Web Scale Image Annotation: Learning to Rank with Joint
Word-Image Embeddings

Abstract

Web scale image annotation datasets have
tens of millions of images with tens of thou-
sands of possible annotations. We propose
a strongly performing method that scales to
such datasets by simultaneously learning to
optimize precision at k of the ranked list of
annotations for a given image and learning
a low-dimensional joint embedding space for
both images and annotations. Our method
both outperforms several baseline methods
and, in comparison to them, provides a highly
scalable architecture in terms of memory
consumption and prediction time. We also
demonstrate how our method learns an inter-
pretable model, where annotations with al-
ternate spellings or even languages are close
in the embedding space. Hence, even when
our model does not predict the exact anno-
tation given by a human labeler, it often pre-
dicts similar annotations, a fact that we try
to quantify by measuring the so-called “sib-
ling” precision metric, where our method also
obtains excellent results.

1. Introduction

The emergence of the web as a tool for sharing infor-
mation has caused a massive increase in the size of po-
tential datasets available for machines to learn from.
Millions of images on web pages have tens of thou-
sands of possible annotations in the form of HTML
tags (which can be conveniently collected by querying
search engines (Torralba et al., 2008a)), tags such as
in wuw.flickr.com, or human-curated labels such as
in www.image-net.org (Deng et al., 2009). We there-
fore need machine learning algorithms for image an-
notation that can scale to learn from such data. This
includes: (i) scalable training and testing times, and
(ii) scalable memory usage. In the ideal case we would
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like a fast algorithm that fits on a laptop, at least at
annotation time. For many recently proposed models
tested on small datasets, e.g. (Makadia et al., 2008;
Guillaumin et al., 2009), it is unclear if they satisfy
these constraints.

In this work we study feasible methods for just such a
goal. We consider models that learn to represent im-
ages and annotations jointly in a low dimension em-
bedding space. Such embeddings are fast at testing
time because the low dimension implies fast compu-
tations for ranking annotations. Simultaneously, the
low dimension also implies small memory usage. To
obtain good performance for such a model, we propose
to train its parameters by learning to rank, optimiz-
ing for the top annotations in the list, e.g. optimiz-
ing precision at k. Unfortunately, such measures can
be costly to train. To make training time efficient we
propose the WARP loss (Weighted Approximate-Rank
Pairwise loss) which can be seen as an efficient online
version of the recently proposed OWPC loss (Usunier
et al., 2009) which has been shown to be state-of-the-
art on (small) text retrieval tasks.

The structure of the paper is as follows. Section 2 de-
fines the embedding models that we employ. Section
3 defines the WARP loss and shows how to train our
models with it. Section 4 describes how we perform
our evaluation, including proposing a metric to mea-
sure the semantics of annotations in the case of tens
of thousands of annotations, which we call the sibling
precision. Section 5 details prior related work, Sec-
tion 6 describes experiments conducted on web scale
datasets, and Section 7 concludes.

2. Joint Word-Image Model

We propose to learn a mapping into a feature space
where images and annotations are both represented.
The mapping functions are therefore different, but are
learnt jointly to optimize the supervised loss of interest
for our final task, that of annotating images. We start
with a representation of images = € R? and a represen-
tation of annotations ¢ € Y = {1,...,Y}, indices into
a dictionary of possible annotations. We then learn
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a mapping from the image feature space to the joint
space RP:
() : RT - RP.

whilst jointly learning a mapping for annotations:

W(i):{l,...,

For simplicity these can be chosen to be linear maps,
ie. ®y(x) = Vz and ®w (i) = W;, where W; in-
dexes the " column of a Y x D matrix, but poten-
tially any mapping could be used. In our work, we
use sparse high dimensional feature vectors of bags-of-
visual terms for image vectors z and each annotation
has its own learnt representation (even if, for example,
multi-word annotations share words). Hence, addi-
tional nonlinearities would not help for @y ().

Y} — RP.

