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ABSTRACT

In this paper we study the impact of sharing memory re-
sources on five Google datacenter applications: a web search

engine, bigtable, content analyzer, image stitching, and pro-

tocol buffer. While prior work has found neither positive
nor negative effects from cache sharing across the PARSEC
benchmark suite, we find that across these datacenter ap-
plications, there is both a sizable benefit and a potential
degradation from improperly sharing resources. In this pa-
per, we first present a study of the importance of thread-to-
core mappings for applications in the datacenter as threads
can be mapped to share or to not share caches and bus
bandwidth. Second, we investigate the impact of co-locating
threads from multiple applications with diverse memory be-
havior and discover that the best mapping for a given ap-
plication changes depending on its co-runner. Third, we
investigate the application characteristics that impact per-
formance in the various thread-to-core mapping scenarios.
Finally, we present both a heuristics-based and an adaptive
approach to arrive at good thread-to-core decisions in the
datacenter. We observe performance swings of up to 25%
for web search and 40% for other key applications, simply
based on how application threads are mapped to cores. By
employing our adaptive thread-to-core mapper, the perfor-
mance of the datacenter applications presented in this work
improved by up to 22% over status quo thread-to-core map-
ping and performs within 3% of optimal.

Categories and Subject Descriptors

B.3.3 [Hardware]: Memory Structures—Performance Anal-

ysis and Design Aids; C.4 [Computer Systems Orga-
nization]: Performance of Systems—Design studies; D.4.1
[Operating Systems]: Process Management—Scheduling

General Terms

Performance, Experimentation, Measurement
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1. INTRODUCTION
Webservice datacenters and cloud computing economies

of scale have gained significant momentum in today’s com-
puting environments. Modern datacenters are constructed
using commodity components as they are cheap and easily
replaceable. Machines have multiple sockets hosting proces-
sors with multiple cores. The processing cores in a single
machine share a number of caches and buses. Figures 1
and 2 show typical memory subsystem topologies found in
state-of-the-art server processors. Figure 1 shows a dual-
socket Intel Xeon (Clovertown) system comprising 8 total
cores. Each socket is connected to the Memory Controller
Hub (MCH) through a Front Side Bus (FSB). The MCH
has four channels to four RAM banks. Each socket on this
system has two separate L2 caches shared by a pair of cores
and all four cores on a socket share a FSB. The Dunnington
shown in Figure 2 shows a similar organization with 24 cores
divided across four sockets each of which has both second
level caches shared between pairs of cores, and third level
caches shared between six cores. These types of machine or-
ganizations are commonplace in state-of-the art server pro-
cessors, and future platforms will continue to hierarchically
share resources between the cores.

When multiple cores share a resource, the threads running
on those cores can constructively use this resource in a num-
ber of ways. For example, when threads share a cache, data
sharing requires only one copy of the data in the shared
cache, rather than multiple copies spread out across pri-
vate caches. Further, memory bus and coherence traffic are
reduced since data is fetched from memory only once and
does not ping-pong back and forth between separate pri-
vate caches. Even threads not sharing a cache can interfere
constructively. For example, coherence traffic localized to
caches within a single socket can avoid costly messages on a
hotly contended system bus. Coherence traffic between two
caches that share a bus is less costly than coherence traffic
between sockets.

On the other hand, if the processing threads on neigh-
boring cores do not share data, they can destructively inter-
fere. Multiple threads can contend for shared resources. A
thread can bring its own data into a shared cache, evicting
the data of a neighboring thread and resulting in reduced
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Socket Intel Dunnington

performance of both threads. Threads can also contend for
bus bandwidth, detrimentally affecting application perfor-
mance.

[Problem] As the datacenter that provides large scale
web service emerges as a very important computing do-
main, understanding the interaction between datacenter ap-
plications and the underlying machine architecture is im-
portant for both hardware designers and system software
designers [26, 37]. Characterizing how constructive or de-

structive interferences from memory resource sharing mani-
fest in these industry-strength applications is an important
step to designing architectures for these emerging workloads.
For example, the characterization can help provide insights
for architects to select appropriate sizes and topologies of
shared and private caches when designing multicores for
these workloads. Alternatively, system software may be able
to map threads across the cores of a machine with a pol-
icy to co-locate threads on a shared resource, or distribute
the work across these resources to minimize sharing. Cur-
rently there is little understanding about the interaction be-
tween datacenter applications and the underlying memory
resources sharing topology. Recent work [45] concludes that
cache sharing does not have a significant impact on con-
temporary multithreaded workloads using PARSEC bench-
mark suite. However, the commonly used benchmark suites
(SPEC, PARSEC, etc) may not represent emerging data-
center application workloads. As a result of this lack of
understanding, modern datacenters assign threads to cores
in an ad-hoc fashion.

