
An Overview
of Google's
Commitment
to Secure
by Design

Introduction 1

"Secure by Design" versus "Secure by Default" ..1

Pledge Goal 1:
Multi-Factor Authentication (MFA) 2

Google’s Journey with MFA ... 2

Use of MFA in our Products.. 3

MFA in the Google Enterprise ... 3

Pledge Goal 2:
Default Passwords 4

Hardware ..4

Software and Services ...4

Pledge Goal 3: Reducing
Entire Classes of Vulnerability 5

Safe Coding ...5

Safe Developer Ecosystems ..6

Cross-Site Scripting (XSS) .. 7

Additional Classes of Web Application Vulnerabilities8

SQL Injection (SQLi) ...8

Memory Safety Vulnerabilities...9

Insecure Use of Cryptography .. 10

Android-specific Vulnerabilities ... 11

Pledge Goal 4:
Security Patches 12

Web-Based and Cloud Services ..12

Chrome Browser ... 14

Android ... 14

Contents

Pledge Goal 5: Vulnerability
Disclosure Policy 16

A Closer Look at Google’s Vulnerability Reward Programs 16

Pledge Goal 6: CVEs 18

Issuance of CVEs .. 19

Product Bulletins ... 19

Pledge Goal 7:
Evidence of Intrusions 20

Google Accounts... 20

Google Safe Browsing .. 20

Android ..21

Google Cloud ...21

Google Workspace ..22

Conclusion: Building and
Sustaining a Security Culture 23

Contributors 24

An Overview of Google's Commitment to Secure by Design Contents

1

Introduction
In an increasingly interconnected
world, the concept of Secure by
Design has emerged as the critical
path towards designing, implementing,
and maintaining resilient systems. For
over two decades, Google has been
following Secure by Design principles,
embedding security into our products
and development processes, and
sharing our journey with the world.

In May 2024, Google signed the Cybersecurity and
Infrastructure Security Agency’s (CISA) Secure
by Design pledge. As part of this commitment,
we are sharing our approach to Secure by Design
in this paper, focusing on what we have already
accomplished over the past two decades towards
fulfilling the seven goals of the CISA pledge. We will
continue publishing as our journey progresses.

"Secure by
Design" versus
"Secure by
Default"
"Secure by Default" and "Secure
by Design" are often used
interchangeably, but they actually
represent distinct approaches to
building secure systems. While
both aim to minimize vulnerabilities
and enhance security, they differ
in scope and implementation.

Secure by Default focuses on
ensuring that the system's out-of-
the-box default settings are set to a
secure mode, minimizing the need
for users or administrators to take
actions to secure the system. This
approach aims to provide a baseline
level of security for all users.

Secure by Design is a proactive
approach that emphasizes
incorporating security considerations
throughout the entire software
development lifecycle. It's about
anticipating potential threats and
vulnerabilities early on and making

design choices that mitigate
those risks. This approach involves
using secure coding practices,
conducting security reviews, and
embedding security throughout the
design process. Secure by Design
is an overarching philosophy that
guides the development process,
ensuring that security is not an
afterthought but an integral part
of the system's DNA.1 This paper
is primarily focused on Google’s
approach to Secure by Design.

1 For more details, see: Kern, Christoph. 2024. “Secure by Design at Google”. Google Security Engineering Whitepaper. https://storage.googleapis.com/gweb-research2023-media/pubtools/7661.pdf

An Overview of Google's Commitment to Secure by Design Introduction

https://research.google/pubs/developer-ecosystems-for-software-safety-2/
https://sre.google/books/building-secure-reliable-systems/
https://www.cisa.gov/securebydesign/pledge
https://www.cisa.gov/securebydesign/pledge
https://storage.googleapis.com/gweb-research2023-media/pubtools/7661.pdf

2

Pledge Goal 1: Multi-Factor Authentication (MFA)
Password theft, facilitated through tactics like phishing, poses a serious risk
to the online ecosystem2 and Google supports CISA’s goal of increasing
use of Multi-Factor Authentication (MFA). MFA is a major milestone on
the path towards ubiquitous, phishing-resistant authentication.

2-step verification (MFA)
made available for all Google
accounts

February 2011

FIDO Security Keys for
Google Account logins

October 2014

Enabled Android phones
as security key

April 2019 Allow passkeys to
enroll in the Advanced
Protection Program

July 2024

Introduction of
passkeys for Google
Accounts as opt-in
experience

May 2023

Launch of Google
Authenticator and 2-step
verification (MFA) made
available for Google
Workspace

September 2010

Joined the FIDO
alliance

April 2013

Titan Security Keys
become available to
consumers

August 2018

Announced plan to
automatically enable
2-step verification for
eligible accounts

Google introduces Advanced
Protection Program

October 2021

October 2017

Start offering passkeys
by default for all Google
Accounts

October 2023

In February 2011, Google launched SMS-
based MFA as a free option for all Google
users. Research shows that SMS-based
MFA can help block 100% of automated
bots, 99% of bulk phishing attacks, and
66% of targeted attacks. While SMS-
based MFA has had a significant impact
on user security, we have seen evidence
that it is still vulnerable to phishing.3

To address fundamental weaknesses
in authentication mechanisms, in 2013,
Google joined the Fast IDentity Online
(FIDO) Alliance, an industry coalition
including companies like Mastercard

and Apple, focused on open standards
and protocols to deliver strong MFA
solutions. Since then, Google has
contributed to FIDO’s initiatives for
security keys and passkeys. Security
keys enable hardware-based MFA and
are effective at reducing the likelihood
of phishing attacks. In 2019, Google
teamed up with researchers from New
York University and the University of
California, San Diego for a year-long
study on wide-scale and targeted
attacks. Zero users that exclusively used
security keys fell victim to targeted
phishing during our investigation.

Google has also worked with the
FIDO Alliance on the development of
passkeys. Passkeys are a safer and easier
alternative to passwords, allowing users
to sign in to apps and websites with a
fingerprint or facial recognition. They do
not require special hardware, improving
overall usability, but are still based on the
same FIDO protocols as security keys.
Since launching passkeys, they have been
used to authenticate users more than
2.5 billion times across over 750 million
Google Accounts. Passkeys are available
free of charge to all of our users.

2 In 2013, we published on the epidemic of poor password security. Grosse, E. and Upadhyay, M. "Authentication at Scale." In IEEE Security & Privacy, vol. 11, no. 1, pp. 15-22, Jan.-Feb. 2013, doi: 10.1109/
MSP.2012.162.
3 CISA’s Cyber Safety Review Board has called for broad adoption of FIDO(2) solutions and the deprecation of SMS for delivery of MFA codes. See "REVIEW OF THE ATTACKS ASSOCIATED WITH LAPSUS$
AND RELATED THREAT GROUPS", July 24, 2023 pg 32-33.

Our journey with MFA

An Overview of Google's Commitment to Secure by Design Pledge Goal 1: Multi-Factor Authentication (MFA)

https://googleblog.blogspot.com/2011/02/advanced-sign-in-security-for-your.html
https://googleblog.blogspot.com/2011/02/advanced-sign-in-security-for-your.html
https://googleblog.blogspot.com/2011/02/advanced-sign-in-security-for-your.html
https://security.googleblog.com/2014/10/strengthening-2-step-verification-with.html
https://security.googleblog.com/2014/10/strengthening-2-step-verification-with.html
https://blog.google/technology/safety-security/your-android-phone-is-a-security-key/
https://blog.google/technology/safety-security/google-passkeys-advanced-protection-program/
https://blog.google/technology/safety-security/google-passkeys-advanced-protection-program/
https://landing.google.com/advancedprotection/
https://landing.google.com/advancedprotection/
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html
https://security.googleblog.com/2023/05/so-long-passwords-thanks-for-all-phish.html
https://cloud.googleblog.com/2010/09/a-more-secure-cloud-for-millions-of.html
https://cloud.googleblog.com/2010/09/a-more-secure-cloud-for-millions-of.html
https://cloud.googleblog.com/2010/09/a-more-secure-cloud-for-millions-of.html
https://cloud.googleblog.com/2010/09/a-more-secure-cloud-for-millions-of.html
https://www.cnet.com/news/privacy/google-joins-fidos-crusade-to-replace-passwords/
https://www.cnet.com/news/privacy/google-joins-fidos-crusade-to-replace-passwords/
https://blog.google/technology/safety-security/protect-your-online-accounts-titan-security-keys/
https://blog.google/technology/safety-security/protect-your-online-accounts-titan-security-keys/
https://blog.google/technology/safety-security/protect-your-online-accounts-titan-security-keys/
https://blog.google/technology/safety-security/making-sign-safer-and-more-convenient/
https://blog.google/technology/safety-security/googles-strongest-security-those-who-need-it-most/
https://blog.google/technology/safety-security/passkeys-default-google-accounts/
https://blog.google/technology/safety-security/passkeys-default-google-accounts/
https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html
https://fidoalliance.org/
https://fidoalliance.org/
https://security.googleblog.com/2019/05/new-research-how-effective-is-basic.html
https://blog.google/technology/safety-security/google-passkeys-update-april-2024/

3

Use of MFA in our Products
At Google, we have seen first-hand how
automatically enabling MFA for users decreases the
rates of account hijacking due to password theft.

Google auto-enrolls eligible consumer
users4 into account-level MFA (also
called 2-Step Verification or “2SV”). As a
result, MFA is required when signing into
a Google Account from a new device.
Since 2021, Google has automatically
enrolled over 400 million consumer
accounts into MFA. Additionally, Google
also requires MFA for any sign-in session
that appears out of the ordinary to our
risk engine, irrespective of whether the
user is specifically enrolled in MFA. In
practice, this means MFA is available,
and in use, free of charge to all users
who have a phone number or other
means of verification on file. More than
70% of Google Accounts, owned by
people regularly using our products,
automatically benefit from this feature.

or all of their users, and also restrict
the types of MFA methods that may be
used. For example, some users may only
be allowed to use phishing-resistant
security keys or passkeys, while others
may be allowed to use any method
except SMS-based MFA. Administrators
also have the option of enforcing MFA
after a SAML sign-in, offering protection
against the scenario where an Identity
Provider has been compromised.

In 2023, Google enforced MFA for
all Workspace reseller administrator
accounts, and started enforcing MFA
for customer administrator accounts
as well. For Google Cloud, additional
efforts to increase MFA adoption are
underway, moving to a model requiring

More than 70% of
Google Accounts,
owned by people
regularly using
our products,
automatically benefit
from this feature.