Our goal is, for a given image, to rank the possible
annotations such that the highest ranked annotations
best describe the semantic content of the image. We
consider two possible models, the full-rank model:

FIUME () = wir + Aes(@w (1), @r(2)) (1)

and the low-rank model:

FEO (@) = s(@w (i), ®1()) (2)

where the possible annotations ¢ are ranked according
to the magnitude of f;(z), largest first, and s(-,) is a
similarity function in the D-dimensional joint space,
e.g. the inner product, or the negative Euclidean dis-
tance (in our experiments, we will employ the latter).
In the full rank model each annotation ¢ has an associ-
ated parameter vector w; € R? to be learnt, as well as
a shared parameter A\, which indicates the amount of
use of the shared low-rank embedding, and the param-
eters of the embedding themselves V and W. Essen-
tially, the embedding term allows the model to learn to
“multi-task” as these parameters are shared between
labels. In the low-rank model only the parameters V'
and W are learnt. In the next section we describe the
kind of loss functions we employ with our model, and
thus subsequently the algorithm to train it.

3. Weighted Approximate-Rank
Pairwise (WARP) Loss

We consider the task of ranking labels ¢ € Y given an
example z. In our setting labeled data (x;,y;) will be
provided for training where only a single annotation
y; € Y is labeled correct!. Let f(z) € RY be a vector
function providing a score for each of the labels, where
fi(x) is the value for label i.

"However, the methods described in this paper could
easily be generalized to the multi-label case.

err(f(z),y) = Y _ L (rank,(f(x)))

A class of ranking error functions was recently defined
n (Usunier et al., 2009) as

= L(rank,(f(x))) (3)

where ranky(f(z)) is the rank of the true label y given
by f(z):

err(f(x),y)

rank,(

=Y I(filx

i#y

) = fy(2))

and L(-) transforms this rank into a loss:

k
k‘):Zaj, with a; > a >--- > 0. (4)
j=1

This class allows one to define different choices of L(-)
with different minimizers. For example, minimizing L
with a; = Y 7 would optimize the mean rank, a; =1
and aj~1 = 0 the proportion of top-ranked correct la-
bels, and larger values of « in the first few positions op-
timize the top k in the ranked list, which is of interest
for optimizing precision at k or mean average precision
(MAP). For example, given two images, if one choice
of function ranks their true labels at position 1 and po-
sition 100 respectively, and another function both at
position 50, then a choice of a; = ﬁ prefers these
functions equally, whereas a choice of o; = 1/j prefers
the first function. Results on (small) text retrieval
datasets in (Usunier et al., 2009) showed the latter
choice of «a yields state of the art results. We hence
adopt the same choice but are interested in defining
a method of optimizing such a loss function online,
very efficiently, in order to train our image annotation
models by stochastic gradient descent (SGD).

Online Learning to Rank The loss (3) is equal to:

I(fi(x) = fy(x))

err(f(x).y) = 3 L(rank, (f(2)) =0

i#y

with the convention 0/0 = 0 when the correct label
y is top-ranked. Using the hinge loss instead of the
indicator function to add a margin and make the loss
continuous, err can be approximated by:

1= fy(@) + fil2)l,

rankL(F(@))

(5)
where |t|4 is the positive part of ¢ and rank;(f(x)) is
the margin-penalized rank of y:

=> I(1+ fix

i#y

i#y

rcmk

) > fy(@)).  (6)
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The overall risk we want to minimize is then:
Risk(f) = [erv(f(@) )Py (D)

An unbiased estimator of this risk can be obtained by
stochastically sampling in the following way:

1. Sample a pair (z,y) according to P(z,y);

2. For the chosen (z,y) sample a violating label g
such that 1+ fz(z) > fy(x) and § # y.

This chosen triplet (x,y,y) has contribution:

e (f(x),y,5) = L(rank,(f () [1 = fy(z) + f3(2)|

(8)
to the total risk, i.e. taking the expectation of these
contributions will approximate (7) because we have a
probability of 1/rank,(f(x)) of drawing g in step (2)
which accounts for the denominator of (5).

