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such as f = ma or e = mc2. Meanwhile, sciences that 
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over 
their inability to neatly model human behavior. 
An informal, incomplete grammar of the English 
language runs over 1,700 pages.2 Perhaps when it 
comes to natural language processing and related 
fi elds, we’re doomed to complex theories that will 
never have the elegance of physics equations. But 
if that’s so, we should stop acting as if our goal is 
to author extremely elegant theories, and instead 
embrace complexity and make use of the best ally 
we have: the unreasonable effectiveness of data.

One of us, as an undergraduate at Brown Univer-
sity, remembers the excitement of having access to 
the Brown Corpus, containing one million English 
words.3 Since then, our fi eld has seen several notable 
corpora that are about 100 times larger, and in 2006, 
Google released a trillion-word corpus with frequency 
counts for all sequences up to fi ve words long.4 In 
some ways this corpus is a step backwards from the 
Brown Corpus: it’s taken from unfi ltered Web pages 
and thus contains incomplete sentences, spelling er-
rors, grammatical errors, and all sorts of other er-
rors. It’s not annotated with carefully hand-corrected 
part-of-speech tags. But the fact that it’s a million 
times larger than the Brown Corpus outweighs these 
drawbacks. A trillion-word corpus—along with other 
Web-derived corpora of millions, billions, or tril-
lions of links, videos, images, tables, and user inter-
actions—captures even very rare aspects of human 

behavior. So, this corpus could serve as the basis of 
a complete model for certain tasks—if only we knew 
how to extract the model from the data.

Learning from Text at Web Scale
The biggest successes in natural-language-related 
machine learning have been statistical speech rec-
ognition and statistical machine translation. The 
reason for these successes is not that these tasks are 
easier than other tasks; they are in fact much harder 
than tasks such as document classifi cation that ex-
tract just a few bits of information from each doc-
ument. The reason is that translation is a natural 
task routinely done every day for a real human need 
(think of the operations of the European Union or 
of news agencies). The same is true of speech tran-
scription (think of closed-caption broadcasts). In 
other words, a large training set of the input-output 
behavior that we seek to automate is available to us 
in the wild. In contrast, traditional natural language 
processing problems such as document classifi ca-
tion, part-of-speech tagging, named-entity recogni-
tion, or parsing are not routine tasks, so they have 
no large corpus available in the wild. Instead, a cor-
pus for these tasks requires skilled human annota-
tion. Such annotation is not only slow and expen-
sive to acquire but also diffi cult for experts to agree 
on, being bedeviled by many of the diffi culties we 
discuss later in relation to the Semantic Web. The 
fi rst lesson of Web-scale learning is to use available 
large-scale data rather than hoping for annotated 
data that isn’t available. For instance, we fi nd that 
useful semantic relationships can be automatically 
learned from the statistics of search queries and the 
corresponding results5 or from the accumulated evi-
dence of Web-based text patterns and formatted ta-
bles,6 in both cases without needing any manually 
annotated data.
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Another important lesson from sta-
tistical methods in speech recognition 
and machine translation is that mem-
orization is a good policy if you have 
a lot of training data. The statistical 
language models that are used in both 
tasks consist primarily of a huge data-
base of probabilities of short sequences 
of consecutive words (n-grams). These 
models are built by counting the num-
ber of occurrences of each n-gram se-
quence from a corpus of billions or tril-
lions of words. Researchers have done 
a lot of work in estimating the prob-
abilities of new n-grams from the fre-
quencies of observed n-grams (using, 
for example, Good-Turing or Kneser-
Ney smoothing), leading to elaborate 
probabilistic models. But invariably, 
simple models and a lot of data trump 
more elaborate models based on less 
data. Similarly, early work on machine 
translation relied on elaborate rules for 
the relationships between syntactic and 
semantic patterns in the source and 
target languages. Currently, statistical 
translation models consist mostly of 
large memorized phrase tables that give 
candidate mappings between specific 
source- and target-language phrases.

Instead of assuming that general pat-
terns are more effective than memoriz-
ing specific phrases, today’s translation 
models introduce general rules only 
when they improve translation over just 
memorizing particular phrases (for in-
stance, in rules for dates and numbers). 
Similar observations have been made 
in every other application of machine 
learning to Web data: simple n-gram 
models or linear classifiers based on 
millions of specific features perform 
better than elaborate models that try 
to discover general rules. In many cases 
there appears to be a threshold of suf-
ficient data. For example, James Hays 
and Alexei A. Efros addressed the task 
of scene completion: removing an un-
wanted, unsightly automobile or ex-
spouse from a photograph and filling 
in the background with pixels taken 
from a large corpus of other photos.7 

With a corpus of thousands of photos, 
the results were poor. But once they 
accumulated millions of photos, the 
same algorithm performed quite well. 
We know that the number of gram-
matical English sentences is theoreti-
cally infinite and the number of pos-
sible 2-Mbyte photos is 2562,000,000. 
However, in practice we humans care 
to make only a finite number of dis-
tinctions. For many tasks, once we 
have a billion or so examples, we es-
sentially have a closed set that repre-

sents (or at least approximates) what 
we need, without generative rules.