MFA in the Google Enterprise
Google adopted FIDO-backed
security keys in 2013 to protect our
internal accounts and systems.

Every member of our workforce, including third-parties with
access to our systems, is required to use a security key managed
and issued by us. Combined with additional defense-in-depth
measures, security keys have enabled us to successfully
defend against sophisticated and serious attacks.

MFA for all users. Near the end of 2024,
Google Cloud will be encouraging all
customers to enroll and enable MFA via
in-console messaging. Starting in 2025,
Google will roll out mandatory MFA
enforcement for all Google Cloud users
that log in with a password. Finally,
later in 2025, Google will roll out MFA
enforcement for all users who federate
authentication to Google Cloud.

All our MFA features, Enterprise
Single Sign-on, and ongoing work
on default policies are available
free of charge to all Workspace
and Google Cloud customers.

Google provides defaults which we
believe are in the best interest of
our customers, as well as options for
customers to adjust these defaults if they
wish. Google Cloud Administrators can
directly enforce the use of MFA for some

4 Eligible consumer users are users that have provided us with enough information to deliver MFA as a service, for example, a phone number for SMS-based MFA. If a user has not provided us with this information (as is the case for many early
accounts), then we ask the user for this information in the course of further protecting the account.

An Overview of Google's Commitment to Secure by Design Pledge Goal 1: Multi-Factor Authentication (MFA)

4

Pledge Goal 2: Default Passwords
Default passwords used in software and hardware can be easily discovered
by threat actors. This basic vulnerability is an area Google has addressed by
implementing best practices across our hardware and software ecosystem,
and including it as a component of our security reviews. If a default password
was present in our products, we would treat that as a vulnerability and
handle it through our established processes for remediating issues.

Hardware
When designing retail hardware-based product
lines, Google uses a system setup and maintenance
life cycle that links the device to the user’s Google
account and does not rely on preconfigured
passwords on these devices. For instance,
configuring a new Nest smart home device, Google
Pixel phone, Google TV streamer, or Fitbit wearable
requires the user to log in with an individual Google
account. Additionally, smart home device setup
using a mobile app such as Google Nest or Google
Home requires the device to be within Bluetooth
range of the mobile phone and the device needs
to be on the local WiFi network. For devices like
Google Nest cameras, routers, and Chromecast
streamers, a code on the device (e.g., a QR code)
needs to be scanned or typed in by the user to
prove physical possession before being able to
link the product to a home data structure.

Smart home devices are managed by the user via
a Google mobile app (e.g., Nest, Google Home)
and can be accessed via the mobile app or a Web
app. This access relies on a Google account and
device linking, not on default passwords. In addition,
there is no support for remote administration, for
example, in a corporate environment. Factory reset
logic is available and allows the user in possession
of the device to wipe user data and unlink
devices from their account. Return Merchandise
Authorization (RMA) servicing for these devices
uses factory reset within processes defined by
Google. Similarly, RMA for Pixel devices is driven
by systems owned by Google that enable an RMA
agent to safely handle returned devices, including
the removal of user data and factory reset.

Software and Services
Google’s software-based services are similarly set
up and accessed using a Google Account. Enterprise
Cloud-based services such as Workspace and Google
Cloud are managed by organization administrators.
The setup process for these accounts does not involve
default passwords. Cloud-based API services leverage
a centralized Cloud IAM service that relies on industry-
standard authentication mechanisms (e.g., OAuth 2.0,
OpenID Connect), eliminating the need for additional
credentials. When a domain administrator creates a
new user in the Google Workspace Admin Console,
Google automatically generates a strong password.

An Overview of Google's Commitment to Secure by Design Pledge Goal 2: Default Passwords

5

Pledge Goal 3:
Reducing Entire
Classes of Vulnerability
Google’s products and services
are built on top of platforms,
such as our custom production
environment, Google Cloud,
and Android, as well as platforms
defined by public standards, like
the Web Platform and foundational
Internet protocols, all of which
have enabled our ability to address
vulnerabilities at scale over time.
As part of our platform work, Google
has built simple, safe, and reliable
libraries, abstractions, and application
frameworks for our developers to use
with the goal of eliminating classes of
vulnerabilities in the code they write.

Safe Coding
The principle of Safe Coding is based
on the idea that APIs and platform
features should be inherently safe in
any reasonable usage, and not only
when developers carefully adhere
to complex and difficult-to-reason-
about secure-coding guidelines. A key
observation informing the Safe Coding
approach is that common classes of
vulnerabilities in software applications
tend to arise from the design of APIs,
libraries, and platforms that developers
use when building and deploying these
applications. The design of an API or
platform feature can be inherently
risky, in that it requires the developer to

carefully write the code that uses the
API so as to ensure a critical security
property or invariant; if the developer
makes a subtle mistake and their code
fails to ensure the security property, an
exploitable vulnerability might be present.

In other words, each use of the risky
API or platform feature in question
is potentially vulnerable, unless the
developer carefully adhered to secure-
coding and -configuration guidelines
and avoided making any mistake. Given
a substantial number of potential
vulnerabilities, some actual vulnerabilities
tend to sneak into code or configuration.
And once a vulnerability has been

introduced, efforts to discover and fix it
(such as code review, static or dynamic
code analysis) are inherently incomplete
and unable to find every single instance.

At Google, we've found that the most
effective approach to address classes of
vulnerabilities due to potentially pervasive
coding or configuration errors (such as
bugs in code relying on widely-used APIs
or platform features) is to replace risky,
mistake-prone APIs and platform features
with functionally equivalent APIs that
are designed to be safe by design, and
which protect developers from the risk
of accidentally introducing vulnerabilities
– thereby enabling Safe Coding.

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

6

Safe Developer
Ecosystems
To fully realize the benefits of Safe
Coding, it is helpful to consider all
aspects of the developer ecosystem
in which applications are designed,
developed, and deployed. 5 This includes
programming languages, software
libraries, application frameworks, source
repositories, build and deployment
tooling, as well as the deployment
platform and its configuration surfaces.

Most of Google's large scale user-facing
services, including Search, Ads, Gmail,
Docs, as well as core control- and data-
plane components of Google Cloud, are
developed in a shared repository using
a trunk-based development paradigm.6
Foundational components of this
developer ecosystem are developed

5Kern, Christoph. "Developer Ecosystems for Software Safety." Communications of the ACM 67.6 (June 2024), 52-60. https://doi.org/10.1145/3651621.
6Potvin, Rachel and Levenberg, Josh. 2016. "Why Google stores billions of lines of code in a single repository." Commun. ACM 59, 7 (July 2016), 78–87. https://doi.org/10.1145/2854146.

Google’s experience
applying Safe Coding
to several classes
of security defects
shows that it is
possible, and can
be done in a cost-
effective manner.

and maintained centrally by teams of
domain experts. This includes security-
critical and -relevant libraries (such as
cryptographic primitives and protocols,
authentication, authorization, RPC
servers and clients, and so forth), as well
as higher-level application frameworks
that provide opinionated assemblies
of vetted components for classes of
applications and services, such as Web
frontends and microservice backends.

This centralization enables domain
experts to instill best practices across
classes of applications, in domains
including security and privacy, but
also reliability, scalability, code
health, and maintainability. For critical
properties, the centrally managed
toolchain can be leveraged to ensure
adherence to best practices with a
high degree of assurance. For example,
certain risky, subtle low-level APIs
and framework features should not
be used in general application code
unless truly necessary, and if so, only
when subject to domain expert review.
In Google's shared repository, this
practice is upheld through a feature
of the central build system, which
supports restrictions on packages
that may depend on such a low-level
API; the repository's code review
workflow ensures that additions to the
allowlist are reviewed by appropriate
domain experts. Similarly, custom,
domain-specific code conformance
checks are enforced through plugins
in the centrally managed compiler
toolchain. Higher-level application
frameworks are structured to require
expert review before an application
developer can modify critical safe
default configurations. Finally,
the shared repository provides
tooling for automated large scale
changes which is used to retrofit
improvements, such as migrating uses
of risky APIs to safer alternatives.

Google's developer ecosystem is
designed to support development
of common classes of applications,
including Web applications, backend
microservices, API frontends, and
mobile applications, with 100s to
1000s of individual applications and
services in each class. This broadly used
developer ecosystem is complemented
by bespoke developer ecosystems
tuned to the specific needs of products
like Android, Chrome, and ChromeOS,
and certain components of Google
Cloud. These bespoke developer
ecosystems similarly provide libraries
and frameworks in support of security
properties, for example, isolation of
and mediated communication between
subsystems in Chrome,7, 8 memory safety
in Android and Chrome (discussed
below), or third-party dependency
management in Cloud products.

It is not straightforward to (re)-design
developer ecosystems and their
components, APIs, and platforms to
provide a Safe Coding environment.

However, Google’s experience applying
Safe Coding to several classes of
security defects over the past decade
shows that it is possible, and can be
done in a cost-effective manner.

We discuss many of these methodologies
in Building Secure and Reliable Systems
and highlight some key areas of long-term
investment in the following sections.

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

https://doi.org/10.1145/3651621
https://doi.org/10.1145/2854146
https://cloud.google.com/security/products/assured-open-source-software?e=48754805
https://cloud.google.com/security/products/assured-open-source-software?e=48754805
https://sre.google/books/building-secure-reliable-systems/

7

Cross-Site
Scripting (XSS)
Cross-site scripting (XSS) has been one
of the major web security vulnerabilities
for over a decade, ranking 2nd in the
Stubborn Weaknesses in the CWE Top
25, and being the most commonly
reported vulnerability class across
several popular online bug bounty
platforms. This is why Google focused
on this vulnerability class and proactive
measures to drastically reduce its
occurrence in our major products.
Because core web technologies allow
unsafely mixing code and data (for
example, HTML permits the loading
of <script> elements which execute
arbitrary JavaScript code alongside
harmless presentational markup), XSS is
common whenever developers compose
web pages using data outside of their
control without first escaping, sanitizing,
or otherwise validating it. Any malicious
scripts injected into a web page execute
in users' browsers with the privileges
of the affected web origin, giving the
attacker full control over a user's session
and allowing them to view or edit the
user's data, or perform other malicious
actions in the vulnerable application.