[Contributions] In this paper we study the impact of
shared resources on five industry-strength datacenter ap-
plications: web search, bigtable, content analyzer, image
stitcher, and protocol buffer. All benchmarks are measured
in Google’s production datacenter environment with real
query inputs. We are specifically focusing on web search,
bigtable and content analyzer as they represent the emerging
large-scale latency-sensitive online service workloads that
are running in many of the world’s largest datacenters. A
detailed description of these applications is presented in Ta-
ble 1. While prior work has found the performance effects
from constructive and destructive resource sharing is not sig-
nificant across the PARSEC benchmark suite, we find that

across these datacenter applications, there is both a sizable
benefit and potential degradation from these resource shar-
ing effects. This observation leads to our three main research
contributions:

• We demonstrate the impact of memory resource shar-
ing for key datacenter applications and show the im-
portance of identifying good thread-to-core (TTC) map-
pings for applications in the datacenter. Threads can
be mapped to share or to not share caches and bus
bandwidth, and good mapping decisions depend heav-
ily on the applications memory characteristics. (Sec-
tion 3)

• We evaluate and analyze the impact of co-locating
threads from multiple applications with diverse mem-
ory behavior. In this work, we discovered that the
best mapping for a given application changes when
co-located with another application. This is largely
due to the tradeoff between intra-application and inter-
application contention. One key insight in this work
is that the best mapping does not only depend on the
applications sharing and memory characteristics, it is
also impacted dynamically by the characteristics of co-
runners. (Section 4)

• We identify the application characteristics that im-
pact performance in the various thread-to-core map-
ping scenarios. These characteristics include the amount
of sharing between threads, the amount of memory
bandwidth the application requires, and the cache foot-
print of the application. These three characteristics
can be used to identify good thread to core mappings.
We present an algorithm for a heuristics-based thread
to core mapping technique that takes advantage of
these applications characteristics. We also present an
adaptive approach that uses a competition heuristic to
learn the best performing mapping online. (Section 5)

[Results Summary] At the datacenter scale, a perfor-
mance improvement of 1% for key applications, such as web-
search, can result in millions of dollars saved. We observe a
performance swing of up to 25% for websearch, and 40% for
other key applications, simply from remapping application



Table 1: Production Datacenter Applications

applications description metric type

content analyzer content and semantic analysis, used to take key words or text
documents and cluster them by their semantic meanings [1]

throughput latency-sensitive

bigtable storage software for massive amount of data [9] average latency latency-sensitive
websearch industry-strength internet search engine [5] queries per second latency-sensitive

stitcher image processing and stitching, used for generating street
views [43]

N/A batch

protobuf protocol buffer [2] N/A batch

threads to cores. When co-locating threads from multiple
applications, the optimal thread to core mappings changes.
We also find that by leveraging knowledge of an applica-
tion’s sharing characteristics, we can predict both how an
application’s threads should be mapped when running alone
as well as with another application. However, we conclude
that using our online adaptive learning approach is a prefer-
able approach for arriving at good thread to core mappings
in the datacenter as it arrives at near optimal decisions and
is agnostic to applications’ sharing characteristics. We ob-
serve a performance improvement of up to 22% over status
quo thread-to-core mapping and performance within 3% of
optimal mapping on average.