This suggests for learning we can thus perform the
following stochastic update procedure (Robbins &
Monro, 1951) over the parameters 3 that define a fam-
ily of possible functions f € F:

0T (f(2), ,5)

BlE+1) = Bl1) — = o

9)

Weighted Approximate Ranking To perform the
SGD described above we still have two problems that
make this procedure inefficient:

(i) In step (2), we need to compute the values f;(z)
fori=1,...,Y to know which labels g are viola-
tors, which is expensive for large Y.

(ii) rank,(f(x)) in (9) is also unknown without com-
puting f;(z) for i € ), which again is expensive.

We propose to solve both problems with the follow-
ing approach: for step (2), we sample labels ¢ with
replacement until we find a violating label.

Now if there are k = rank,(f(x)) violating pairs, the
random variable Ny which counts the number of trials
in our sampling step follows a geometric distribution of
parameter v (ie. Pr(Ny > ¢)=(1 — $%5)7). Thus
k= E[N 7 This suggests that the value of rank,(f(x))
in Equation (8) may be approximated by:

rankl(f(z)) ~ r/]\[_lJ

where |.] is the floor function and N the number of
trials in the sampling step.

Algorithm 1 Online WARP Loss Optimization

Input: labeled data (x;,y;), v; € {1,...,Y}.
repeat
Pick a random labeled example (x;, y;)
Set N = 0.
repeat
Pick a random annotation § € {1,...
N=N-+1.
until fz(x) > f, () —lor N >Y —1
if fz(x) > fy.(z) — 1 then
Make a gradient step to minimize:

LY DI = fy (@) + fy(2)]+

Y\ v

end if
until validation error does not improve.

Remark 1: We intuitively presented the sampling ap-
proach as an approximation of the SGD step of Equa-
tion (9). In fact, the sampling process gives an un-
biased estimator of the risk (7) if we consider a new
function L instead of L in Equation (5), with:

L = £ [z ([5])]
Elementary calculations show that L satisfies Equation
(4). So our approach optimizes a new ranking error.

One can also show that L(k) > L(k) for all k, so L
gives more weight to top-ranked labels than L.

Remark 2: The floor function in the approximation
rank,(f(z))~ | Y52 | makes it useless to continue sam-
pling after n unsuccessful trials. Thus, an SGD step
requires less than min(m, Y —1) computations
of scores f;(z) on average. On difficult datasets, many
correct labels will not have a rank close to 1, and even
on easy datasets at the start of training the same will

be true, so per-point updates will be much faster.

Training Our Models To summarize, our overall
method which we call WSABIE (Web Scale Annotation
by Image Embedding, pronounced “wasabi”) consists
of the joint word-image embedding model of Section
2 trained with the WARP loss of Section 3. For the
low-rank model (2) we are thus performing stochastic
gradient descent directly as above. For the full-rank
model (1) without additional regularization nothing
prevents the embedding not being used at all, as one
can already minimize the loss using the first term only.
One could thus add to the objective function the term
Aw >, [Jwi|[?, where increasing A, gives preference to
the embedding space (which is not regularized). As
this would require the additional worry of choosing
the hyperparameter \,,, in our experiments we instead
chose the following simpler (perhaps suboptimal) ap-
proach: we learn the two terms of (1) separately, and
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then optimize the parameter A\, (a line search) us-
ing the validation set. Pseudocode for training with
WARP loss is given in Algorithm 1.

4. Evaluation and Sibling Precision

We measure in the experimental section the standard
metrics of precision at the top k of the list (p@k) and
mean average precision (MAP) for the algorithms we
compare, which give more credit if the true annotation
appears near the top of the list of possible annotations.

On our datasets, we have ten or a hundred thousand
annotations, that can be semantically close to each
other. In the extreme case, two different labels can be
synonyms, translations or alternative spellings. Our
model tries to capture this structure of the annotation
set through the projection in the embedding space.

