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ABSTRACT

Internet videos provide a virtually boundless source of audio with a
conspicuous lack of localized annotations, presenting an ideal set-
ting for unsupervised methods. With this motivation, we perform an
unprecedented exploration into the large-scale discovery of recur-
ring audio events in a diverse corpus of one million YouTube videos
(45K hours of audio). Our approach is to apply a streaming, non-
parametric clustering algorithm to both spectral features and out-of-
domain neural audio embeddings. We use a small portion of man-
ually annotated audio events to quantitatively estimate the intrinsic
clustering performance. In addition to providing a useful mechanism
for unsupervised active learning, we demonstrate the effectiveness of
the discovered audio event clusters in two downstream applications.
The first is weakly-supervised learning, where we exploit the associ-
ation of video-level metadata and cluster occurrences to temporally
localize audio events. The second is informative activity detection,
an unsupervised method for semantic saliency based on the corpus
statistics of the discovered event clusters.

Index Terms— Audio event discovery, unsupervised learning,
weakly-supervised learning, streaming clustering algorithms

1. INTRODUCTION

The detection of audio events using supervised classifiers is a well-
studied problem where a wide array of learning methods [[1} 2} 3} 4}
5] have been evaluated on several small academic datasets [6, [7]].
Meanwhile, the Internet is amassing virtually unlimited stores of
unannotated multimedia content and researchers have just scratched
surface of the opportunities this presents. Collecting this audio is
easy, but manually annotating audio events for model training is no-
toriously difficult. With this motivation, we chronicle a first attempt
to leverage the power of unsupervised methods at-scale in the service
of audio event modeling. Our task is large-scale audio event discov-
ery, the unsupervised identification of repeated acoustic patterns that
are realizations of some semantic category. Our approach is to apply
a state-of-the-art nonparametric clustering algorithm to a corpus of
one million YouTube videos (45K hours of audio), each weakly la-
beled using a diverse set of 200 audio classes. The result is millions
of audio clusters with a wide range of sizes, distributions across the
documents, and co-occurrence patterns with the weak labels.

Such large-scale clustering has many potential uses. If the clus-
ters are semantically pure, then they enable a form of unsupervised
active learning where annotating only a single example per cluster
is required to cover the dataset. In conjunction with a partition of
the stream into documents and any associated document-level meta-
data (e.g. tags, titles), we can derive criteria from cluster occurrence
patterns that predict their semantic salience. Specifically, if a clus-
ter consistently co-occurs with a document-level tag, it is evidence
that the cluster contains audio events associated with the semantic
concept implied by the tag. On the other hand, if a cluster co-occurs

equally with all tags, then it is likely that the underlying audio events
are not salient for semantic analysis and can be safely ignored.

By including a small collection of manually annotated segments
for the 200 categories, we estimate the intrinsic clustering perfor-
mance. This demonstrates the utility of the discovery method in
streamlining large-scale human annotation efforts. We also use clus-
ter co-occurrence with video-level tags as a mechanism for weak-
supervision, obtaining competitive performance competitive with
a state-of-the-art deep neural network (DNN) trained in-domain.
Finally, we propose informative activity detection, a method that
estimates the semantic saliency of a cluster based on the class-
independent document frequencies across the million video set. We
demonstrate that filtering clusters with both abnormally high and
abnormally low document frequencies reduces processing require-
ments while not negatively impacting classification performance.

2. RELATED WORK

In the audio classification domain, unsupervised learning has been
explored as a means of data-driven feature extraction in several con-
texts. The most common is the audio bag-of-words [8 9] represen-
tation, which uses a vector quantization (VQ) of the acoustic space,
typically learned with k-means, and represents each audio recording
as a histogram over the codebook units. This concept was extended
by replacing the simple VQ methods with an elegant hierarchical
model, producing large performance improvements [10]. However,
these studies were not directed at or evaluated on the direct discov-
ery localized instances of individual audio events. They were also
applied to small datasets and were limited to thousands of units, an
insufficient number to cover a diverse domain like YouTube.

Inspired by standard information retrieval and natural language
processing methods, [11] introduced the concept of acoustic stop-
words. In analogy to the text-processing concept of removing stop-
words (high frequency non-content words, like “a” and “the”), this
work demonstrated the value of removing high frequency codebook
units from the acoustic bag-of-words representation. Our proposed
informative activity detection approach generalizes this filtering to
include extremely low frequency discovered units, since their rar-
ity also precludes the conveyance of semantic information. The un-
precedented scale of our dataset and the nonparametric nature of our
clustering algorithms enable this ability to assert a discovered unit is
indeed rare. Finally, recent work has also explored training of mod-
els from Internet videos in a weakly-supervised fashion by framing
it as a multiple instance learning problem [12].