At Google, our approach to addressing
XSS in sensitive services is two-fold
and relies on hardening internal
application development frameworks
using the Safe Coding approach, and
developing and enabling defense-
in-depth anti-XSS mechanisms built
directly into web browsers. Google’s
internal frameworks replace unsafe
APIs with inherently secure alternatives,
such as those provided by strictly
autoescaping template systems or
client-side frameworks, such as the
safevalues library. These safe APIs are
designed to ensure the absence of
specific vulnerability classes and their
usage is verified during compile-time
(e.g., through tools such as the safety-
web plugin and internal equivalents).

Our hardened web frameworks enable
these protections by default and are
designed to prevent developers from
disabling them without undergoing
a review by security experts.

To complement these compile-time
security features, Google’s application
development frameworks also make
use of core web platform defenses
enforced at run-time by users'
browsers, such as Content Security
Policy and Trusted Types. Google
actively collaborates with the W3C and
web browser makers to develop and
enhance these web platform security
features and enable them by default
for all of our recommended application
development frameworks. Furthermore,
Google proactively backports these
security features at scale to protect
existing applications (brownfield
applications) from XSS vulnerabilities.
This ensures that even applications
launched before the widespread
adoption of safe defaults benefit
from enhanced security measures.

These compile-time and run-time
security controls work together to
provide defense-in-depth protection
against XSS in sensitive services,
ensuring that even if one security

mechanism were to fail, others remain
active and will prevent or mitigate
the impact of a vulnerability. Data
supports the conclusion that our
proactive approach to addressing XSS
has been highly effective. In the past
three years, for hundreds of complex
web applications that are built on
Google’s hardened and safe-by-
design frameworks, we've averaged
less than one XSS report per year in
total. As an example, Google Photos
was developed on secure-by-design
frameworks from the outset, and has
had no XSS vulnerabilities discovered
in its codebase during its full lifetime.
Additionally, by proactively backporting
these security features at scale to
existing applications, we've reduced
XSS vulnerabilities in core Google
products by 90% over the past decade.

Google focused on
this vulnerability
class and proactive
measures to
drastically reduce
its occurrence in
our major products.

7 Barth, Adam et al. 2008. "The security architecture of the Chromium browser." Technical report. Stanford University. https://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf.
8 Reis, Charles et al. 2019. "Site isolation: Process separation for web sites within the browser." 28th USENIX Security Symposium (USENIX Security 19).https://www.usenix.org/system/files/sec19-reis.pdf.

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

https://owasp.org/www-community/attacks/xss/
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://www.hackerone.com/resources/reporting/7th-annual-hacker-powered-security-report-2023
https://www.hackerone.com/resources/reporting/7th-annual-hacker-powered-security-report-2023
https://web.dev/articles/same-origin-policy
https://research.google/pubs/if-its-not-secure-it-should-not-compile-preventing-dom-based-xss-in-large-scale-web-development-with-api-hardening/
https://security.googleblog.com/2020/07/
https://security.googleblog.com/2020/07/
https://github.com/google/closure-templates/blob/master/documentation/dev/security.md#strict-autoescaping-strict
https://github.com/google/closure-templates/blob/master/documentation/dev/security.md#strict-autoescaping-strict
https://github.com/google/safevalues
https://github.com/google/safety-web
https://github.com/google/safety-web
https://web.dev/articles/strict-csp
https://web.dev/articles/strict-csp
https://web.dev/articles/trusted-types
https://security.googleblog.com/2016/09/reshaping-web-defenses-with-strict.html
https://security.googleblog.com/2016/09/reshaping-web-defenses-with-strict.html
http://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security
http://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security
https://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
https://www.usenix.org/system/files/sec19-reis.pdf

8

SQL Injection (SQLi)
SQL injection (SQLi) is a common class of security vulnerability,
ranking 3rd in the Stubborn Weaknesses in the CWE Top 25. In
2013, Google embarked on an effort to address the risk of SQL
injection vulnerabilities in applications built on our large-scale
production databases in the shared developer ecosystem
described in the above section on Safe Developer Ecosystems.
As a result, we have not seen any SQL injection vulnerabilities
across these 100s of applications over the past decade.

SQLi vulnerabilities arise from a coding error whereby
untrustworthy string fragments are incorporated
into a SQL query, potentially allowing attackers
to inject malicious query fragments that result in
unauthorized access to or modification of data.

The systemic root cause for this vulnerability lies in the typical
design of database query APIs, which accept the SQL query
in the form of a general-purpose string. This API design places
responsibility on developers writing application code that
dynamically constructs a SQL query (a common pattern in web
applications) to ensure that all query fragments are trustworthy
and safe to use as part of a query. In complex applications,
it's easy to make a mistake resulting in a vulnerability, and
after-the-fact code review and static or dynamic analysis
are inherently unable to reliably discover all vulnerabilities.

Google addressed this systemic root cause by re-designing the
API: We changed database query APIs available to developers
in our shared repository, in particular the SQL query APIs
for the large-scale databases (Spanner9 and F110) that are
widely used as persistence layers for Google's user-facing
applications. These APIs no longer accept SQL queries in the
form of a simple string. Instead, secure-by-design SQL APIs
require developers to supply queries in the form of a custom
data type, TrustedSqlString, that represents safely constructed
queries. The custom type's constructors and builder APIs are
designed to ensure this property for all instances of the type.
11 The implementations of the data type and its constructors
are curated and reviewed by security experts, and our shared
repository and its build system ensure that application code
indeed uses these secure-by-design Spanner and F1 query APIs,
while occasionally necessary uses of lower-level, potentially
unsafe query APIs are subject to security review and approval.

If a developer were to write code that supplies an unsafely
constructed query string to a secure-by-design database
API, it would be rejected by the compiler's type checker,
and fail to build. Therefore, Google gains a high degree of
confidence that every application in our shared repository that
uses secure-by-design database APIs (such as the Spanner
SQL query API) is free of SQL injection vulnerabilities.

Additional Classes of Web Application Vulnerabilities
Beyond injection attacks such as XSS, a wide range of
common web application vulnerabilities stem from inadequate
isolation guarantees provided by the web platform itself.
This includes well-known threats such as Cross-Site Request
Forgery (CSRF) and clickjacking, as well as emerging attack
vectors such as cross-site leaks and microarchitectural
issues that allow bypassing browser-enforced web
security boundaries, including Spectre and its variants.

Such isolation issues occur when distinct web applications
opened by the same browser lack logical separation,
allowing malicious websites to interact with sensitive
services in unexpected ways. This enables malicious
actors to exploit the interplay between these web
applications, leading to unauthorized access to user
data or execution of unintended actions on behalf of
users logged into a sensitive web application.

Certain vulnerabilities, such as CSRF, can be mitigated through
custom protections such as requiring CSRF tokens for HTTP

methods that modify state. However, many isolation-based
vulnerabilities necessitate the use of "native" web platform
security features such as SameSite cookies, X-Frame-Options
(XFO), Cross-Origin Opener Policy (COOP), Cross-Origin
Resource Policy (CORP), and Fetch Metadata Request Headers.

Google has participated in the design and enhancement
of many of these web platform mechanisms, made best
practices available to the industry (example), and, as
with all other web application security controls, enabled
them by default within our hardened frameworks.

To facilitate targeted remediation, we utilize our Security Signals
infrastructure to identify endpoints that require protections
but haven't yet enabled them. This strategic approach allows
us to prioritize our efforts based on application sensitivity and
deploy security controls precisely where they are most needed.
This data-driven approach also informs Google’s large-scale
efforts to backport security controls, ensuring that even legacy
applications benefit from the latest web platform defenses.

9 Bacon, D. F. et al. 2017. "Spanner: Becoming a SQL System." In Proceedings of the 2017 ACM International Conference on Management of Data (SIGMOD '17). Association for Computing Machinery,
New York, NY, USA, 331–343. https://doi.org/10.1145/3035918.3056103.
10 Shute, Jeff et al. "F1: A distributed SQL database that scales." Proceedings of the VLDB Endowment 6.11 (2013): 1068-1079. https://doi.org/10.14778/2536222.2536232.
11 An implementation in the Go language that illustrates this approach is available at https://github.com/google/go-safeweb/tree/master/safesql.

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://meltdownattack.com/
https://web.dev/articles/fetch-metadata
https://research.google/pubs/security-signals-making-web-security-posture-measurable-at-scale/
https://bughunters.google.com/blog/4562175388155904/externalizing-the-google-domain-tiers-concept
https://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security
https://bughunters.google.com/blog/5896512897417216/a-recipe-for-scaling-security
https://doi.org/10.1145/3035918.3056103
https://doi.org/10.14778/2536222.2536232
https://github.com/google/go-safeweb/tree/master/safesql

9

Memory Safety
Vulnerabilities
Memory safety vulnerabilities have
consistently represented around two-
thirds of software vulnerabilities in
memory-unsafe languages like C and
C++. 12 The CWE project's list of 15 most
stubborn software weaknesses includes
five classes of memory safety defects.

Google's journey with memory safety
is intertwined with the evolution of the
software industry itself. In our early
days, we recognized the importance of
balancing performance with safety. This
led to the early adoption of memory-safe
languages like Java and Python, and the
creation of Go. Today these languages
comprise a large portion of Google’s
code base, providing memory safety
among other benefits. We continue to
invest in our memory-safe language
offerings to prevent the introduction of
new memory safety vulnerabilities by
design, using Safe Coding principles.

A large component of this push is to
expand the adoption of Rust in places
where C++ was previously the language
of choice, due to high performance
demands. Google is also investing in
improved interoperability between
memory-safe languages and C++ to
accelerate this transition through tools
like Crubit and experimental languages
like Carbon.

We have outlined our perspective on
memory safety in the past and our
recent blog post shows our strategy for
advancing memory safety at Google.

Briefly, Google’s strategy takes
a two-pronged approach:

1. Enabling high-performance
future code to be written in a
memory safe language, combined
with targeted rewrites of
security-critical or problematic
components. To that end, we are
investing to expand Rust usage
at Google. This will unlock the
use of memory safe languages
in low-level code environments
where C and C++ have typically
been the language of choice.

2. Mitigating the risk of memory-
unsafe code. Alongside proactive
bug detection, workload isolation,
and exploit mitigation, we are
prioritizing the elimination of
subclasses of memory-safety
vulnerabilities in our memory-
unsafe code to the extent

possible, using secure-by-
design principles. For instance,
we are working to eliminate
spatial safety vulnerabilities by
retrofitting bounds checking.