2. BACKGROUND AND MOTIVATION

2.1 Memory Resource Sharing
On multi-socketed multicore platforms such as the dual

socket Intel Clovertown shown in Figure 1, processing cores
may or may not share certain memory resources including
the last level cache (LLC) and memory bandwidth as dis-
cussed in the previous section. Thus for a given subset of
processing cores, there is a particular sharing configuration

among the cores of that subset. For example, for two pro-
cessing cores on the Clovertown machine shown in Figure 1,
there are three possible sharing configurations among two
cores, shown in Table 2. For a set of four processing cores
on the same Clovertown machine, there are three different
sharing configurations among the four cores. Each sharing
configuration is also illustrated in Figures 3, 4, and 5. The
cache hierarchy and memory topology of the specific ma-
chine determine the possible sharing configurations among
multiple cores. For example, on a multi-socket Dunnington,
the sharing configurations span combinations of sharing and
not sharing scenarios of the three memory components: the
L2 cache, L3 cache, and the front side bus (FSB).

Whether an application’s performance is constructively or
destructively impacted by the sharing configuration of the
cores on which it is running depends on whether the applica-
tion thread’s data sharing characteristics mimic the sharing
configuration of the cores. Figures 3, 4 and 5 show three
mappings corresponding to three sharing configurations on
our experimental platform, the Intel Clovertown. Here we
introduce a notation for the set of cores the threads are
mapped to on this Clovertown topology. We use X to high-
light the cores the threads are mapped to. For example
{XXXX....} indicates four threads mapped to cores {0, 1, 2,
3} on the same socket, as shown in Figure 4. To study the
performance impact of resource sharing in a controlled and
isolated fashion, we compare the performance differences of
an application in different thread-to-core mappings. This

sheds light on how sharing of each type of resource impacts
performance of various applications with different data shar-
ing patterns. For example, the performance difference be-
tween mapping {XX..XX..} and {X.X.X.X.} reflects the im-
pact of sharing last level cache (LLC); and the performance
difference between mapping {XX..XX..} and {XXXX....} re-
flects the impact of sharing FSB. When there is a signif-
icant performance variability, a resource-aware thread-to-
core mapping is needed.

2.2 Datacenter
[Job Scheduling] In the modern datacenter, job schedul-

ing is done in a hierarchical fashion. A global job scheduler
manages a number of machines and selects a particular ma-
chine for each job based on the amount of memory or the
number of CPU the job requires. Once a machine is selected,
the job, and its individual threads, are then managed by the
OS scheduler. The OS scheduler decides how the applica-
tion threads are mapped to the individual processing cores
of this machine. At this level, general purpose system soft-
ware such as the Linux kernel is adapted for, and used, in
the datacenter for finer grain scheduling.

Current job scheduling does not take memory resource
sharing into account. The scheduler’s thread-to-core map-
ping is determined without regard to, or knowledge of, the
application characteristics or the underlying resource shar-
ing topology. The state-of-the-art kernel scheduler focuses
on load balancing and prioritizes cache affinity to reduce
cache warm-up overhead. Although developers can specify
which cores to use manually, this must be done on an appli-
cation by application, architecture by architecture basis. As
a result, this option is seldom used as it places a significant
burden on the developer.

[Job Priority and Co-location] Applications in a dat-
acenter have different priorities. Key applications such as
web search and bigtable are latency sensitive and have high
priority. As the number of cores per machine increases,
lower-priority batch applications such as encoding or image
processing are co-located with key applications. Co-locating
multiple heterogeneous workloads means higher machine uti-
lization, thus fewer machines are needed and the operation
cost is reduced. However, as shown in prior work [29], the
performance interference caused by lower priority applica-
tions on high priority applications needs to be minimized.
There is a wealth of research on hardware and OS designs
that provides QoS priority management [11, 33, 32, 15, 19].
However, managing QoS priorities on multicores remains a
challenge. Table 1 shows which of the datacenter applica-
tions used in this work are latency sensitive, and which are
batch. This work focuses on the performance of the key
latency sensitive applications.
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Table 2: Sharing configurations for sets of 2 cores and sets of 4 cores

# Cores LLC(L2) FSB set of cores

2 Cores
Share: 2 cores - 1 L2 Share: 2 cores - 1 FSB {0,1}, {2,3}, {4,5} {6,7}
Distribute: 2 x (1 core - 1 L2) Share: 2 cores - 1 FSB {0,2}, {1,3}, {4,6}, {5,7}
Distribute: 2 x (1 core - 1 L2) Distribute: 2 x (1 core - 1 FSB) {0,4},{0,5},{0,6},{0,7},{1,4},{1,5}...