For those who were hoping that a 
small number of general rules could ex-
plain language, it is worth noting that 
language is inherently complex, with 
hundreds of thousands of vocabulary 
words and a vast variety of grammati-
cal constructions. Every day, new words 
are coined and old usages are modified. 
This suggests that we can’t reduce what 
we want to say to the free combination 
of a few abstract primitives. 

For those with experience in small-
scale machine learning who are wor-
ried about the curse of dimensionality 
and overfitting of models to data, note 
that all the experimental evidence 
from the last decade suggests that 
throwing away rare events is almost 
always a bad idea, because much Web 
data consists of individually rare but 

collectively frequent events. For many 
tasks, words and word combinations 
provide all the representational ma-
chinery we need to learn from text. 
Human language has evolved over 
millennia to have words for the im-
portant concepts; let’s use them. Ab-
stract representations (such as clusters 
from latent analysis) that lack linguis-
tic counterparts are hard to learn or 
validate and tend to lose information. 
Relying on overt statistics of words 
and word co-occurrences has the fur-
ther advantage that we can estimate 
models in an amount of time propor-
tional to available data and can of-
ten parallelize them easily. So, learn-
ing from the Web becomes naturally 
scalable.

The success of n-gram models has 
unfortunately led to a false dichotomy. 
Many people now believe there are 
only two approaches to natural lan-
guage processing:

a •	 deep approach that relies on hand-
coded grammars and ontologies, 
represented as complex networks of 
relations; and 
a •	 statistical approach that relies on 
learning n-gram statistics from large 
corpora.

In reality, three orthogonal problems 
arise:

choosing a representation language,•	
encoding a model in that language, •	
and 
performing inference on the model. •	

Each problem can be addressed in sev-
eral ways, resulting in dozens of ap-
proaches. The deep approach that was 
popular in the 1980s used first-order 
logic (or something similar) as the rep-
resentation language, encoded a model 
with the labor of a team of graduate 
students, and did inference with com-
plex inference rules appropriate to the 
representation language. In the 1980s 
and 90s, it became fashionable to 

For many tasks, 
words and word 
combinations provide 
all the representational 
machinery we need  
to learn from text.
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use finite state machines as the repre-
sentation language, use counting and 
smoothing over a large corpus to en-
code a model, and use simple Bayesian 
statistics as the inference method.

But many other combinations are 
possible, and in the 2000s, many are 
being tried. For example, Lise Getoor 
and Ben Taskar collect work on statis-
tical relational learning—that is, rep-
resentation languages that are pow-
erful enough to represent relations 
between objects (such as first-order 
logic) but that have a sound, probabi-
listic definition that allows models to 
be built by statistical learning.8 Taskar 
and his colleagues show how the same 
kind of maximum-margin classifier 
used in support vector machines can 
improve traditional parsing.9 Stefan 
Schoenmackers, Oren Etzioni, and 
Daniel S. Weld show how a relational 
logic and a 100-million-page corpus 
can answer questions such as “what 
vegetables help prevent osteoporosis?” 
by isolating and combining the rela-
tional assertions that “kale is high in 
calcium” and “calcium helps prevent 
osteoporosis.”10

Semantic Web versus 
Semantic Interpretation
The Semantic Web is a convention for 
formal representation languages that 
lets software services interact with 
each other “without needing artificial 
intelligence.”11 A software service that 
enables us to make a hotel reservation 
is transformed into a Semantic Web 
service by agreeing to use one of sev-
eral standards for representing dates, 
prices, and locations. The service can 
then interoperate with other services 
that use either the same standard or 
a different one with a known transla-
tion into the chosen standard. As Tim 
Berners-Lee, James Hendler, and Ora 
Lassila write, “The Semantic Web will 
enable machines to comprehend se-
mantic documents and data, not hu-
man speech and writings.”11