Google has seen benefits of making
these improvements over time. For
example, Android has seen a decrease
in the number of memory safety
vulnerabilities reported between 2019
- 2024 (from 76% to 24% of Android’s
total vulnerabilities). In Chrome, we
have been rolling out MiraclePtr, a
new smart pointer that quarantines
allocations that have known pointers.
This has mitigated 57% of use-after-free
vulnerabilities in privileged processes,
and has been linked to a decrease
in in-the-wild exploits. 13 MiraclePtr
is considered a declarative security
boundary and a valid submission of a
MiraclePtr bypass is now eligible for
a vulnerability reward of $250,128.

As we advance in our pursuit of
memory safety, we will continue to
share updates on our progress.

We continue
to invest in our
memory-safe
language offerings
to prevent the
introduction of new
memory safety
vulnerabilities
by design.

12 https://www.memorysafety.org/docs/memory-safety/#how-common-are-memory-safety-vulnerabilities
13 https://security.googleblog.com/2024/01/miracleptr-protecting-users-from-use.html and https://blog.google/technology/safety-security/a-review-of-zero-day-in-the-wild-exploits-in-2023/

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://cwe.mitre.org/top25/archive/2023/2023_stubborn_weaknesses.html
https://blog.google/technology/safety-security/tackling-cybersecurity-vulnerabilities-through-secure-by-design/
https://github.com/google/crubit
https://github.com/carbon-language/carbon-lang
https://research.google/pubs/secure-by-design-googles-perspective-on-memory-safety/
https://research.google/pubs/secure-by-design-googles-perspective-on-memory-safety/
https://security.googleblog.com/2024/10/safer-with-google-advancing-memory.html
https://bughunters.google.com/blog/6368559657254912/llvm-s-rfc-c-buffer-hardening-at-google
https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html
https://security.googleblog.com/2024/01/miracleptr-protecting-users-from-use.html
https://security.googleblog.com/2024/01/miracleptr-protecting-users-from-use.html
https://bughunters.google.com/blog/5302044291629056/chrome-vrp-reward-updates-to-incentivize-deeper-research
https://www.memorysafety.org/docs/memory-safety/#how-common-are-memory-safety-vulnerabilities
 https://security.googleblog.com/2024/01/miracleptr-protecting-users-from-use.html
https://blog.google/technology/safety-security/a-review-of-zero-day-in-the-wild-exploits-in-2023/

10

Insecure Use of
Cryptography
As we wrote in Building Secure and
Reliable Systems, cryptographic code
is particularly prone to subtle mistakes.
Many cryptographic primitives (such as
cipher and hash algorithms) have failure
modes that are difficult for non-experts
to recognize. For example, in certain
situations where encryption is combined
improperly with authentication (or
used without authentication at all),
an attacker who can only observe
whether a request to a service fails
or is accepted can nevertheless use
the service as a so-called “decryption
oracle” and recover the clear text of
encrypted messages. A non-expert who
is not aware of the underlying attack
technique has little chance of noticing
the flaw: the encrypted data looks
perfectly unreadable, and the code is
using a standard, recommended, and
secure cipher like AES. Nevertheless,
because of the subtly incorrect usage
of the nominally secure cipher, the
cryptographic scheme is insecure. In our
experience, code involving cryptographic
primitives that was not developed and
reviewed by experienced cryptographers
commonly has serious flaws.

This led Google to develop Tink:
a library that enables engineers to use
cryptography safely in their applications.
Tink was born out of our extensive
experience working with Google
product teams, fixing vulnerabilities
in cryptography implementations,
and providing simple APIs that
engineers without a cryptographic
background can use safely.

Tink also provides a solution for key
management, integrating with Google's
Cloud Key Management Service (KMS)
and AWS Key Management Service.
Many cryptographic libraries make
it easy to store private keys on disk,
and make adding private keys to your
source code even easier – practices

14 https://errorprone.info/bugpattern/InsecureCryptoUsage, note that in our shared repository's toolchain, suppressing this check is subject to domain expert review.
15 Erbsen, A. et al. 2020. "Simple high-level code for cryptographic arithmetic: With proofs, without compromises." ACM SIGOPS Operating Systems Review, 54(1), 23-30. https://doi.org/10.1145/3421473.3421477.
16 Kuepper, Joel et al. 2023. "CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives." Proc. ACM Program. Lang. 7, PLDI, Article 158 (June 2023), 25 pages. https://doi.org/10.1145/3591272
17 https://bughunters.google.com/blog/6038863069184000/formally-verified-post-quantum-algorithms

Tink reduces the potential for common cryptography
pitfalls, and provides secure APIs that are easy to
use correctly and hard(er) to misuse. The following
principles guided Tink’s design and development:

• Secure by Default: The library provides an API that’s hard
to misuse. For example, the API does not permit reuse
of nonces in Galois Counter Mode – a fairly common but
subtle mistake that was specifically called out in RFC 5288,
as it allows authentication key recovery that leads to a
complete failure of the AES-GCM mode’s authenticity.

• Usability: The library has a simple and easy-to-use API, so
a software engineer can focus on the desired functionality
– for example, using block and streaming Authenticated
Encryption with Associated Data (AEAD) primitives.

• Readability and Auditability: Functionality is
clearly readable in code, and Tink maintains control
over employed cryptographic schemes.

• Agility: Tink has built-in key rotation and supports deprecation
of obsolete/broken schemes. This further facilitates migration
to new algorithms, like post-quantum cryptography.

• Interoperability: Tink is available in many
languages and on many platforms.

that are strongly discouraged. Even if
you run “keyhunt” and “password hunt”
activities to detect and scrub secrets
from your codebase and storage
systems, they are point-in-time and
will be incomplete, leading to repeated
key management-related incidents.
In contrast, Tink’s API encourages use
of a key management service. Using
key material directly is only possible
using special APIs which are easily
audited (or controlled by an allowlist).

Google uses Tink to secure the data
of many products, and it is now the
recommended library for protecting
data within Google and when
communicating with third parties.
By providing abstractions with well-
understood properties (such as
“authenticated encryption”) backed
by well-engineered implementations,

it allows security engineers to focus on
higher-level aspects of cryptographic
code without having to be concerned
with lower-level attacks on the underlying
cryptographic primitives. We use
our build system's constraints on
package dependencies to block un-
reviewed use of certain cryptographic
libraries, and we have implemented
custom static checks to flag certain
common unsafe usage patterns.14

Google also employs formal verification
to produce high-assurance cryptographic
code for use in our cryptographic
libraries. 15, 16, 17 This provides mathematical
proof that cryptographic operations are
functionally correct and free of critical
implementation vulnerabilities. Formal
verification allows us to conclusively
rule out bugs and vulnerabilities
early in the development process.

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

https://sre.google/books/building-secure-reliable-systems/
https://sre.google/books/building-secure-reliable-systems/
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://github.com/tink-crypto/tink
https://errorprone.info/bugpattern/InsecureCryptoUsage
https://doi.org/10.1145/3421473.3421477
https://doi.org/10.1145/3591272
https://bughunters.google.com/blog/6038863069184000/formally-verified-post-quantum-algorithms
https://doi.org/10.17487/RFC5288

11

Android-specific Vulnerabilities
Android leverages vulnerability data from internal and
external sources (like Google’s vulnerability reward
programs) to identify classes of vulnerabilities. We then
work closely with feature teams to harden the Android
platform by building mitigations into major releases.

For example, Android has introduced Safer Parcel
Deserialization APIs. Parcelable implementations can have
vulnerabilities that could be exploited by malware to enable
silent package installation and arbitrary code execution.
We have implemented security hardening solutions to the
Android Parcel mechanism to make parcel deserialization
safer. These include: deprecating untyped parcel container
APIs, checking that there are no bytes left to be read on the
parcel, specifying allowed types before deserializing, and
enforcing boundary checks for items in Bundle. Please refer
to our presentation at Black Hat Europe for technical details.18

Other examples of mitigations include Safer Dynamic Code
Loading which prevents an app from being exploited by
loading and executing untrusted code, and the Safer Zip
Path Traversal API which validates ZIP file entry paths via
a new public API called ZipPathValidator. The API throws a
ZipException if ZIP file entry names contain ".." or start with "/".

Finally, through the App Security Improvement Program, we
provide developers with tips and recommendations for building
more secure apps and identify potential security enhancements
when apps are uploaded to Google Play. To date, the program
has helped developers fix over 1,000,000 apps on Google Play.
In 2022 alone, the App Security Improvements program helped
developers fix ~500K security issues affecting ~300K apps
with a combined install base of approximately 250B installs.

18 Ke, Hao et al. 2022. "Android parcels: the bad, the good and the better – Introducing Android’s Safer Parcel." Blackhat Europe. https://i.blackhat.com/EU-22/Wednesday-Briefings/EU-22-Ke-Android-Parcels-Introducing-Android-Safer-Parcel.pdf

An Overview of Google's Commitment to Secure by Design Pledge Goal 3: Reducing Entire Classes of Vulnerability

https://developer.android.com/privacy-and-security/risks/unsafe-deserialization
https://developer.android.com/privacy-and-security/risks/unsafe-deserialization
https://developer.android.com/privacy-and-security/googleplay-asi
https://security.googleblog.com/2023/04/how-we-fought-bad-apps-and-bad-actors.html
https://i.blackhat.com/EU-22/Wednesday-Briefings/EU-22-Ke-Android-Parcels-Introducing-Android-Safer-Parcel.pdf

12

Pledge Goal 4:
Security Patches
While Google strives to minimize
the number of issues in our products
before they are released, we do
know that errors – whether they’re
related to functionality, reliability,
or security – are inevitable when
building complex systems. We
understand that addressing issues
in our products is critical to their
ongoing trustworthiness, and the
trust pact with our users. As such,
Google has developed strategies
over time to ensure high rates
of uptake for our deployed fixes,
especially in cases where reducing
the window of opportunity for
exploitation is safety critical. We
describe some examples below.

Web-Based and Cloud Services
Many of Google’s products are delivered
through web-based services. These
include some of our most widely used
and popular products such as Search,
YouTube, and Gmail. One benefit of
online web-based services is that end-
users and customers do not need to take
any action to update the software should
a vulnerability occur. As such, when
Google deploys a fix for a functionality-,
reliability-, or security-related issue,
it is addressed for our entire user
base once fully deployed according
to our safe release procedures.

When developers run on top of the
managed Google Cloud platform,
they gain the same benefits:

Google can take responsibility for
patching and updating the infrastructure
they run on, so they and their end
users benefit from the scalability and
immediacy of a central solution.