4 Cores
Share: 2 x (2 cores - 1 L2) Share: 4 cores - 1 FSB {0,1,2,3}, {4,5,6,7}
Share: 2 x (2 cores - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,1,4,5}, {2,3,6,7}
Distribute: 4 x (1 core - 1 L2) Distribute: 2 x (2 cores - 1 FSB) {0,2,4,6}, {1,3,5,7}
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Figure 6: Performance of different thread-to-core
mappings when each application is running alone.
The higher the bars, the better performance. The
performance variability is up to 20% for each appli-
cation, indicating that the memory resource sharing
has a significant performance impact on these appli-
cations. Also, notice that bigtable is benefiting from
sharing last level cache; while contentAnalyzer and
webSearch suffer from the contention for memory
resource among sibling threads.

3. INTRA-APPLICATION SHARING
In this section, we investigate the performance impact of

memory resource sharing for three key datacenter applica-
tions. Experiments and measurement are conducted using
different thread-to-core (TTC) mappings to study the im-
pact of intra-application sharing, defined as resource sharing
among the threads of an individual multi-threaded applica-
tion.

3.1 Experiment Methodology
The primary platform used in this paper is a dual socket

Intel Clovertown (Xeon E5345), shown in Figure 1. Each
socket has 4 cores. Each 2 cores on the same socket are
sharing a 4MB 16 way last level cache (L2). The platform is
running Linux kernel version 2.6.26 and a customized GCC
4.4.3. We also conducted experiments on the Intel West-
mere, which is presented in Section 4.3.

Table 1 presents a detailed description of the five data-
center applications we used in our study. In the datacen-
ter latency-sensitive applications are either run alone on a
machine or co-located with a batch application to improve
machine utilization. Our study mirrors this execution pol-
icy as we focus on the latency-sensitive applications shown
in Table 1. Also, instead of measuring instruction per cycle
(IPC) or execution time, we use each application’s specified
performance metric in this study. Application-specific met-
rics more accurately describe performance than application
agnostic metrics such as IPC [3]. The performance metrics
are also shown in Table 1. The load for each application is
real world query traces in production datacenters. A load
generator is set up to test the peak capacity behavior of
these applications. The performance shown is applications’
stable behavior after the initialization phase. Because our
measurements use a large amount of queries from produc-
tion, these applications’ behaviors and characteristics are
representative of real-world execution.

In this section we describe experiments when the applica-
tion is running alone to study the interaction within a multi-
threaded application with the underlying resource sharing
and the resulting performance variability. Three measure-
ments are conducted with three thread-to-core mappings:
{XXXX....}, {XX..XX..}, and {X.X.X.X.}. The performance
difference between mapping configurations demonstrates how
sharing LLC, sharing FSB, or sharing both can construc-
tively or destructively impact the performance of applica-
tions of interest. In each mapping, we use taskset to map
threads to cores. This allows us to study the resource shar-
ing outside of the default OS scheduler’s algorithm. This
methodology is shown to be valid for measuring the impact
of cache sharing by prior work [45]. Applications are pa-
rameterized to have a fixed load execute across 4 cores. All
experiments were run three times and the average measure-
ment is presented.

3.2 Measurement and Findings
Figure 6 demonstrates the performance variability due to

different TTC mappings for the latency sensitive applica-



tions presented in Table 1. For each applicaton, the x axis
shows the subset of cores to which the application is mapped.
The y axis shows each application’s performance in each
TTC mapping scenario, normalized by its performance us-
ing the mapping {X.X.X.X.}.

The results show that the performance impact of memory
resource sharing for these applications is significant, up to
22% for contentAnalyzer, 18% for bigtable and 8% for web-

Search. Secondly, each application prefers different shar-
ing configurations. Both contentAnalyzer and webSearch

prefer to run on separate LLCs and separate FSBs. The
mapping {X.X.X.X.} has 10% performance improvement for
webSearch and 20% for contentAnalyzer compared to map-
ping {XXXX....}, when all threads are on the same socket
sharing 2 LLCs and a single FSB. On the other hand, bigtable
achieves the best performance when running on the same
socket sharing 2 LLCs and a FSB, and the {X.X.X.X.} map-
ping has a 18% degradation. When taking a deeper look, for
contentAnalyzer and webSearch, the difference between the
1st bar and the 2nd bar indicates the impact of cache shar-
ing when available FSB bandwidth remains the same; the
difference between the 2nd and the 3rd bar indicates the
impact of sharing FSB versus having separate FSBs.