3. LARGE-SCALE AUDIO EVENT DISCOVERY

3.1. Clustering Algorithm

Given the scale and richness that 45K hours of YouTube videos im-
plies, we have two strong requirements of our clustering algorithm.



First, it must be computationally efficient enough to process n ~
one hundred million input frames. Second, it must support an ex-
tremely large number of clusters that grows with the size of the input
to flexibly cover the full range of acoustic events that may be present
in a diverse domain like YouTube. Classical clustering algorithms
that have been considered for audio processing applications in the
past [8[11] do not satisfy these needs. The most commonly used is
k-means, which has time complexity O(nk1), where i is the number
of iterations, and requires k to be explicitly set in advance [13]]. With
these motivations, we consider the popular streaming clustering al-
gorithm DenStream [14]. Critically, it is nonparametric, allowing
the number of clusters to grow over time as the data stream evolves.

DenStream operates over a sequence of input vectors 1, . . . , T,
where each 2; € RY. The clustering state of the algorithm at
each point in time includes a collection of microcluster centroids
M = {mai,...,m;}. To process each incoming z;, a list of the
nearest microcluster centroids are retrieved. If there exists any
microclusters whose distance (we use cosine distance for all ex-
periments) is less than a threshold p, the point gets assigned to
the nearest microcluster. If no such microcluster exists, a new mi-
crocluster is spawned with initial centroid set to the input z:. To
produce a set of output clusters, C' = {ci,...,cx}, online micro-
cluster assignment is followed by an offline microcluster merging
step that learns the partition of M into C'. Like k-means, DenStream
is natively linear in both the number of inputs and the number of
clusters (though it does not require several passes over the data).
Since we are interested in permitting an arbitrarily large number of
clusters k, we introduce two optimizations described below.

First, to reduce the microcluster lookup time, we apply a vari-
ant of locality sensitive hashing (LSH) [15]] to both the microcluster
centroids and each incoming vector to enable (approximate) nearest
neighbor search in sublinear time. Each B-bit hash is determined by
thresholding B random projections defined by samples from a nor-
mal distribution. The threshold used for each projection is set to the
median value measured for a small subset of training data. We use
4 hashes of B = 16-bits each, and require a maximum Hamming
distance of 1 to the input vector using all four hashes in order to con-
sider a microcluster for assignment. Second, we use a witness-based
online microcluster merging strategy to avoid expensive offline post-
processing of the microclusters. Specifically, we maintain a witness
table W : M x M — R, that (sparsely) keeps track of the number of
times a pair of microclusters is simultaneously observed in proxim-
ity to an incoming vector. Each time an incoming vector falls within
distance threshold § of two microclusters, it is taken as evidence
those two microclusters should be merged into the same output clus-
ter. When an entry in this witness table exceeds a specified threshold,
their containing output clusters are merged.

The computational savings from these optimizations is dramatic.
For example, using 128-dimensional features at frame rate 1.04 Hz,
our 1 million video dataset amounts to a stream of 7' = 1656M
frames. A multithreaded implementation running on 40 cores pro-
cesses the stream into 30M clusters in under 10 hours. Without the
optimizations, it would take weeks.

3.2. Weakly Supervised Learning

When provided video-level metadata, we can derive weak labels
that can indicate the categorical audio events likely contained in the
video. For example, if a video has a title Two Dogs Barking, there
is a high chance that there are one or more dog bark audio events
contained. If given 5,000 similarly titled videos, one can identify
acoustic patterns that are present in a higher proportion than would

be found in the general population. This will include patterns of
interest (e.g. dog barks), but depending on the specificity of the
label, they can include other sounds that are commonly coincident
(e.g. growling or whimpering). Even though this sort of weak su-
pervision is provided at the document level, we can use the cluster
assignments to temporally localize the regions that are most likely
associated with each semantic category. This property can be quan-
tified by the posterior probability P(l|c) of the label [ for a given
cluster ¢ € C, which can be defined as either the fraction of frames
or fraction of documents in each cluster ¢ € C' that have attached
the weak label . Once these posteriors are computed, each frame
in a given cluster inherits the set of posterior scores for that cluster.
Since every frame is assigned to exactly one cluster, we can recon-
struct a posterior vector time series (posteriorgram) for each video,
where regions of high score for a given label are likely audio event
instances for that semantic category.