For example, Google Cloud was able to
protect all hosted developers from the
Spectre and Meltdown vulnerabilities
without action on their part.

We developed shared fate in Google
Cloud to start addressing the challenges
that the shared responsibility model
doesn't address. Shared fate focuses
on how all parties can better interact
to continuously improve security.
Shared fate builds on the shared
responsibility model because it
views the relationship between cloud
provider and customer as an ongoing
partnership to improve security.

An Overview of Google's Commitment to Secure by Design Pledge Goal 4: Security Patches

https://sre.google/sre-book/release-engineering/
https://blog.google/products/google-cloud/what-google-cloud-g-suite-and-chrome-customers-need-know-about-industry-wide-cpu-vulnerability/
https://cloud.google.com/architecture/framework/security/shared-responsibility-shared-fate

13

ChromeOS
ChromeOS is built from the ground up
with security as a top priority. Multiple
layers of protection, including Verified
Boot, sandboxing, blocked executables,
and user space isolation, work together
to create a defense against malware
and other threats. This layered
approach, combined with automatic
and seamless updates, has allowed
ChromeOS to remain free of viruses
and ransomware for over a decade.

A key element of this security
strategy is the automatic update
system. Unlike traditional operating

systems that may rely on infrequent,
user-initiated updates, ChromeOS
proactively patches vulnerabilities.

This eliminates the need to wait for
scheduled updates and ensures that
devices are always protected against
the latest threats. ChromeOS achieves

this by storing two images of the OS:
the active version currently in use and
a new version that downloads silently
in the background. When ready, the
system seamlessly installs the update
and, with a simple reboot, switches to
the new, secure image. This process,
combined with Verified Boot which
ensures the integrity of the boot
sequence, provides users with a secure
and consistently updated computing
experience. As of 2023, all Chromebook
platforms receive regular automatic
updates for 10 years after release.

Enabling Enterprise
Administrators
In September 2024, Google Workspace launched
Security Advisor for small and medium-sized
businesses which enables blocking outdated
OS versions and disables access when an OS
is missing appropriate security patch updates.
Before blocking access, enterprise end users
are given a warning upfront to allow them to
act before losing access. This mechanism helps
enterprises remain safe and secure with the latest
operating system versions and security patches.

Google Workspace enterprise customers can also
set a minimum Operating System(OS) version
across MacOS, Windows, Linux, ChromeOS, iOS,
and Android via Context Aware Access (CAA). In
addition, domain administrators can enforce a
Chrome Browser minimum version with CAA. Finally,
customers can use monitor mode to see the potential
impact before enforcing and blocking users.

ChromeOS
proactively patches
vulnerabilities.

An Overview of Google's Commitment to Secure by Design Pledge Goal 4: Security Patches

https://www.chromium.org/chromium-os/chromiumos-design-docs/
https://blog.google/outreach-initiatives/education/automatic-update-extension-chromebook/
https://workspaceupdates.googleblog.com/2024/09/security-advisor-for-workspace-business-editions.html
https://support.google.com/a/answer/15178509
https://support.google.com/a/answer/15178509
https://support.google.com/a/answer/15178509
https://support.google.com/a/answer/9262032?hl=en&ref_topic=9262521&sjid=515347913413229014-NC#zippy=%2Cdefine-access-levelsbasic-mode
https://support.google.com/a/answer/9262032?hl=en&ref_topic=9262521&sjid=515347913413229014-NC#zippy=%2Cdefine-access-levelsbasic-mode
https://support.google.com/a/answer/12645308
https://cloud.google.com/access-context-manager/docs/custom-access-level-spec#device
https://support.google.com/a/answer/12643733

14

Chrome Browser
Chrome updates happen in the
background whether or not the browser
is running. Restarting a running browser
may be necessary to complete the
update, but if no browser is running,
Chrome will update without any user
interaction. Chrome Browser was built
with secure-by-design technology to
provide security patches regularly and
automatically to Chrome users, reducing
the window of vulnerability for exploits.

Chrome Browser has a rapid release
cycle that ensures security patches
are deployed frequently, typically
every week. This rapid response time
helps address vulnerabilities promptly.
Chrome moved from a two-weekly to a
weekly security update cycle in 2023.

Android
Android is an open source operating
system that powers both Google’s Pixel
product line and devices from hundreds
of manufacturers worldwide. Device
makers and carriers are responsible for
deploying patches in their environment,
and to facilitate consistency and
speed of patch delivery, Android has
worked closely with partners to develop
safe mechanisms for updates.

Android has instituted a Security
Patch Level (SPL) that drives the
ecosystem to patch devices regularly.
Android issues regular partner preview
bulletins (to drive patch adoption
with partners), regular public security
bulletins to inform users and the
ecosystem of what patches are
available, and advisories for high-
risk issues. System updates with
security fixes are pushed to user
devices and staged for installation
upon the next device reboot.
Android also has mandatory
requirements for real-time patching
of emergency-class vulnerabilities.

Android also builds and maintains
tooling to detect when partners
are missing security patches and
inform OEMs, as well as tooling, like
Security Hub, to help users understand
patch update status and other
important security characteristics.

A key strategy in scaling security updates
across a broad range of hardware
products at varying price points is to
make it easier and more cost-effective
for device manufacturers to update
software. To this end, Google has spent
years rearchitecting Android, with a
focus on increased compatibility and
centralization of updates by Google.

Major milestones of this journey include
improving hardware compatibility
across updates through Project
Treble, and better collaboration with
system-on-chip (SoC) manufacturers
to deliver pre-tested system images
via GMS Express (2017). In 2019, major
Android components became Google-
updateable through Project Mainline.
Next, in 2020, Generic Kernel Image
(GKI) unified the core kernel and moved
hardware-specific code into loadable
vendor modules, while Linux Protected
KVM (pKVM) Hypervisor created a
harmonized Android trusted execution
environment (TEE). GKI was improved in
2021 with GKI 2.0, which requires signed
kernel images that are patched regularly
by Google with Long-Term Support
(LTS) and critical bug fixes. In 2021, we
also enabled standardized Android
binaries for Secure Element (SE) applets,
including over-the-air updates (Android
ReadySE). Finally, in 2023 we introduced
Android Virtualization Framework (AVF)
to provide standardized interfaces for
Android TEEs and virtual machines.

Google has spent
years rearchitecting
Android, with a
focus on increased
compatibility and
centralization of
updates by Google.

An Overview of Google's Commitment to Secure by Design Pledge Goal 4: Security Patches

https://chromium.googlesource.com/chromium/src/+/main/docs/security/updates.md
https://source.android.com/docs/security/bulletin/asb-overview
https://source.android.com/docs/security/bulletin/asb-overview
https://play.google.com/store/apps/details?id=com.google.android.apps.security.securityhub&hl=en_US&pli=1
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://android-developers.googleblog.com/2017/05/here-comes-treble-modular-base-for.html
https://corp.mediatek.com/news-events/press-releases/mediatek-collaborates-with-google-and-its-gms-express-program-to-deliver-certified-android-software-mobile-services-to-device-makers
https://android-developers.googleblog.com/2019/05/fresher-os-with-projects-treble-and-mainline.html
https://source.android.com/docs/core/architecture/kernel/generic-kernel-image
https://lwn.net/Articles/836693/
https://lwn.net/Articles/836693/
https://lwn.net/Articles/836693/
https://source.android.com/docs/core/architecture/kernel/generic-kernel-image
https://source.android.com/docs/core/architecture/kernel
https://source.android.com/docs/core/architecture/kernel
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://security.googleblog.com/2021/03/announcing-android-ready-se-alliance.html
https://android-developers.googleblog.com/2023/12/virtual-machines-as-core-android-primitive.html

15

Pixel
Google’s Pixel phones and watches powered by Android
are designed to prioritize security and provide users
with the latest features through automatic updates. In
enterprise environments, IT administrators have the
option to disable automatic updates, allowing them
to test new software versions before deploying them
across their fleet of Pixel phones. This flexibility ensures
compatibility and minimizes potential disruptions.

Additionally, Google maintains transparency by publishing
Pixel security phone, tablet and watch bulletins and the
security support periods for Pixel phones and watches,
empowering users to make informed decisions about their
devices' lifespan and ongoing protection. Software updates
for Pixel customers are released regularly and include
security patches. This rollout proceeds gradually and the
updates become available to 100% of customers within two
weeks. The latest Pixel 9 family of devices are guaranteed
Android and security updates until at least August 2031.

Nest
In 2019, Nest established a set of security and privacy
commitments, further strengthened in 2021 by guaranteeing
that all Nest devices will receive automatic security updates
for a minimum of 5 years. Google deploys updates in a rolling
fashion, which typically complete within a three-week period,
and publishes the security support periods for each Nest
device, enabling users to make informed decisions. Additionally,
Google collaborates with security researchers who play a vital
role in identifying vulnerabilities in our devices. Upon discovery
and confirmation of a risk to users, these vulnerabilities
are promptly patched, and the corresponding updates are
automatically deployed to safeguard our users' homes and data.

Fitbit
While automatic updates are the easiest way to keep devices
updated, things get far more complicated in highly constrained
devices. For Fitbit trackers, these devices are small in size,
but need to last a long time before getting charged. Thus,
automatically pushing an update to the device could result
in a failed update if the battery is not fully charged, or cause
the device’s battery to die at an inconvenient time for the
user. Therefore, for these devices, the user is notified that an
update is available, but the user controls when it is applied.

An Overview of Google's Commitment to Secure by Design Pledge Goal 4: Security Patches

https://source.android.com/docs/security/bulletin/pixel
https://source.android.com/docs/security/bulletin/pixel-watch
https://support.google.com/nexus/answer/4457705?hl=en#zippy=%2Cpixel-pixel-pro-pixel-pro-xl-pixel-pro-fold%2Cpixel-a-pixel-pixel-pro
https://support.google.com/product-documentation/answer/12799779?sjid=17315997346661856425-NC
https://support.google.com/pixelphone/answer/4457705?hl=en-GB#zippy=%2Cpixel-pixel-pro-pixel-pro-xl-and-pixel-pro-fold%2Cpixel-a-pixel-and-pixel-pro
https://safety.google/nest/
https://safety.google/nest/
https://support.google.com/product-documentation/answer/10231940

16

Pledge Goal 5: Vulnerability Disclosure Policy
Google’s belief is that building secure and reliable systems requires monitoring
for issues that require study and remediation. This includes security vulnerabilities
that might exist in our products. While Google has proactive measures to detect
issues internally, we are also committed to receiving reports from external sources
and working with the broader Internet community to improve our systems.