To evaluate the ability of our model to learn the se-
mantic relations between labels from images, we pro-
pose a new metric called the sibling precision at k
(psiv@k). Suppose we have some ground-truth in the
form of a matrix S, where S;; € [0,1] is a measure of
semantic similarity between labels ¢ and j (S;; = 1
means that the words are semantically equivalent).
Then, for a ranking y" = (y7,...,¥}), Psip@k is de-

fined as: .
Zi:l Syfyy
=

When S is the identity matrix we recover the usual
pQ@k loss. Otherwise, p;@Qk is a relaxation of pQk, as
off-diagonal elements of S give credit when a predic-
tion is semantically close to the true label. pg; also
measures the ability of the model to discover the whole
semantic structure by considering the similarity of all
the first k predicted labels. Notice that as a measure
of “discovery” of the semantic relations, py;;@Fk is only
meaningful when S is unknown during training.

psib@k(yra y) =

In order to build S, we proceed as follows. We sup-
pose we have a database of known relations between
annotations of the form isa(y.,y,) where y, is a par-
ent concept of y., e.g. isa(“toad”,“amphibian”). We
then define two annotations as siblings if they share a
“parent”:

1,

In the databases we consider in Section 6, ImageNet al-
ready has reliable isa relations annotated in WordNet,
and for Web we have obtained a similar but noisier
proprietary set based on occurences of patterns such
as “X is a Y” on web pages. The median numbers of
siblings per label are reported in Table 1.

if i =4V 3k :isa(i, k) Aisa(j, k)
otherwise.

5. Related Approaches

The problem of image annotation, including the re-
lated task of image classification, has been the subject
of much research, mainly in the computer vision liter-
ature. However, mostly this research concentrates on
tasks with a rather small number of classes, in part
due to the availability of appropriate databases. Well
known databases such as Caltech-256 (Griffin et al.,
2007) and Pascal-VOC (Everingham et al., 2007) have
a limited number of categories, ranging from 20 to
256. More recently, projects such as the Tinylmage
database (Torralba et al., 2008a) and ImageNet (Deng
et al., 2009) have started proposing larger sets of an-
notated images with a larger set of categories, in the
order of 10* different categories. Note that for now,
even with these new large datasets, published results
about image annotation or classification have concen-
trated on subsets pertaining to a few hundred different
categories or less only, e.g. (Torralba et al., 2008a; Fer-
gus et al., 2009). Much research in the literature has in
fact concentrated on extracting better image features,
then training independently simple classifiers such as
linear or kernel SVMs for each category (for example
()

An alternative approach, championed by (Makadia
et al., 2008; Torralba et al., 2008b; Guillaumin et al.,
2009), is to use k-nearest neighbor in the image fea-
ture space. This has shown good annotation perfor-
mance, in particular as the size of the training set
grows. On the other hand, as the data grows, find-
ing the exact neighbors becomes infeasible in terms
of time and space requirements. Various approximate
approaches have thus been proposed to alleviate this
problem, ranging from trees to hashes, but can suffer
from being fast but not precise, or precise but slow.

Embedding words in a low dimensional space to cap-
ture semantics is a classic (unsupervised) approach in
text retrieval which has been adapted for image an-
notation before, for example PLSA has been used for
images (Monay & Gatica-Perez, 2004) but has been
shown to perform worse than (non-embedding based)
supervised ranking models like PAMIR (Grangier &
Bengio, 2008). Other related work includes learn-
ing embeddings for supervised document ranking (Bai
et al., 2009) and for semi-supervised multi-task learn-
ing (Ando & Zhang, 2005; Loeff et al., 2009).

Several loss functions have also recently been proposed
to optimize the top of the ranked list. Indeed the
WARP loss we propose can be seen as an efficient
online version of the OWPC loss of (Usunier et al.,
2009). OWPC was compared to ListNet, AdaRank,
SVM™ and RSVM for text retrieval, and was shown
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to be state-of-the-art. However, to our knowledge none
of these existing methods would scale to our setup as
they either cannot be trained online, or do not avoid
computing f;(z) for each i € ) as the WARP loss does.

In terms of the sibling precision metric, WordNet
has been used many times to calculate distances be-
tween concepts in the field of natural language process-
ing, and has been used for image annotation to build
voted classifiers (Torralba et al., 2008a; Torralba et al.,
2008b). In our work we are concerned with measuring
missing annotations and would consider using other
similarity measures for that, not just from WordNet.