3.3. Informative Activity Detection

Our goal of informative activity detection is the isolation of au-
dio segments that are useful for predicting semantic content to save
processing time by ignoring everything else. Given a clustering of
frames over a weakly labeled set of videos, we can quantify the
informativeness of each region of the acoustic space by the maxi-
mum pointwise mutual information (PMI) measured between a clus-
ter ¢ € C and all weak labels in set L, defined as

P(e,l)
maxPMI(c) = max PMlI(c, 1) = max log PP
Here, P(c,!) is the proportion of documents that have weak label
I and are assigned to cluster ¢; P(c) and P(l) are document-level
priors. The PMI is a normalized measure of associativity between
a cluster id and a label. Thus, high maxPMI values for a cluster
indicates a high degree of positive semantic relevance for at least
one category, qualifying it as semantically informative.

Now, the definition of “informative” varies across applications,
so ideally we can define a fully task- and label-independent method
to make this determination. A low maxPMI cluster must appear in
documents with a large variety of semantic categories, while high
maxPMI clusters can only occur mainly in documents drawn from a
small number of semantic categories. Taken together, these con-
straints imply a negative correlation between maxPMI and class-
independent document frequency of each cluster (the proportion of
documents containing the cluster). Thus, we consider the princi-
ple behind acoustic stopword removal [11], using lower document
frequency as a proxy for higher maxPMI in our determination of in-
formativeness. However, this alone does not address the impact of
rare acoustic events. Consider a singleton cluster ¢ € C' whose sole
frame occurs in a video with weak label . In this case, maxPMI(c)
defined in Eq. reduces to 1/P(l), which can attain very high values
for low-prior classes. While the math is correct that these rare pat-
terns are highly associated with the label, it is not observed enough
times to judge whether that association is spurious. This can be mit-
igated by imposing a minimum document frequency criterion for in-
formativeness, which we evaluate below.

1)

4. EXPERIMENTS

4.1. Dataset and Features

Our evaluation set was drawn from the newly introduced Audio Set,
a collection of manually annotated audio events [16]]. This dataset



consists of 10 second audio clips from YouTube videos, each la-
beled with one or more audio classes from an comprehensive ontol-
ogy of 635 categories. We use a subset of 200 classes that had at least
100 verified segments. This included the speech and music top-level
classes; 4 gender and age-based speech subclasses; 44 music genres
such as rock, heavy metal, hip-hop, and electronic; 65 musical in-
struments including piano, cymbal, and acoustic guitar; 9 nonspeech
human vocalizations like crying, laughing, and sneezing; 15 animal
sounds including purring and barking; 17 vehicle sounds including
jetengine and car engine; and 44 miscellaneous specific audio events
like sawing, vacuum cleaner, and bell. In addition to the 100 verified
positives, we also collected 100 verified negative segments for each
class (not included in Audio Set).

In the experiments below, each class was evaluated indepen-
dently using just its own explicit positive and negative segments.
These labels were used for evaluation only and were not included in
the document frequency or posterior calculations described above.
To construct the larger weakly-labeled train set, we collected 5000
YouTube videos for each of the 200 classes selected above. The class
labels were derived from video-level tags that were automatically ex-
tracted from the associated metadata and visual stream [17]]. This set
is multilabeled since multiple tags can apply to a single video.

We considered two feature representations. The first is non-
overlapping 0.25 second context windows of log mel spectrogram
(25 ms analysis frames, at a frame rate of 100 Hz). We used 40
mel bins, bringing the dimension of each patch to 1000. To explore
the impact of using semantically informed representation, we also
considered a data-driven bottleneck feature representation extracted
from a VGG-architecture [18]] deep neural network audio model [5].
This model was also trained on weakly labeled YouTube data (dis-
joint from our cluster training set), but using a visual entity detection
dataset similar to [[19]] for which audio bottlenecks served as helpful
side information. Only 86 of our 200 classes set were also included
in the set of 4923 visual entities of that out-of-domain task, with the
overlap mostly limited to musical instruments and animal categories.
The model takes as input 0.96 second non-overlapping patches of log
mel spectrograms. Here, a longer context window was made pos-
sible by the convolutional architecture. The 128-dimensional em-
bedding is defined by the linear (i.e., pre-nonlinearity) output of a
128-unit bottleneck layer.