Google’s Vulnerability Disclosure Policy reflects our beliefs, providing a clear and
accessible channel for security researchers to report potential issues in our products.

Google has been collaborating
with external security researchers
since 2004. Our reporting process
encourages direct engagement,
fostering a community-based
approach to address security
concerns.19 Security researchers are
encouraged to report issues to us

Public recognition
for researchers

November 2006

Web Application VRP
announced

November 2010

Android VRP
announced

June 2015
Kubernetes Open-
Source Dependency
VRP announced

May 2020

Product Abuse, Fraud and
Spam VRP announced

Google First-Party
Mobile App VRP
announced

August 2018 May 2023

T-Shirt rewards for
Vulnerabilities

October 2004

Chromium VRP
announced

January 2010

Vulnerability Research
Grants launched

January 2015

Google Drive $1m
Research Grant

Open Source Patch
Rewards announced

December 2015

October 2013

Support for CNCF’s
Kubernetes VRP
announced

OSS VRP announced

January 2020

August 2022

A Closer Look at Google’s Vulnerability Reward Programs

that are discovered responsibly
(i.e., Google discourages actions
that could disrupt or harm users).
From there, a panel of Google
security experts reviews each
vulnerability report, assessing
its potential impact and the
sensitivity of the affected service.

Based on this evaluation, rewards
are assigned, ranging from $100 to
$1 million based on the complexity
and severity of the issue.

Over time, Google has evolved the
program by expanding what kinds of
issues qualify for a reward as well as
increasing reward payments.

19 For more information on our Bug Hunters program, see also Hacking Google Episode 004.

An Overview of Google's Commitment to Secure by Design Pledge Goal 5: Vulnerability Disclosure Policy

https://about.google/appsecurity/
https://bughunters.google.com/
https://web.archive.org/web/20061126040536/https://www.google.com/corporate/security.html
https://web.archive.org/web/20061126040536/https://www.google.com/corporate/security.html
https://security.googleblog.com/2010/11/rewarding-web-application-security.html
https://security.googleblog.com/2010/11/rewarding-web-application-security.html
https://security.googleblog.com/2015/06/announcing-security-rewards-for-android.html
https://security.googleblog.com/2015/06/announcing-security-rewards-for-android.html
https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html
https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html
https://security.googleblog.com/2020/05/expanding-our-work-with-open-source.html
https://security.googleblog.com/2018/08/expanding-our-vulnerability-reward.html
https://security.googleblog.com/2018/08/expanding-our-vulnerability-reward.html
https://bughunters.google.com/about/rules/android-friends/6618732618186752/google-mobile-vulnerability-reward-program-rules
https://bughunters.google.com/about/rules/android-friends/6618732618186752/google-mobile-vulnerability-reward-program-rules
https://bughunters.google.com/about/rules/android-friends/6618732618186752/google-mobile-vulnerability-reward-program-rules
https://blog.chromium.org/2010/01/encouraging-more-chromium-security.html
https://blog.chromium.org/2010/01/encouraging-more-chromium-security.html
https://bughunters.google.com/about/rules/other/5479188746993664/vulnerability-research-grant-rules
https://bughunters.google.com/about/rules/other/5479188746993664/vulnerability-research-grant-rules
https://drive.googleblog.com/2015/12/keeping-things-safe-should-be-rewarded.html
https://drive.googleblog.com/2015/12/keeping-things-safe-should-be-rewarded.html
https://security.googleblog.com/2013/10/going-beyond-vulnerability-rewards.html
https://security.googleblog.com/2013/10/going-beyond-vulnerability-rewards.html
https://security.googleblog.com/2020/01/securing-open-source-how-google.html
https://security.googleblog.com/2020/01/securing-open-source-how-google.html
https://security.googleblog.com/2020/01/securing-open-source-how-google.html
https://security.googleblog.com/2023/08/Announcing-Googles-Open-Source-Software-Vulnerability-Rewards-Program%20.html
https://www.youtube.com/watch?v=IoXiXlCNoXg

17

While Google has a broad VRP to
cover all of Google and Alphabet,
we have also established product-
specific VRPs, allowing us to develop
custom guidelines and tailor rewards
for specific areas of interest. An
overview of VRPs at Google and
links to detailed program rules
(including scope and rewards)
can be found on the Google Bug
Hunters site. Also see our blog
post reviewing VRPs in 2023.

2023

Total
awards

$10M

Paid
researchers

632

Countries
represtented

68

Total rewards
since 2010 $59 million

The highest single
reward exceeded
$113,000.

The vulnerability reports submitted
by external researchers inform and
validate our proactive efforts to
address and eliminate classes of
vulnerabilities, and thus provide
an important feedback loop in our
end-to-end security process.

In addition, beyond being a channel
for responsible disclosure, Google
also uses the VRP to incentivize
security research into emerging risk
areas that we believe are of interest
to adversaries. Our bugSWAT events
are a good example: we invite external
security researchers to search for
vulnerabilities in our products side-
by-side with our security team and
support learning by accompanying
these activities with presentations

from our engineering teams.
Google also regularly issues
vulnerability research grants to
accomplished bug hunters and
domain experts – these grants
provide an up-front financial reward
for researching areas of specific
interest to us; any discovered
vulnerabilities are eligible for
additional reward by our VRP.

In 2023, working with our dedicated
bug hunter community, Google
awarded close to $10 million to
600+ researchers based in 68
countries. The highest single reward
exceeded $113,000. Over the
lifetime of the program, more than
18,500 individual rewards have been
given totaling nearly $59 million.

An Overview of Google's Commitment to Secure by Design Pledge Goal 5: Vulnerability Disclosure Policy

https://bughunters.google.com/about/rules/6744710187712512/about-this-section
https://bughunters.google.com/about/rules/6744710187712512/about-this-section
https://security.googleblog.com/2024/03/vulnerability-reward-program-2023-year.html
https://bughunters.google.com/about/rules/other/5479188746993664/vulnerability-research-grant-rules
https://bughunters.google.com/about/key-stats

18

Pledge Goal 6: CVEs
In 1999, the project to enumerate
and share Common Vulnerabilities
and Exposures (CVE) was conceived
as a way to normalize disparate
vendor vulnerability databases,
with the purpose of simplifying
the implementation of security
assessment tools.20 At the time,
almost all software was still released
“off the shelf” and available only
by download or hard-copy (e.g.,
CD-ROM). Users wishing to protect
themselves from security issues had
to be notified that they had required
actions to take. CVEs were intended to
fill the knowledge gap for end users.

Over the subsequent decades, industry
experts and academics have debated
CVE issuance, especially as attacks and
software delivery mechanisms have
evolved. For example, alternatives to
the CVE database were instantiated
to address perceived weaknesses in
the original proposal (e.g., National
Vulnerability Database, the defunct
Open-Source Vulnerability Database
(not to be confused with OSV.dev)).

Severity scoring was conceptually
introduced, most notably via the
Common Vulnerability Scoring System
(although there are many others).21
Taxonomies were proposed, such as
the Common Weakness Enumeration
(CWE) to enable data analytics and the
Common Platform Enumeration (CPE) to
standardize product names. Federated
CVE Numbering Authorities (CNAs) now
give entities operational flexibility in
issuing their own CVEs. This flexibility has

introduced unresolved challenges around
CVE record consistency between CNAs.

While most major software producers
globally, including Google, engage in use
of some or all of these schemes, there
are differing views amongst experts on
their return on investment, scalability,
efficiency, and usefulness. For example,
there is no consensus on, nor consistent
use in practice of, CVEs for web-based
service vulnerabilities that do not
require user or customer interaction to
upgrade. Known issues exist with scoring
vulnerability severity, namely needing
to know how a piece of technology is
used in a target environment to rate the
issue accordingly.22 And some of the
programs for maintaining databases,
scoring mechanisms, and taxonomies
are maintained on a best-effort basis.

At Google we have led efforts to
address these problems for open

source software via the OSV Schema
and OSV.dev vulnerability database.
This involved working with many open
source ecosystems (e.g. Python Software
Foundation, Rust Secure Code Working
Group) and large entities such as GitHub,
Canonical, and Red Hat on adopting
a common standard and distributed
vulnerability database for open source
software. The OSV Schema is now
broadly supported across most major
programming language ecosystems as
well as Linux distributions, which makes
OSV.dev a comprehensive source of
vulnerabilities for open source software.

As part of this effort, Google also
ensured that OSV maintained
interoperability with CVEs. We've
collaborated with CVE working groups
on the CVE 5.0 standard, and aim to
continue to work with them to ensure
continued interoperability to help
improve CVE’s processes and standards.

20 https://cve.mitre.org/docs/docs-2000/cerias.html; https://cve.mitre.org/docs/docs-2001/Development_of_CVE.html
21 The CVSS has undergone several iterations, now on version 4: https://nvd.nist.gov/vuln-metrics/cvss. NIST is currently only "prioritizing analysis of the most significant vulnerabilities."
22 A recent study of different vulnerability scoring systems highlights the complexities. Milousi, Konstantina et al. 2024. "Evaluating Cybersecurity Risk: A Comprehensive Comparison of Vulnerability Scoring Methodologies." In Proceedings of
the 19th International Conference on Availability, Reliability and Security (ARES '24). Association for Computing Machinery, New York, NY, USA, Article 52, 1–11. https://doi.org/10.1145/3664476.3670915

An Overview of Google's Commitment to Secure by Design Pledge Goal 6: CVEs

https://nvd.nist.gov/
https://nvd.nist.gov/
https://vulndb.wordpress.com/
https://cwe.mitre.org/data/index.html
https://nvd.nist.gov/products/cpe
https://www.cve.org/ProgramOrganization/CNAs
https://ossf.github.io/osv-schema
https://osv.dev
https://openssf.org/blog/2023/05/02/getting-to-know-the-open-source-vulnerability-osv-format/
https://openssf.org/blog/2024/06/11/ubuntu-security-notices-now-available-in-osv/
https://security.googleblog.com/2023/03/osv-and-vulnerability-life-cycle.html
https://security.googleblog.com/2023/03/osv-and-vulnerability-life-cycle.html
https://cve.mitre.org/docs/docs-2000/cerias.html
https://cve.mitre.org/docs/docs-2001/Development_of_CVE.html
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/general/news/nvd-program-transition-announcement

19

Issuance of CVEs

Product Bulletins

• Open-source software that
we publish through our Github
repositories. We have issued
over 600 CVEs in these
projects over 4 years.