6. Experiments
6.1. Datasets

ImageNet Dataset ImageNet (Deng et al., 2009)
is a new image dataset organized according to Word-
Net (Fellbaum, 1998). Concepts in WordNet, de-
scribed by multiple words or word phrases, are hi-
erarchically organized. ImageNet is a growing im-
age dataset that attaches quality-controlled human-
verified images to these concepts. We split the data
into 2.5M images for training, 0.8M for validation and
0.8M for testing, removing duplicates between train,
validation and test by throwing away test examples
which had too close a nearest neighbor training or val-
idation example in feature space. A baseline annota-
tion method of assigning the most frequent annotation
achieves a precision at 1 of ~0.04%.

Web Image Dataset We had access to a very
large proprietary database of images taken from the
web, together with a very noisy annotation based on
anonymized user click information, processed similarly
to ImageNet. The most frequent annotation baseline
achieves a precision at 1 of ~0.01%.

Table 1 provides summary statistics of the number of
images and labels for the ImageNet and Web datasets
used in our experiments.

Table 1. Summary statistics of the datasets used in
the experiments described in this paper.

Statistics ImageNet Web
Number of Training Images 2518604 | 9861293
Number of Test Images 839310 | 3286450
Number of Validation Images 837612 | 3287280
Number of Labels 15952 109444
Median Num Siblings per Label 12 143

6.2. Image Representation

In this work we focus on learning algorithms, not fea-
ture representations. Hence, for all methods we try,

we use the same sparse vector representation, follow-
ing (Grangier & Bengio, 2008). This representation
has been shown to perform very well on the related
task of image ranking. Each image is first segmented
into several overlapping square blocks at various scales.
Each block is then represented by the concatenation of
color and edge features. These are discretized into a
dictionary of d = 10,000 blocks, by training KMeans
on a large corpus of images. Each image can then
be represented as a bag of visual words: a histogram
of the number of times each visual word was present
in the image, yielding vectors in R? with an average
of d3 = 245 non-zero values. It takes on average 0.5
seconds to extract these features per image.

6.3. Baselines

We compare our proposed approach to several base-
lines: k-nearest neighbors (k-NN), approximate k-NN;,
one-versus-rest large margin classifiers (One-Vs-Rest)
of the form f,(z) = wyx trained using the Passive Ag-
gressive algorithm (Crammer et al., 2006), or the same
models trained with a ranking loss instead, which we
call PAMIR'* as it is like the PAMIR model used in
(Grangier & Bengio, 2008) but applied to image anno-
tation rather than ranking. For all methods, hyperpa-
rameters are chosen via the validation set.

We tested approximate k-NN (ANN) because k-NN is
not scalable. There are many flavors of approximation
(see, e.g (Torralba et al., 2008b)). We chose the fol-
lowing: a random projection at each node of the tree
is chosen with a threshold to go left or right that is
the median of the projected training data to make the
tree balanced. After traversing p nodes we arrive at a
leaf node containing ¢ &~ n/2P of the original n training
points from which we calculate the nearest neighbors.
Choosing p trades off accuracy with speed.

6.4. Results

The results of comparing all the methods on ImageNet
and Web are summarized in Tables 2 and 3. Further
detailed plots of precision and sibling precision for Im-
ageNet are given in Figure 1. WSABIE outperforms
competing methods, apart from on ImageNet where
k-NN is outperformed by WSABIEry Lz but not by
WSABIELow (D = 300), at least in terms of p@l.
On the other hand, k-NN is not a realistically scalable
method, while ANN (p = 7) performed much worse.
k-NN fared less well on Web perhaps because of the in-
creased noise or number of labels (i.e. there are less ex-
amples per class), hence we did not test ANN. Overall,
WSABIEpy 1 is marginally better than WSABIELow
while taking more resources. We give a deeper analysis
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of the results, including time and space requirements
in subsequent sections.

Table 2. Summary of Test Set Results on ImageNet.
Precision at 1 and 10, Sibling Precision at 10, and Mean
Average Precision (MAP) are given.