The problem of understanding hu-

man speech and writing—the seman-
tic interpretation problem—is quite 
different from the problem of software 
service interoperability. Semantic inter-
pretation deals with imprecise, ambig-
uous natural languages, whereas ser-
vice interoperability deals with making 
data precise enough that the programs 
operating on the data will function ef-
fectively. Unfortunately, the fact that 
the word “semantic” appears in both 
“Semantic Web” and “semantic inter-
pretation” means that the two prob-

lems have often been conflated, caus-
ing needless and endless consternation 
and confusion. The “semantics” in Se-
mantic Web services is embodied in the 
code that implements those services in 
accordance with the specifications ex-
pressed by the relevant ontologies and 
attached informal documentation. The 
“semantics” in semantic interpretation 
of natural languages is instead embod-
ied in human cognitive and cultural 
processes whereby linguistic expres-
sion elicits expected responses and ex-
pected changes in cognitive state. Be-
cause of a huge shared cognitive and 
cultural context, linguistic expression 
can be highly ambiguous and still of-
ten be understood correctly. 

Given these challenges, building Se-
mantic Web services is an engineering 
and sociological challenge. So, even 
though we understand the required 

technology, we must deal with signifi-
cant hurdles:

Ontology writing•	 . The important 
easy cases have been done. For ex-
ample, the Dublin Core defines 
dates, locations, publishers, and 
other concepts that are sufficient for 
card catalog entries. Bioformats.org 
defines chromosomes, species, and 
gene sequences. Other organizations 
provide ontologies for their specific 
fields. But there’s a long tail of rarely 
used concepts that are too expensive 
to formalize with current technol-
ogy. Project Halo did an excellent 
job of encoding and reasoning with 
knowledge from a chemistry text-
book, but the cost was US$10,000 
per page.12 Obviously we can’t af-
ford that cost for a trillion Web 
pages. 
Difficulty of implementation. •	 Pub-
lishing a static Web page written 
in natural language is easy; anyone 
with a keyboard and Web connec-
tion can do it. Creating a database-
backed Web service is substantially 
harder, requiring specialized skills. 
Making that service compliant with 
Semantic Web protocols is harder 
still. Major sites with competent 
technology experts will find the ex-
tra effort worthwhile, but the vast 
majority of small sites and individu-
als will find it too difficult, at least 
with current tools. 
Competition.•	  In some domains, 
competing factions each want to 
promote their own ontology. In 
other domains, the entrenched lead-
ers of the field oppose any ontology 
because it would level the playing 
field for their competitors. This is 
a problem in diplomacy, not tech-
nology. As Tom Gruber says, “Ev-
ery ontology is a treaty—a social 
agreement—among people with 
some common motive in sharing.”13 
When a motive for sharing is lack-
ing, so are common ontologies.
Inaccuracy and deception.•	  We 

Because of a huge 
shared cognitive and 
cultural context, linguistic 
expression can be highly 
ambiguous and still often 
be understood correctly.
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know how to build sound inference 
mechanisms that take true premises 
and infer true conclusions. But we 
don’t have an established methodol-
ogy to deal with mistaken premises 
or with actors who lie, cheat, or oth-
erwise deceive. Some work in repu-
tation management and trust exists, 
but for the time being we can expect 
Semantic Web technology to work 
best where an honest, self-correcting 
group of cooperative users exists 
and not as well where competition 
and deception exist.

The challenges for achieving accu-
rate semantic interpretation are dif-
ferent. We’ve already solved the socio-
logical problem of building a network 
infrastructure that has encouraged 
hundreds of millions of authors to 
share a trillion pages of content. We’ve 
solved the technological problem of ag-
gregating and indexing all this content. 
But we’re left with a scientific problem 
of interpreting the content, which is 
mainly that of learning as much as pos-
sible about the context of the content to 
correctly disambiguate it. The seman-
tic interpretation problem remains re-
gardless of whether or not we’re using 
a Semantic Web framework. The same 
meaning can be expressed in many dif-
ferent ways, and the same expression 
can express many different meanings. 
For example, a table of company infor-
mation might be expressed in ad hoc 
HTML with column headers called 
“Company,” “Location,” and so on. 
Or it could be expressed in a Semantic 
Web format, with standard identifiers 
for “Company Name” and “Location,” 
using the Dublin Core Metadata Initia-
tive point-encoding scheme. But even if 
we have a formal Semantic Web “Com-
pany Name” attribute, we can’t expect 
to have an ontology for every possible 
value of this attribute. For example, we 
can’t know for sure what company the 
string “Joe’s Pizza” refers to because 
hundreds of businesses have that name 
and new ones are being added all the 

time. We also can’t always tell which 
business is meant by the string “HP.” 
It could refer to Helmerich & Payne 
Corp. when the column is populated 
by stock ticker symbols but probably 
refers to Hewlett-Packard when the 
column is populated by names of large 
technology companies. The problem of 
semantic interpretation remains; using 
a Semantic Web formalism just means 
that semantic interpretation must be 
done on shorter strings that fall be-
tween angle brackets.