• Vulnerabilities reported to
us through our VRPs. CVEs
add transparency to our VRP
programs and recognize
researchers for their work.

In 2011, Chrome & Android
became our first CVE Numbering
Authorities (CNA), one of a small
group of a few hundred entities
worldwide that can issue
their own CVEs.

and security updates. We
additionally provide information
for other browsers that share
Chromium’s core browser engine
(via the security-notify list) as an
extra step in openness. We’ve
recently enhanced some of our
CVE records to include CWE
information, and have ongoing
projects to include CWE and
CPE information in them all.

• ChromeOS: ChromeOS was
designed from the ground
up to update automatically, in
the background, with no user
interaction. Google has been
tracking CPE information for
third-party packages included
in ChromeOS since 2019. We
use this to automatically identify
publicly disclosed vulnerabilities
in third-party packages shipped

 In 2022, Google expanded
its partnership with MITRE to
become one of the 4 Roots.

We continue to listen to our customers
on what will be most helpful to them
and evaluate how we are transparent
about how we resolve issues in our
products. This includes engagement
with government and industry. Google
applauds CISA for furthering the
discussion on vulnerability scoring
(CVSS) and taxonomies (CWE, CPE)
and we value the partnership in
resolving outstanding gaps in their
feasibility. As our journey progresses,
we will continue to provide updates.

with ChromeOS. Moreover,
we’re currently revamping
our release notes process to
more comprehensively identify
fixed security bugs, including
listing CVE identifiers.

• Cloud: Google Cloud's Security
Bulletins provide detailed
information about security
vulnerabilities affecting products
and services in Cloud. These
bulletins typically include a
description of the vulnerability,
its potential impact, affected
products and versions, and
recommended mitigation steps
or patch updates. They serve as
an essential resource for Google
Cloud users to stay informed
about security risks and take
appropriate action to protect
their systems and data.

Google prioritizes issuing CVEs for
our products when users need to
take action. This also helps meet the
original goal of CVEs: enable security
assessment software in a customer’s
environment to sufficiently identify
fixes that have not been applied.
Google issues CVEs for its products
in the following circumstances:

• Consumer and Enterprise
products that require user or
customer actions to update – even
if just to restart – such as Chrome,
Android, ChromeOS, Google
Cloud and Google Devices. We
have issued over 8,000 CVEs in
these products over 13 years.

In addition to issuing CVEs, Google
provides security bulletins for many of
its products that are delivered through
software update mechanisms. We
provide a brief list of examples below.

• Android: Google publishes
a monthly Android Security
Bulletin that details vulnerabilities
discovered and patched in the
Android operating system and its
components (including partner-
specific components). Android
also publishes a Transparency
Report on Android ecosystem
security, providing data on the
prevalence of potentially harmful
applications and the effectiveness
of security measures.

• Chrome Browser: Chrome's
automatic update functionality
covers both milestone releases

An Overview of Google's Commitment to Secure by Design Pledge Goal 6: CVEs

https://github.com/google
https://github.com/google
https://chromium.googlesource.com/chromium/src/+/main/docs/security/updates.md
https://www.chromium.org/Home/chromium-security/#how-can-i-get-access-to-chromium-vulnerabilities
https://support.google.com/chrome/a/answer/6220366?hl=en#:~:text=With%20every%20update%2C%20your%20laptop%20becomes%20more%20secure.%20These%20improvements%20automatically%20help%20make%20your%20Chromebook%20useful%20even%20longer%20by%20providing%20enhanced%20security%20and%20stability%20for%2010%20years%20from%20the%20platform%20release%20date.
https://support.google.com/chrome/a/answer/6220366?hl=en#:~:text=With%20every%20update%2C%20your%20laptop%20becomes%20more%20secure.%20These%20improvements%20automatically%20help%20make%20your%20Chromebook%20useful%20even%20longer%20by%20providing%20enhanced%20security%20and%20stability%20for%2010%20years%20from%20the%20platform%20release%20date.
https://support.google.com/chrome/a/answer/6220366?hl=en#:~:text=With%20every%20update%2C%20your%20laptop%20becomes%20more%20secure.%20These%20improvements%20automatically%20help%20make%20your%20Chromebook%20useful%20even%20longer%20by%20providing%20enhanced%20security%20and%20stability%20for%2010%20years%20from%20the%20platform%20release%20date.
https://medium.com/@cve_program/cve-program-expands-partnership-with-google-dd5318edfc59
https://medium.com/@cve_program/cve-program-expands-partnership-with-google-dd5318edfc59
https://www.cve.org/ProgramOrganization/Structure
https://cloud.google.com/support/bulletins
https://cloud.google.com/support/bulletins
https://source.android.com/docs/security/bulletin/2024-07-01
https://source.android.com/docs/security/bulletin/2024-07-01
https://www.hexnode.com/blogs/why-google-is-speeding-up-android-updates/#:~:text=Furthermore%2C%20by%20working%20closely%20with,after%20they%20have%20been%20on
https://www.hexnode.com/blogs/why-google-is-speeding-up-android-updates/#:~:text=Furthermore%2C%20by%20working%20closely%20with,after%20they%20have%20been%20on
https://support.google.com/transparencyreport/answer/9150182?hl=en#:~:text=Data%20on%20the%20Transparency%20Report,added%20on%20a%20periodic%20basis.
https://support.google.com/transparencyreport/answer/9150182?hl=en#:~:text=Data%20on%20the%20Transparency%20Report,added%20on%20a%20periodic%20basis.

20

Pledge Goal 7:
Evidence of Intrusions
Google believes it’s important for
customers to be able to have insight
into whether cybersecurity intrusions
are affecting the use of our products,
and support CISA’s seventh pledge
goal of providing customers and users
evidence of intrusions. Many of Google’s
products take into account how users
and customers receive information about
issues that may be impacting them.

Our work here is grounded in providing
the right kind of insights while not
overloading customers with too much
irrelevant or inactionable information.
We outline some examples where
we’ve achieved this balance below,
and are continuing to invest in
additional insights and resources.

Google Safe Browsing
Google Safe Browsing warns users
before they visit dangerous sites and
protects users from web-based threats
like malware, unwanted software, social
engineering, phishing, and deceptive
sites. By leveraging verdicts from our
detection systems, Google protects
users by showing them warnings
before they visit dangerous sites,
or download malicious files. We’ve
made Safe Browsing services free
and publicly available for developers
and other companies to use in
their applications and browsers.

For users who require or want a more
advanced level of security, Google
offers Enhanced Safe Browsing (ESB)
which provides additional AI-powered
protections from the newest online
threats. In Chrome, ESB users benefit
from on-device and server-side models
that look for signals commonly associated
with malicious behavior. Furthermore,
additional file protections like deep
scans for suspicious files protect users
from the latest malware. ESB users
also get additional protection in Gmail
from spam related to malicious files.

Google Accounts
Google provides visibility and
alerting mechanisms to protect
Google consumer accounts. Security
Checkup provides personalized
security recommendations for Google
Accounts, including account recovery
options, 2-step verification, removing
risky access to data, and screen
locks. We send Security Alerts if we
detect unusual account activity on an
account. And we allow users to see
which devices have account access,
and where they are signed in from.

An Overview of Google's Commitment to Secure by Design Pledge Goal 7: Evidence of Intrusions

https://safebrowsing.google.com/
https://support.google.com/accounts/answer/11577602?hl=en
https://support.google.com/accounts/answer/11577602?hl=en
https://support.google.com/accounts/answer/46526?hl=en#zippy=%2Cadd-or-update-account-recovery-options
https://support.google.com/accounts/answer/46526?hl=en#zippy=%2Cadd-or-update-account-recovery-options
https://support.google.com/accounts/answer/2590353?hl=en
https://support.google.com/accounts/answer/3067630?hl=en

21

Android
Android has proactive measures and
real-time monitoring and controls that
alert a user to suspicious activity that
could be related to potential intrusions
on their device. In consumer use cases,
for example, Google Play Protect (GPP) is
a built-in anti-malware solution that runs
on 3+ billion Google Mobile Services-
enabled devices and alerts users to
potential threats through a combination
of on-device app scanning and cloud-
based backend infrastructure. Android
also has out-of-the-box detection for
potential scam and phishing attacks
received via Google Messages. Malicious
Android apps often exhibit unusual
behaviors, so we provide real-time
alerting to users for apps that request
Runtime Permissions, access to Android’s
clipboard, microphone and camera,
and Background Location Access. If
an app has not been used for a few

months, the system protects user data
by initiating a Permission Auto-Reset.

Additionally, enterprises managing a
mobile phone fleet can leverage Android
Enterprise capabilities to look for
evidence of intrusions. Specific items
include Security Audit Logs that record
the device configuration and changes
to it, application installations, device
reboots, and other audit events. Network
Event Logs and various other risk signals
enable Unified Endpoint Vendors, Mobile
Threat Defense Vendors, SIEM, and other
security vendors to monitor network
activity on the device and understand
whether a device or application is
running in a compromised environment.

Android also offers app developers
various signals that they can leverage.
For example, when an app is used on
an Android device with the Google

Play Store, and powered by Google
Play services, the Play Integrity
API provides a response that helps
developers determine whether the user
is interacting with a genuine, unmodified
version of the app binary that Google
Play recognizes. The API also provides
the ability to determine whether the
current user account installed or paid for
their app or game on Google Play and
whether the app is running on a genuine
Android device powered by Google
Play services (or a genuine instance of
Google Play Games for PC). Developers
can also choose to receive information
about whether apps are running that
could be used to capture the screen,
display overlays, or control the device,
and whether Google Play Protect
is turned on and has found risky or
dangerous apps installed on the device.

Google Cloud
Google Cloud operates a shared fate
model which emphasizes collaboration
with customers to achieve a common
security and risk management goal.
Google builds a foundation with built-
in, always-on, and immutable controls
aligned to Google’s opinionated best
practices, and provides actionable
intelligence on security posture and risk,
as well as continuous threat protection.