Algorithm p@1 p@l10 | psp@10 | MAP
k-NN 4.53% 1.50% 3.59% | 6.47%
Approx. k-NN | 1.55% 0.41% 1.69% | 2.32%
One-vs-Rest 2.27% 1.02% 3.711% | 5.17%
Pamir’4 3.14% | 1.26% 4.39% | 6.43%
WSABIEFULL 4.80% | 1.67% | 5.65% | 8.97T%
WSABIELow 4.03% 1.48% 5.18% | 7.75%

Table 3. Summary of Test Set Results on Web-data.
Precision at 1 and 10, Sibling Precision at 10, and Mean
Average Precision (MAP) are given.

Table 5. Changing the Embedding Size on Ima-
geNet. Test Error metrics when we change the dimension
D of the embedding space used in WSABIEow -

Embedding Dim. | p@l pQ@10 | psip@10 | MAP
100 3.48% | 1.39% 519% | 7.12%
200 3.91% | 1.47% 5.23% | 7.66%
300 4.03% | 1.48% 5.19% | 7.75%
500 3.95% | 1.44% 5.07% | 7.58%

tation of SGD for (3) where the rank (6) is computed
explicitly (note, in that case updates can be made for
all violations for a given an image at once) which we
call OWPC-SGD. For all methods we report their best
learning rate . Figure 2 shows after 36 hours WARP
and AUC are well trained, but AUC does not perform
as well, and OWPC-SGD has hardly got anywhere.
Full WARP models (eq. (1)) take several days to train.

Training time WARP vs. AUC vs OWPC-SGD on ImageNet

0.014
o
2 0012
£ 001
5 °
£ 0.008
0 1
g 0.006 WARP ——
@ 0.004 AUC
b OWPC-SGD
2 0.002 |
0 ‘ ; ;
0 5 10 15 20 30 35

hours

Figure 2. Training time: WARP vs. OWPC-SGD.

Table 6. WARP vs. AUC optimization. For each
model choice, WARP consistently improves over AUC.

Algorithm p@1 p@10 psib@10 MAP
k-NN 0.30% 0.34% 5.97% 1.52%
One-vs-Rest 0.52% | 0.29% 4.61% | 1.45%
Pamir’4 0.32% | 0.16% 2.94% | 0.83%
WSABIEFULL 1.23% 0.49% 10.22% 2.60%
WSABIELOW 1.02% | 0.43% 9.83% | 2.26%
0.05 Pre‘cision@‘lzzz — 0. Siblinq Precision@TopK
0.045 One';\gsr;ﬁisx ....... q 0.09 [~ :
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Figure 1. Precision@k and Sibling Precision@k on Ima-
geNet for various methods.

Word-Image Embeddings FExample word embed-
dings learnt by WSABIEow for Web are given in Ta-
ble 4 and some example image annotations are given
in Table 9. One can see that the embeddings seem to
learn the semantic structure of the annotation space
(and images are also embedded in this space) and sib-
ling annotations are close to each other. This explains
why the sibling precision of WSABIE is far superior to
competing methods, which do not attempt to learn the
structure between annotations. One might ask how
sensitive the results of WSABIEpow are to the choice
of embedding dimension size. Table 5 shows the results
are rather robust to choices of D.

WARP Loss We compared different models trained
with either WARP or AUC minimization (via the mar-
gin ranking loss |1— f, (x)+ fz(y)|+ as is used in PAMIR
(Grangier & Bengio, 2008)). The results given in Ta-
ble 6 show WARP consistently gives superior perfor-
mance. We also compared training time using WARP
(with eq. (2), D = 100), AUC or a naive implemen-

Model Loss p@l p@10
Dataset: ImageNet

fi(z) = s(Pw (7)), ®r(x)) | AUC 1.65% | 0.91%
fi(z) = s(®w(z), ®r(x)) | WARP | 4.03% | 1.48%
filz) =w; -z AUC 3.14% 1.26%
filz) =w; -z WARP | 4.25% | 1.48%
Dataset: Web

fi(z) = s(Pw (7)), ®r(x)) | AUC 0.19% | 0.13%
fi(z) = s(Pw (4), Pr(x)) | WARP | 1.02% | 0.43%
filz) =w; -z AUC 0.32% | 0.16%
filz) =w; -z WARP | 0.94% | 0.40%