For bigtable, sharing LLC has a constructive impact on
performance. The 3rd bar is slightly higher than the 2nd
bar, indicating that FSB bandwidth may not be a main bot-
tleneck from bigtable. On the other hand, the reduced coher-
ence latency on the same socket may give mapping {XXXX....}

a slight advantage over {XX..XX..}.

3.3 Investigating Performance Variability
To confirm that different memory sharing configurations

provided by the different thread-to-core mapping is the main
cause of the performance variability, we also conducted ex-
periments to collect performance counters information. Per-
formance counters including last level cache misses, bus trans-
actions, MESI states of LLC requests are collected using
pfmon [12].

Last Level Cache Misses: Figure 7 shows the average num-
ber of last level cache misses per million instructions for
each application’s execution in each TTC mapping scenario
normalized to the scenario {X.X.X.X.}. Misses per million
instructions is used because in this experiments we are com-
paring the misses caused by a fixed section of code. Figure 7
shows that the LLC misses trend is fairly consistent with
the performance trend in the different mapping scenarios.
Content Analyzer and webSearch both have an increase in
last level cache misses when transitioning from not sharing
LLC to sharing LLC, indicating contention for LLC occurs
among threads. This explains the performance degradation
from these two applications’ 1st bar to 2nd and 3rd bars in
Figure 6. Bigtable on the other hand, has a decrease in LLC
misses when transitioning from not sharing LLC to shar-
ing LLC, indicating the cache sharing is constructive and
threads are sharing data that fits in the LLC. This explains
the performance improvement from Bigtable 1st bar to 2nd
and 3rd bar in Figure 6.

FSB Bandwidth Consumption: Figure 8 shows the av-
erage number of bus transaction requests per million in-
structions in different mapping scenarios, normalized by the
rate in scenario {X.X.X.X.}. The number of bus transac-
tions is measured using the BUS_TRANS_BURST event, which
counts the number of full cache line requests (64 bytes). The

bus bandwidth consumption is consistent with the last level
cache misses and performance trends. The increase in last
level cache misses causes the increase in bus requests which
degrades performance. For contentAnalyzer and webSearch,
bus requests per million instructions in mapping scenarios
{XX..XX..} and {XXXX....} are similar. However, their per-
formance is worse in the mapping scenario {XXXX....}. This
is due to the contention for the FSB. For the same amount
of bus requests, having 2 FSBs provides a performance ad-
vantage. This is also supported by the observation that con-

tentAnalyzer has higher bus requests than webSearch, and
contentAnalyzer suffers a bigger degradation transitioning
from using 2 FSBs to sharing a single FSB on one socket.

Data Sharing: We further investigated the level of data
sharing within each application to explain why some appli-
cations are benefiting and others are suffering from cache
sharing. Figure 9 shows the number of L2 Requests per mil-
lisecond in five states: Modified, Exclusive, Shared, Invalid
and Prefetch. This figures shows that bigtable has the most
amount of sharing between data in the LLC, which is also
consistent with the observation that bigtable benefits from
cache sharing.

Summary: In this section we show that the impact of
sharing the last level cache can either be positive or negative
and can be significant (up to 10%). Bus contention also has
a fairly significant impact on performance and contributes
another 10% performance variability. For applications that
have higher levels of sharing, a positive side effect of placing
all threads close to each other and sharing a bus is observed.
These results demonstrate the importance of a good thread-
to-core mapping that mimics the application’s inherent data
sharing pattern.

