the concatenated features to a 2-layer bidirectional Gated Recurrent Unit (GRU) to
obtain final framewise predictions.

average-pooled feature is transformed into an 128-dim vi-
sual embedding with the final fully-connected layer. We
initialize the subnetwork using weights pre-trained on the
LRW, LRS, and MV-LRS datasets [1]1.

We did not perform temporal up / downsampling for
videos recorded at different frame rates during feature ex-
traction. This is because some speech/non-speech segments
can be very short (e.g. lasting 3-5 frames) and downsam-
pling can negatively impact framewise accuracy. Moreover,
we believe a model that generalizes well should be robust to
mild frame rate differences, which can be viewed as natural
differences in speech rates between individual speakers.

2.2. Audio Features

The audio features are obtained using a modified VGG-
M network which ingests 13-dim MFCC features as input.
The features are extracted using a 25ms analysis window
with a stride of 10ms, yielding 100 audio frames every sec-
ond. The network we use is pre-trained with the improved
two-stream SyncNet architecture [2, 3] for audio-to-video

1https://github.com/afourast/deep_lip_reading

synchronization2. For each video frame, we extract audio
embeddings by calculating the corresponding audio time
and passing the surrounding 20 audio frames to the network.
To reduce the dimensionality of the output features, we re-
train the final fc8 layer to obtain 128-dim embeddings.

2.3. Feature Fusion

We concatenate the per-frame 128-dim visual features
and the 128-dim audio features generated by the visual sub-
network and the audio subnetwork. The joint features are
fed into a two-layer bidirectional GRU with 256 cells for
temporal modeling within the input window, which is com-
plementary to the spatio-temporal convolution in the visual
subnetwork. Finally, the outputs of the last hidden layer are
fed to a classifier with 3 fully-connected layers, which pre-
dicts for every time-step a binary label indicating whether
the specified face is the person speaking or not.

2https://github.com/joonson/syncnet_python
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2.4. Multi-Task Learning

Inspired by the design of SyncNet for audio-to-video
synchronization, we apply an extra contrastive loss on
the visual and audio features to enforce a match be-
tween the two modalities. Since the audio inputs and vi-
sual inputs are synchronized, if the ground truth label is
SPEAKING AUDIBLE, it means the speaker in the visual
input is speaking and the audio input matches the visual in-
put, and the Euclidean distance between the two features
should therefore be minimized. If the ground truth la-
bel is NOT SPEAKING or SPEAKING NOT AUDIBLE, the
speaker in the visual input is not speaking and the visual in-
put does not match the audio input. We expect that this
form of contrastive learning would help the network better
capture information that is shared between audio and video,
and therefore better utilize the multi-modal cues.

Training is performed in two stages: we first load the
weights pre-trained on large-scale datasets, and initialize
the last fully-connected layer in each subnetwork with only
the contrastive loss while keeping other layers frozen. Af-
ter convergence, we add the fusion network and train the
joint model end-to-end in a multi-task learning fashion: at
each time step, the loss is a combination of the above con-
trastive loss and the routine cross-entropy loss between the
predicted and ground truth labels. The overall loss is the
aggregated loss over all time steps:

L =

T∑
t=1

(LCE + λLcontrast), (1)

where λ is a hyperparameter. In our experiments, we use
λ = 1.

3. Experiments
Preprocessing. We first run face detection with the multi-
view face detector provided with the SeetaFaceEngine2
toolkit [5], and compare them with the annotations provided
with the AVA-ActiveSpeaker dataset. The detected bound-
ing boxes were then smoothed with median filtering. This
yields much tighter and more accurate face crops3, which
we scale properly to match the pre-training settings. Fi-
nally, we extract a central 112 × 112 crop from each face
and use it as the input to the visual subnetwork.

Implementation details. We implement our model with
PyTorch and train the model on the training set with the
Adam optimizer, using an initial learning rate of 1e-4. We

3We found some inaccurate bounding boxes through IoU thresholding
and a CNN face/non-face classifier, which were either not centered on the
desired subject or did not include the crucial lip region. We corrected these
annotations manually, and will make this information available to foster
reproducibility.

use batches of 40 windows with window length T = 10,
and data augmentation in the form of horizontal flipping.
The images are converted to grayscale and normalized with
respect to overall mean and variance. We train the model for
around 20 epochs, reducing learning rate whenever error on
the validation set plateaus.

The windows we use for training are sampled
densely from all tracks at a stride of 1. Since
there are more frames labeled as non-speaker (682, 404
frames labeled SPEAKING AUDIBLE, in contrast to
1, 969, 134 marked NOT SPEAKING and 24, 776 marked
SPEAKING NOT AUDIBLE in the training set), we balance
training by randomly choosing between windows with more
than a half of the frames labeled as active speaker and win-
dows completely labeled as non-active speaker.

Results. Results of our model on the validation set are
shown in Table 1. The predicted speech-active scores have
been smoothed using a median filter of kernel size 11 within
each track. In practice, we found that this yields about 1%
performance boost in terms of mAP.

From the table we can see that the pre-trained visual em-
beddings displays strong performance even when only vi-
sual information is used, possibly due to the use of deeper
architectures and pre-training. This confirms that the pre-
trained embeddings can be transferred across tasks with
simple finetuning, depsite the differences in terms of con-
tent and quality. Notably, our full model yields about 4.8%
performance gain over the ablation model trained without
the contrastive loss, which demonstrates the effectiveness
of the proposed multi-task learning strategy.

Table 1. Mean average precision (mAP) on the validation and test
sets. We do not report ablation results on the test set due to sub-
mission timeout policies.

Method
Visual Audio-Visual

Val Test Val Test

Baseline [4] / 0.711 / 0.821

Ours (w/o contrastive loss) 0.757 / 0.792 /

Ours / / 0.840 0.835
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