Computational Expense A summary of the test
time and space complexity of the various algorithms
we compare is given in Table 7 (not including cost of
pre-processing of features) and concrete numbers on
the particular datasets we use are given in Table 8 us-
ing a single computer, and assuming the data fits in
memory (for WSABIEow we give values for D = 100).
In particular k-NN takes 255 days to compute the
test error on ImageNet and 3913 days for Web, cor-
responding to 26 seconds and 103 seconds per image
respectively, making it infeasible to use. In compari-
son, PAMIR’4 takes 0.07 and 0.5 seconds to compute
and WSABIE 0w takes 0.02 and 0.17 seconds, and also
requires far less memory. In summary, WSABIELow
can be feasibly run on a laptop using limited resources
whereas k-NN requires all the resources of an entire
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Table 4. Nearest annotations in the embedding space learnt by WsaBIiLow on Web-data. Translations (e.g. delphin,
rosen) and alternative/misspellings and synonyms (beckam, mt fuji) have close embeddings. Other annotations are from
similar visual images: e.g. Alessandro del Piero is a footballer, Bow Wow is a rapper who and an Appaloosa is an often
white horse with black spots. Annotations in blue+italics are in our known sibling set.

Annotation Neighboring Annotations

barack obama
david beckham

barak obama, obama, barack, barrack obama, bow wow, george w bush, berlusconi
beckham, david beckam, alessandro del piero, del piero, david becham, fabio cannavaro

santa santa claus, papa noel, pere noel, santa clause, joyeux noel, tomte, santa klaus, father christmas
dolphin delphin, dauphin, whale, delfin, delfini, baleine, blue whale, walvis, bottlenose dolphin, delphine
COws cattle, shire, dairy cows, kuh, horse, cow, shire horse, kone, holstein, appaloosa, caballo, vache
rose rosen, hibiscus, rose flower, rosa, roze, pink rose, red rose, a rose, fiori, gerbera, white rose

pine tree abies alba, abies, araucaria, pine, neem tree, oak tree, pinus sylvestris, western hemlock

mount fuji
eiffel tower

mt fuji, fuji, fujisan, fujiyama, mountain, zugspitze, fuji mountain, paysage, mount kinabalu
eiffel, tour eiffel, la tour eiffel, big ben, paris, blue mosque, eifel tower, eiffel tour, paris france

ipod

i pod, ipod nano, apple ipod, ipod apple, new ipod, ipod shuffle, ipod classic, apple iphone
f18 f 18, eurofighter, f14, fighter jet, tomcat, mig 21, f 16, eurofighter typhoon, 22, fighter aircraft

cluster. Moreover as k-NN has time and space com-
plexity O(n - d3), where n is the number of train ex-
amples and dz is the number of non-zero features, as n
increases its use of resources only gets worse, whereas
the other algorithms do not depend on n at test time.
WSABIELow has a second advantage that it is hardly
impacted if we were to choose a larger and denser set
of features than the one we use, as it maps these fea-
tures into a D dimensional space and the bulk of the
computation is then in that space.

Table 7. Algorithm Time and Space Complexity.
Time and space complexity needed to return the top ranked
annotation on a single test set image, not including feature
generation. Denote by Y the number of classes, n the num-
ber of train examples, d the image input dimension, d; the
average number of non-zero values per image, D the size
of the embedding space, and p the depth of the tree for
approximate k-NN.

Algorithm Time Complexity | Space Complexity
k-NN O(n - dj) O(n -dj)
Approx. k-NN O((p + n/2p) . da) (’)(n . d)
One-vs-Rest O - dj) oy -d)
Pamir’4 O -dz) O(Y -d)
WSABIEFULL O - d3) O(c-d)
WSABIELOwW O((Y +d3) - D) O(Y +d)- D)

Table 8. Test Time and Memory Constraints. Test
time (d=days, h=hours) and memory requirement needed
to return the top ranked annotation on the test set for

ImageNet and Web, not including feature generation.