4.2. Intrinsic Evaluation

The unprecedented scale and multilabeled nature of our YouTube
dataset precludes the application of standard cluster evaluation
methodology [20], which relies on each frame having exactly one
mutually-exclusive groundtruth assignment. Since only a small
portion of the data we cluster is annotated, we can only measure
the quality of a cluster restricted to elements in it that have a label.
Given our labeled segments were randomly selected for verification,
we can assume measuring performance with them alone will be
representative. However, given the multilabel nature of the data, a
present judgment for one class does not imply the absence of the
remaining 199.

With these considerations in mind, our performance estimate
proceeds as follows. First, we simultaneously cluster the train and
test sets. We retain cluster assignments for frames in the evalua-
tion set, which excludes the majority of clusters that only contain
train set frames. Next, to accommodate the multilabel nature of the
data, we evaluate each label independently. However, this cannot
be treated as a binary clustering problem since we cannot make the
assumption that negative segments for a label would cluster. This

Table 1. Median clustering performance as a function of input fea-
ture and microcluster threshold p, with microcluster merging turned
off (0 = 0). Here, k is the total number of clusters generated by the
algorithm.

Features p k Frag@50 | Purity@50

0.1 | 33.2M 12.0 79.2

LogMelSpec | 0.15 | 22.7M 10.0 78.3
02 | 15.5M 9.0 77.2

0.05 | 95.1M 355 97.8

. 0.1 | 30.IM 15.0 94.1
Embeddings | 615 | "9 7m 10.0 92.6
02 | 3.6M 8.0 90.9

025 | 1.7M 6.0 90.0

rules out popular single-value summary metrics like adjusted rand
index and V-measure [20]. Instead, we measure two quantities: pos-
itive label purity (fraction of frames in a cluster from positive seg-
ments) and fragmentation (number of clusters frames from positive
segments are distributed across) for each cluster. Since our positive-
labeled segments are themselves weakly labeled (not all 10 seconds
are expressions of the class), we restrict our purity and fragmentation
calculation to as many of the largest clusters necessary to include
frames of 50 of the 100 positives for each class (denoted Purity @50
and Frag@50, respectively). This prevents metrics from being dom-
inated by clusters of non-target frames from positive segments.

Table (1| shows median performance across the 200 classes as a
function of both input feature types and microcluster radius thresh-
old. Several trends are apparent. First, the use of features based
on semantically-informed, out-of-domain audio embeddings greatly
improves the purity of the clusters at a equivalent amount of frag-
mentation. This makes a good deal of sense, since the raw spectral
features do not encode even simple normalization transforms (e.g.
volume, duration) necessary to reduce within-class variation. This
result points to the promise of neural audio embeddings for cross-
domain transfer to arbitrary audio processing tasks. Second, we find
that increasing microcluster radius threshold controls the usual trade-
off between fragmentation and purity that results from varying the
number and size of clusters. In this way, the selection of number of
clusters used by other clustering algorithms is replaced by a selec-
tion of microcluster radius threshold. Finally, we also evaluated the
witness table approach for online merging of microclusters, measur-
ing small improvements for some classes when using conservative
witness threshold ¢ values. However, we also found performance to
be highly sensitive to this witness threshold; if set too large, the high-
est occupancy microclusters precipitously merge into a mega-cluster,
having the expected deleterious impact on performance. Therefore,
we turn off microcluster merging (§ = 0) in the downstream evalua-
tions.

When using audio embeddings, for more than half (as implied by
median) of the classes we are able to maintain a purity of at least 90%
when fragmenting half of the target segments into only 6 clusters. As
a method to nominate segments for manual annotation, this would
reduce the manual annotation cost by 88% while introducing less
than 10% label noise. Given the promise of even weaker supervision
demonstrated in the next section, this may be a quite an acceptable
level of label noise for training highly accurate audio event models.
Finally, our inspection of per-class performance indicated a bi-modal
distribution about this median value. Acoustically specific classes
(e.g. accordion, engine knocking) have purities approaching 100%
and fragmentations as low as 2. Semantically broad classes (e.g.



Table 2. Audio event classification performance for the baseline
DNN model and proposed cluster-based method, using optimal hy-
perparameter values in all cases.