As a baseline for security, admin
activity audit logs that capture actions
that modify the configuration or
metadata of resources are available
for Cloud products. For example,
these logs record when users create
VM instances or change Identity and
Access Management permissions.
These logs are stored for 400 days,
and users cannot configure, exclude,
modify, or disable them. System event

audit logs are the equivalent for Google-
generated actions, and no configuration
by users is required. In addition to
these default audit logs, users have the
option to select additional products
for access to even more verbose logs,
either from the Google Cloud service
or from their own applications.

Cloud Logging allows for the
centralization and retention of logs
starting at 30 days for general logs
without additional charge. Customers
can additionally opt-in to keep logs
for longer, up to 10 years in Cloud
Logging or indefinitely in cold storage.
Customers can choose the log
management tool of their choice.
Google offers, free of charge, routing
of logs to multiple destinations (GCS,
Pub/Sub) to support a wide array of
tools (Splunk, Elastic, Datadog, etc.).

An Overview of Google's Commitment to Secure by Design Pledge Goal 7: Evidence of Intrusions

https://developers.google.com/android/play-protect
https://developers.google.com/android/play-protect/client-protections
https://developers.google.com/android/play-protect/cloud-based-protections
https://developers.google.com/android/play-protect/cloud-based-protections
https://support.google.com/messages/answer/9327903?hl=en#zippy=%2Chow-spam-detection-works%2Chow-we-protect-your-data%2Cyoure-in-control
https://developer.android.com/guide/topics/permissions/overview#runtime
https://source.android.com/docs/core/permissions/background-location-access
https://android-developers.googleblog.com/2021/09/making-permissions-auto-reset-available.html
https://developer.android.com/reference/android/app/admin/SecurityLog
https://developer.android.com/reference/android/app/admin/NetworkEvent
https://developer.android.com/reference/android/app/admin/NetworkEvent
https://developers.google.com/android/work/zero-trust-signals
https://developer.android.com/google/play/integrity/
https://developer.android.com/google/play/integrity/
https://cloud.google.com/security/shared-fate?e=48754805&hl=en
https://cloud.google.com/security/shared-fate?e=48754805&hl=en
https://cloud.google.com/trust-center
https://cloud.google.com/logging/docs/audit/services
https://cloud.google.com/logging/docs/audit#system-event
https://cloud.google.com/logging/docs/audit#system-event
https://cloud.google.com/logging
https://cloud.google.com/logging/docs/buckets
https://cloud.google.com/pubsub/docs/audit-logging
https://cloud.google.com/architecture/stream-logs-from-google-cloud-to-splunk
https://www.elastic.co/docs/current/integrations/gcp
https://docs.datadoghq.com/integrations/google_stackdriver_logging/

22

Google offers the ability to review
recent Gmail activity, including the
dates, times, and IP addresses of
sessions used to access the Gmail
service. Users can also use Google
Takeout to download "Access Log
Activity," which includes multiple
weeks of log information for Gmail
and other Google services. In addition,
Gmail users can move from this dialog
to the security checkup to secure their
account and device.
Gmail issues alerts to consumer users
and Workspace domain administrators
if a possible government-
backed attack is detected.

Google Workspace domain
administrators can use the audit and
investigation tool and Reports API
to review user and administrator
activity in their organization.

Google Workspace creates log events
for relevant end-user actions across
Google Workspace services like Gmail,
Drive, Docs, and Chat, and also logs all
admin actions. The default retention
of these audit logs is 6 months with
various audit log export capabilities.

Domain administrators can use
this information to track actions
performed by users and admins,
and for security purposes.

For email, Google Workspace
supports additional email security
sandboxing, malware protection,
and phishing protection, and allows
admins to take actions like finding
and erasing malicious emails, marking
emails as spam or phishing, or sending
notifications to users’ inboxes.

Finally, Google Workspace domain
administrators can use alert center
to view notifications about potential
issues within their domain, and take
action (like end-user education or
updates to existing policies or settings)
to resolve the issues and protect their
organization from security threats.

Google Workspace

Gmail issues
alerts to
consumer users
and Workspace
domain
administrators
if a possible
government-
backed attack
is detected.

An Overview of Google's Commitment to Secure by Design Pledge Goal 7: Evidence of Intrusions

https://support.google.com/mail/answer/45938?ctx=gmail&hl=en&authuser=0
https://takeout.google.com/?pli=1
https://takeout.google.com/?pli=1
https://myaccount.google.com/u/0/security-checkup/2?hl=en&utm_medium=web&utm_source=gmail
https://support.google.com/a/answer/9007870?hl=en
https://support.google.com/a/answer/9007870?hl=en
https://support.google.com/a/topic/9027054
https://support.google.com/a/topic/9027054
https://support.google.com/a/answer/9079365?hl=en
https://support.google.com/a/answer/9105393

23

Conclusion:
Building and Sustaining
a Security Culture
As we outline in our book, Building Secure
and Reliable Systems, security is largely
an emergent property23 of the developer
ecosystem in which software is designed,
implemented, and deployed. As such,
it is a shared responsibility across the
entire organization, not just the domain
of security specialists. Everyone, from
developers and Site Reliability Engineers
to managers and executives, plays a role in
maintaining the security and reliability of
systems. Google believes that integrating
security considerations throughout the
entire software development lifecycle
is crucial to building resilient systems.

23 Kern, Christoph. "Developer Ecosystems for Software Safety." Communications of the ACM 67.6 (June 2024), 52-60. https://doi.org/10.1145/3651621.

To foster a security-first culture,
Google promotes a culture of
review, where changes to code and
configurations undergo peer scrutiny
before deployment. We leverage
automation to streamline processes
and minimize errors, and encourage
the use of Secure by Design APIs
and frameworks to guide developers
toward creating inherently safer code.

Google's approach to security culture
also emphasizes the importance of
transparency and open communication,
regularly engaging with the broader
security community through initiatives
like our Vulnerability Reward Programs,
and encourages knowledge sharing
and collaboration both internally and
externally. By fostering a culture where

security is everyone's responsibility
and integrating security practices into
the development process, Google
aims to build systems that are both
highly secure and reliable, ultimately
providing a safer and more trustworthy
experience for its users and enterprise
customers. All of this is reinforced
by a postmortem philosophy.

Google recognizes that creating a
truly secure digital ecosystem requires
a collaborative approach – one that
identifies common threats and develops
shared solutions that protect users
across the world. We invite industry
partners, policymakers, and security
experts to join us in this critical endeavor.
By working together, we can establish
common standards, share best practices,

and develop innovative solutions to
combat evolving threats. We believe that
through collective action – collaborating
with everyone from security experts
to competitors, governmental bodies,
policy makers, and everyday citizens
– we can build a more secure and
resilient digital future for everyone.

Google supports CISA in their efforts
on Secure by Design and believes that
the practices outlined in this paper
can help other security experts build
truly defensible systems. While we
have been successful in evolving and
improving Google's security posture,
we do not intend to rest on our
laurels. We will continue to innovate
and push the boundaries of what’s
possible in the security space.

Conclusion:
Building and Sustaining
a Security Culture
As we outline in our book, Building Secure
and Reliable Systems, security is largely
an emergent property23 of the developer
ecosystem in which software is designed,
implemented, and deployed. As such,
it is a shared responsibility across the
entire organization, not just the domain
of security specialists. Everyone, from
developers and Site Reliability Engineers
to managers and executives, plays a role in
maintaining the security and reliability of
systems. Google believes that integrating
security considerations throughout the
entire software development lifecycle
is crucial to building resilient systems.

An Overview of Google's Commitment to Secure by Design Conclusion: Building and Sustaining a Security Culture

https://google.github.io/building-secure-and-reliable-systems/raw/ch04.html#reliability_and_security_as_emergent_pr
https://google.github.io/building-secure-and-reliable-systems/raw/ch04.html#reliability_and_security_as_emergent_pr
https://google.github.io/building-secure-and-reliable-systems/raw/ch04.html#reliability_and_security_as_emergent_pr
https://doi.org/10.1145/3651621
https://sre.google/sre-book/postmortem-culture/
https://google.github.io/building-secure-and-reliable-systems/raw/ch04.html#reliability_and_security_as_emergent_pr
https://google.github.io/building-secure-and-reliable-systems/raw/ch04.html#reliability_and_security_as_emergent_pr
https://google.github.io/building-secure-and-reliable-systems/raw/ch04.html#reliability_and_security_as_emergent_pr

24

Contributors
Thank you to the following people, and so many others,
for contributions to this paper and the work it represents.

Adam Bacchus

Adam Samet

Adam Wu

Adrian Taylor

Alex Rebert

Amy Ressler

Andres Erbsen

Andrew Eames

Andrew Pollock

Andrew Whalley

Artur Janc

Bill Creasey

Bobby Jen

Bobby Norberg

Brad Ree

Camillus Cai

Casey Sakima

Chandler Carruth

Charley Snyder

Christiaan Brand

Christoph Kern

Dave Kell

Dave Kleidermacher

David Klein

David Monsees

Deeksha Kaul

Diane Tang

Dirk Göhmann

Ed Fernandez

Elias Levy

Eugene Liderman

Hao Ke

Harini Parthasarathy

Harold Chun

Heather Adkins

Iain Mulholland

Javier Leon

Jeanette Manfra

Jeff Ma

Jeffrey Vander Stoep

Jen Engel

Jeroen Kemperman

John Gronberg

John Solomon

Jonathan Hirsch

Jonathan Li

Jonathan Rubin

Jorge Lucangeli Obes

Juan Vasquez

Kate Charlet

Keira Li

Kimberly Samra

Krzysztof Kotowicz

Lukas Weichselbaum

Mary Koes

Matthew Flegal

Matthew Riley

Max Grifka

Melanie Lombardi

Michael Groover

Mike Burr

Nicolas Lidzborski EOT

Nithan Sannappa

Oliver Chang

Pankaj Rohatgi

Parisa Tabriz

Peter Valchev

Phillip Carter

Piumi Arachchige

Rocío Vives

Roger Piqueras Jover

Ross Richendrfer

Sachin Parsewar

Salvador Mandujano

Sarah Morales

Shenaz Zack

Shuvo Chatterjee

Sławek Goryczka

Sophie Schmieg

Sri Tulasiram

Srilekha Krishnamurthy

Sriram Karra

Stefan Kölbl

Stephanie Kiel

Tatyana Bolton

Thomas Holenstein

Thyla van der Merwe

Tim Dierks

Tony Ureche

Wendy Dembowski

Will Beers

Yang Yang

An Overview of Google's Commitment to Secure by Design Contributors