Algorithm ImageNet Web
Time | Space Time Space

k-NN 2556d | 6.9 GB | 3913 d | 27.1 GB
Approx. kNN 2d 7 GB - -
One-vs-Rest 17 h 1.2 GB 19d 8.2 GB
PAMIR!4 17h | 1.2GB| 19d | 82GB
WSABIEry 1 17h | 1.2 GB 19 d 8.2 GB
WSABIE, 0w 56 h | 12 MB 6.5 d 82 MB

Analysis of Nearest Neighbor

Our version of ap-

proximate nearest neighbor (ANN) performed rather

poorly, whereas the true nearest neighbor (NN) per-
forms reasonably well, but suffers from prohibitive
computational expense and use of memory. These
results seem deserving of further analysis. Indeed,
positive results using NN have been observed before
in smaller image annotation datasets (Makadia et al.,
2008). ANN can be tuned depending on the test time
vs accuracy tradeoff one wishes to achieve, i.e. with
enough computational expense it can arbitrarily close
to the accuracy of NN. We investigated how good ANN
would have to be on ImageNet. Let’s say our algorithm
only uses 1-nearest neighbor. If ANN retrieves the true
closest neighbor 100% of the time we get a pQ1 of 4.5%
(note, we cannot beat this result by much by increas-
ing k). If we retrieve it 50% of the time, and otherwise
we get the second neighbor without fail 100% of the
time the p@1 degrades to 3.4%. For 25% instead of
50%, we get 2.8%. If we only have a 25% chance of
catching any particular neighbor (not just the first)
we get 2.0%. For a 10% chance instead, we get 1.4%.
Indeed in our implementation we get around 1.55%
when we traverse a tree until we have around 20,000
points at the leaf. If we have around 2500 points at
each leaf (so it is much faster) this goes down to 0.89%.
If we have around 40,000 points at each leaf, we have
around 1.94%. In conclusion, approximations of NN
can be brittle because retrieving the first neighbor, at
least on this dataset, is very important for achieving
good accuracy. Indeed exactly the same phenomena
has been observed before on other datasets, see e.g.
Table 3 of (Makadia et al., 2008). As our feature space
is high dimensional it is not surprising we do not re-
trieve the exact neighbor often, in line with previous
literature, see e.g. Table 3 of (Torralba et al., 2008b).

7. Conclusions

We have introduced a scalable model for image an-
notation based upon learning a joint representation
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Table 9. Examples of the top 10 annotations of three compared approaches: PAMIR'4 | One-vs-Rest and WSABIELow,
on the Web dataset. Annotations in red—+bold are the true labels, and those in blue+italics are so-called siblings.

Image | PAMIR™A [ One-vs-Rest WSABIELow

bgra, free Wl.uy’ su, orka, WOI‘l.d . delfini, orca, dolphin,
wide, sunshine coast, bequia, | surf, bora, belize, sea .
. . . i mar, delfin, dauphin,
tioman island, universal remote | world, balena, wale, tahiti, .

K . ; whale, cancun, killer
montagna,  esperar, bottlenose | delfini, surfing, mahi mahi
dolphin whale, sea world

air show, st augustine, stade, con-
crete architecture, streetlight, doha
qatar, skydiver, tokyo tower, sierra
sinn, lazaro cardenas

eiffel tower, tour eiffel,
snowboard, blue sky, empire
state building, luxor, eiffel,
lighthouse, jump, adventure

eiffel tower, statue, eiffel,
mole antoneliana, la tour eif-
fel, londra, cctv tower, big
ben, calatrava, tokyo tower

chris hanson, michael johns, ryan
guettler, richard marx, depardieu,
barack hussein obama, freddie vs ja-
son, dragana, shocking, falco

falco, barack, daniel craig, barrack — obama, barack

obama barack obama obama, barack hussein

kanye ’ west pharreli obama, barack obama,

williams, 50 cent, barrack | JaMmes marsden,  jay 2z

obama, bono obama, nelly, falco,
' barack

of images and annotations that optimizes top-of-the-
list ranking measures and shown how it improves over
several baselines in both accuracy and efficiency on
web scale datasets. Evaluation using the sibling preci-
sion metric shows that our embedding method learns
the semantic structure of the annotation space, which
helps lead to its good performance.
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