Method Mean EER | MAP | Mean P@20
Inception DNN 25.9 79.4 86.1
LogMelSpec Clusters 374 65.2 70.5
Embedding Clusters 26.6 78.0 84.6

Table 3. Impact of document frequency (DF) based cluster filtering
on classification performance, using the embedding cluster method
with optimal hyperparameters.

Min DF | Max DF | % Filtered | MAP
0.0 1.0 0.0 78.0
10~° 1.0 4.4 78.2
0.0001 1.0 6.6 78.3
0.0005 1.0 19.5 77.3
0.0 0.05 28 782
0.0 0.02 7.2 78.2
0.0 0.01 21.4 77.9
0.0001 0.02 13.8 785

video game music, farm animals) generally fall well below median
purity values and are not well suited for this methodology.

4.3. Downstream Evaluations

To evaluate utility of our clustering procedure for weak supervision,
we again jointly clustered the train and test, leaving the test labels
out of the per-cluster posterior calculations. Each test frame then in-
herits the per-class posteriors of the cluster to which it is assigned.
We found that calculating cluster posteriors using document counts
gave slightly better performance than frame counts, so we report the
former in all cases. We compute segment-level scores for each test
segment by averaging the frame-level posteriors for the class(es) the
segment was verified for. Thus for each class, we have 100 positive
segment scores and 100 negative segment scores with which we can
compute the standard classifier metrics equal error rate (EER), aver-
age precision (AP), and precision at 20 (P@20). To put our cluster-
based performance in context, we also evaluated the performance of
a state-of-the-art DNN model based on the Inception convolutional
neural network architecture (this was found to be the best architec-
ture in [3]). This weakly-supervised DNN was trained on our train
set with the assumption that each video-level label applies to each
constituent frame. Like our cluster-based approach, the model pro-
duces posterior scores for each test segment frame, which are aver-
aged to produce a segment-level scores.

Table|2|sh0ws the performance average across the classes of the
cluster methods and the in-domain Inception DNN model. The per-
formance using optimal hyperparameters are reported in all three
cases. We again find that the VGG embeddings provide a significant
improvement in the cluster-based performance, indicating the value
of semantically informed feature representations (even if they are
learned out-of-domain). We also find that the embedding-based per-
formance nearly matches the state-of-the-art Inception DNN model
trained on the in-domain data. This provides further evidence that
our clusters are successfully discovering a semantically meaningful
categorical structure, which enables nearly state-of-the-art classifi-
cation when coupled with weak-label information.

Finally, we evaluated our proposed informative activity detec-
tion method by measuring the impact of filtering clusters before
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Fig. 1. 2D Histogram of cluster document frequencies and maximum
per-class pointwise mutual information values.

segment-level score averaging performed in our weakly supervised
classification evaluation. In Section [3.3} we provided an argument
for the negative correlation between maxPMI (Eq. [I) and document
frequency. Figure[I]shows a 2D histogram of the maxPMI and doc-
ument frequency pairs for the 3.6 million embedding clusters result-
ing from the (p = 0.2, = 0.0) hyperparameter settings. The neg-
ative correlation is apparent, but the exception is in the rare cluster
band below 10~*, where outlier frames produce both some of the
lowest and highest measured maxPMI values. This unpredictabil-
ity indicates a potential utility in filtering low document frequency
clusters. Using the embedding cluster-based system reported in Ta-
ble 2] as a baseline, Table [3]lists the percentage of the audio filtered
and the corresponding classification MAP using a variety of mini-
mum and maximum document frequency thresholds. By removing
clusters that either occur in more than 2% of documents (including
the largest cluster, which has document frequency of 25% and is
made up entirely digital silence) or in less than 100 documents, we
filter 13.8 percent of the dataset duration (over 6K hours) with no
degradation of our ability to recognize the audio events. This result
indicates substantial utility for domains with higher proportions of
uninformative audio than is typical in YouTube videos.

5. CONCLUSIONS

We have performed what is to-date the largest-scale investigation
of the unsupervised discovery of recurring audio events. Using a
streaming, nonparametric clustering algorithm to discover millions
of audio pattern clusters, we have demonstrated the technology’s
promise for unsupervised active learning, weakly supervised audio
modeling, and unsupervised informative activity detection. We ex-
pect each of these directions to be useful components in developing
high-quality audio event detectors at scale.
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