4. INTER-APPLICATION SHARING
In this section, we present the performance impact of

memory resource sharing when co-locating multiple appli-
cations on a machine. We define inter-application resource
sharing as resource sharing between applications. As we dis-
cussed in Section 2, co-location is important for improving
machine utilization, especially for a multi-socketed multicore
machine. However, co-location may introduce detrimental
performance degradation due to contention for shared re-
sources. For some platforms, certain memory components
may be always shared among all threads from all applica-
tions. For example, for the dual-socket Clovertown used in
our experiments, the memory controller hub and memory
bus are always shared among all execution threads. How-
ever, for resources such as the LLC and FSB, an application
can, share only LLC(s) or only FSB(s) or both, among its
own threads, or with another application. As we show in
the previous section, resource sharing within an application
may have either constructive or destructive impact. How-
ever, when there is no explicit inter-process communication
between applications, resource sharing between applications
are either neutral or destructive. Depending on the applica-
tion and its co-runners, the amount of impact from sharing
different resources between applications may vary. In this
section, we study the impact of LLC and FSB sharing and
how the impact affects thread-to-core mapping decisions in
the presence of co-location.
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4.1 Experiment Design
Similar to Section 3, we study the impact of resource shar-

ing by comparing the performance variability for key appli-
cations in three TTC mappings scenarios. The three TTC
mappings are: {XXXX****}, {XX**XX**}, and {X*X*X*X*}.
For this study, we use * to denote a thread of the co-running
application. We use the batch applications stitcher and
protobuf (described in Table 1) as co-running applications.
Since batch applications are often co-located with key la-
tency sensitive applications in production, and we are focus-
ing on the three important latency sensitive applications, we
measure the performance for each of the three latency sensi-
tive applications, contentAnalyzer, bigtable and webSearch,
when sharing resources with each co-runner in each of the
three sharing configurations.

4.2 Measurement and Findings
Figure 10 shows contentAnalyzer ’s performance when it is

co-running with other applications. The first cluster of bars
show contentAnalyzer ’s performance when it is co-located
with stitcher, and the second cluster, when it is co-located
with protobuf. In this figure, the contentAnalyzer ’s perfor-
mance is normalized by three different baselines. Specifi-
cally, its performance when co-located in each thread-to-core
mapping scenario is normalized by its performance when
running alone in the corresponding mapping scenario. For
example, the first bar in the first cluster shows content-

Analyzer ’s performance when it is running with stitcher.
The thread-to-core mapping is denoted as {X*X*X*X*}, X

denoting contentAnalyzer ’s threads and * denotes stitcher ’s
threads. This performance is normalized by contentAna-

lyzer ’s performance when it is running alone using mapping
{X.X.X.X.}. This figure demonstrates the performance in-
terference caused by adding stitcher and by adding protobuf

when contentAnalyzer is bound to a certain subset of cores.
Interestingly, in different TTC mapping scenarios, the same
co-runner causes different amounts of degradation to con-

tentAnalyzer. This is because in different mapping scenar-
ios, co-locating a co-runner to the available idle cores leads
to sharing of different resources between co-running applica-
tions. The first bar in the first cluster shows a degradation of
35% caused by sharing both LLC and FSB between content-

Analyzer and stitcher. The second bar shows a degradation
of 22% caused by only sharing the FSB bandwidth between

the two applications. Note that the performance degrada-
tion shown by the third bar is due to interference caused by
stitcher for sharing the memory controller hub and the rest
of the memory system with contentAnalyzer, which is un-
avoidable in the topology of the platform in our experiment.

Figure 13 shows contentAnalyzer ’s performance when it
is running alone and it is co-running, normalized by a single
baseline: its performance when running alone in the map-
ping {X.X.X.X.}. Our key observation here is that the best
thread-to-core mapping for contentAnalyzer changes. When
it is running alone its best mapping is {X.X.X.X.}. When
running with protobuf, it is still {X*X*X*X*}. When run-
ning with stitcher the best mapping changes to {XXXX****}.
With the same co-runner, the performance variability of con-

tentAnalyzer between the worst and the best mapping can
be fairly significant. When running with protobuf, the per-
formance swing between different mappings is around 11%.

Figures 11 and 14 show webSearch’s performance when
it is co-running with stitcher and protobuf. Similar to Fig-
ure 10, in Figure 11, each bar represents the performance of
webSearch when co-located in a certain mapping scenario,
normalized by its performance when running alone in the
same mapping scenario. Figure 14 shows its performance
when co-located, normalized by a single baseline, namely,
when it is running alone and mapped to {X.X.X.X.}. Fig-
ures 11 and 14 show that WebSearch’s performance variabil-
ity has a similar trend as contentAnalyzer ’s. Also similarly,
the optimal mapping for webSearch changes depending on if
it is running alone or which application it is running with.
One difference worth noticing between contentAnalyzer and
webSearch is that when webSearch is co-located with proto-

buf, its best mapping is {XX**XX**}.
In contrast to both contentAnalyzer and webSearch, bigtable

prefers to share the LLC and FSB among its own threads
both when it is running alone and when running with other
applications as shown in Figure 12 and 15. However, there
is a significant performance swing between thread-to-core
mappings. When it is running with stitcher, there is a 40%
performance difference between the three mappings.