What we need are methods to infer 
relationships between column headers 
or mentions of entities in the world. 
These inferences may be incorrect at 
times, but if they’re done well enough 
we can connect disparate data collec-
tions and thereby substantially en-
hance our interaction with Web data. 
Interestingly, here too Web-scale data 
might be an important part of the so-
lution. The Web contains hundreds of 
millions of independently created ta-
bles and possibly a similar number of 
lists that can be transformed into ta-
bles.14 These tables represent struc-
tured data in myriad domains. They 
also represent how different people 
organize data—the choices they make 
for which columns to include and the 
names given to the columns. The tables 
also provide a rich collection of column 
values, and values that they decided 

belong in the same column of a table. 
We’ve never before had such a vast col-
lection of tables (and their schemata) at 
our disposal to help us resolve seman-
tic heterogeneity. Using such a corpus, 
we hope to be able to accomplish tasks 
such as deciding when “Company” 
and “Company Name” are synonyms,  
deciding when “HP” means Helmerich 
& Payne or Hewlett-Packard, and de-
termining that an object with attri-
butes “passengers” and “cruising alti-
tude” is probably an aircraft.

Examples
How can we use such a corpus of ta-
bles? Suppose we want to find syn-
onyms for attribute names—for exam-
ple, when “Company Name” could be 
equivalent to “Company” and “price” 
could be equivalent to “discount”). 
Such synonyms differ from those in a 
thesaurus because here, they are highly 
context dependent (both in tables and 
in natural language). Given the cor-
pus, we can extract a set of schemata 
from the tables’ column labels; for ex-
ample, researchers reliably extracted 
2.5 million distinct schemata from a 
collection of 150 million tables, not all 
of which had schema.14 We can now 
examine the co-occurrences of attri-
bute names in these schemata. If we 
see a pair of attributes A and B that 
rarely occur together but always occur 
with the same other attribute names, 
this might mean that A and B are syn-
onyms. We can further justify this hy-
pothesis if we see that data elements 
have a significant overlap or are of the 
same data type. Similarly, we can also 
offer a schema autocomplete feature 
for database designers. For example, 
by analyzing such a large corpus of 
schemata, we can discover that sche-
mata that have the attributes Make 
and Model also tend to have the attri-
butes Year, Color, and Mileage. Pro-
viding such feedback to schemata cre-
ators can save them time but can also 
help them use more common attribute 
names, thereby decreasing a possible 

The same meaning  
can be expressed 
in many different ways, 
and the same expression 
can express many 
different meanings. 
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source of heterogeneity in Web-based 
data. Of course, we’ll find immense 
opportunities to create interesting data 
sets if we can automatically combine 
data from multiple tables in this collec-
tion. This is an area of active research.

Another opportunity is to combine 
data from multiple tables with data 
from other sources, such as unstruc-
tured Web pages or Web search que-
ries. For example, Marius Paşca also 
considered the task of identifying at-
tributes of classes.15 That is, his sys-
tem first identifies classes such as 
“Company,” then finds examples such 
as “Adobe Systems,” “Macromedia,” 
“Apple Computer,” “Target,” and 
so on, and finally identifies class at-
tributes such as “location,” “CEO,” 
“headquarters,” “stock price,” and 
“company profile.” Michael Cafarella 
and his colleagues showed this can be 
gleaned from tables, but Paşca showed 
it can also be extracted from plain 
text on Web pages and from user que-
ries in search logs. That is, from the 
user query “Apple Computer stock 
price” and from the other information 
we know about existing classes and 
attributes, we can confirm that “stock 
price” is an attribute of the “Com-
pany” class. Moreover, the technique 
works not just for a few dozen of the 
most popular classes but for thou-
sands of classes and tens of thousands 
of attributes, including classes like 
“Aircraft Model,” which has attri-
butes “weight,” “length,” “fuel con-
sumption,” “interior photos,” “speci-
fications,” and “seating arrangement.” 
Paşca shows that including query logs 
can lead to excellent performance, 
with 90 percent precision over the top 
10 attributes per class.

So, follow the data. Choose a rep-
resentation that can use unsupervised 
learning on unlabeled data, which is 
so much more plentiful than labeled 
data. Represent all the data with a 

nonparametric model rather than try-
ing to summarize it with a parametric 
model, because with very large data 
sources, the data holds a lot of detail. 
For natural language applications, 
trust that human language has already 
evolved words for the important con-
cepts. See how far you can go by ty-
ing together the words that are already 
there, rather than by inventing new 
concepts with clusters of words. Now 
go out and gather some data, and see 
what it can do.
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