Based on these experiment results, we can categorize these
applications based on the underlying sharing configurations
they prefer when running alone and running with other ap-
plications. The categorization is shown in Table 3. This ta-
ble presents the optimal mapping for each application and
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Figure 10: ContentAnalyzer. Nor-
malized to solo performance
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Figure 11: Websearch. Normal-
ized to solo performance
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Figure 12: Bigtable. Normalized
to solo performance
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Figure 13: ContentAnalyzer. Nor-
malized to solo performance with
{X.X.X.X.}
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Figure 14: Websearch. Nor-
malized to solo performance with
{X.X.X.X.}
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Figure 15: Bigtable. Normal-
ized to solo performance with
{X.X.X.X.}

highlights the changes in mapping preferences in different
situations. In the table, S stands for ”shared” and D stands
for ”distributed”. In contrast to the conclusions about PAR-
SEC suite in prior work [45] (presented in Table 3’s last
row), our experiments demonstrate that industry-strength
datacenter applications have diverse preferences in resource
sharing and TTC mappings.

Summary: In this section, our experiments show that,
depending on the co-runner, sharing LLC and FSB with the
corunner can have a significant impact. An application’s
performance swing between its best and worst thread-to-
core mapping can be significant. Also, the optimal thread-
to-core mapping is different for each application and may
change when the application’s corunner changes. This result
indicates the importance of an intelligent system for thread-
to-core mapping that is aware of the underlying resource
topology and possible sharing configurations.

4.3 Varying Thread Count and Architecture
In this section, we describe experiments to evaluate whether

the above observations are also applicable when the number
of threads, the architecture or the memory topology changes.

4.3.1 Varying Number of Threads

We studied the impact of memory resource sharing when
the latency sensitive applications have 2 and 6 threads. All
experiments are conducted on Clovertown described in Sec-
tion 3.1. Figure 16 presents the scenario when each la-
tency sensitive application is configured to have 2 threads.
This figure presents the latency sensitive application’s per-
formance when it is running alone, co-located with 6 threads

of stitcher, and co-located with 6 threads of protobuf. In the
figure, we use C for contentAnalyzer, W for webSearch, B
for bigtable, S for stitcher and P for protobuf. The y axis
shows each of the three latency sensitive applications’ perfor-
mances normalized by the performance when running alone
in the {X...X...} mapping. Figure 17 presents the sce-
nario when each latency sensitive application is configured
to have 6 threads. In this figure, the performance of each
latency sensitive application is measured when it is running
alone, co-located with 2 threads of stitcher, and co-located
with 2 threads of protobuf.

In general, our results show that in both 2-thread and
6-thread cases, each application’s sharing preferences are
similar to its preferences in the 4-thread case. For exam-
ple, bigtable prefers sharing cache among its threads when
it has 2 threads, 4 threads and 6 threads. ContentAnalyzer

prefers sharing cache and FSB with its own thread when
running with stitcher and prefers distributing its threads
when running alone or with protobuf. For webSearch, when
running with stitcher, the optimal mapping is always shar-
ing with its own threads. Moreover, similar to the 4-thread
case, for each application, its optimal thread-to-core map-
ping changes when its co-runners change.

4.3.2 Varying Architecture

We also conducted experiments on a Intel’s Westmere
platform. Our experiment platform is a dual-socket Intel
Xeon X5660. Each socket has 6 cores. The memory topology
of this architecture is quite different from Clovertown used
in previous sections. All six cores on the same socket share
a 12 MB last level cache. Each chip has its own integrated



Table 3: Optimal Thread-To-Core Mapping in Solo and Co-location Situations

Benchmark Solo w/ Stitcher w/ Protobuf

bigtable {XXXX....}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB {XXXX****}: S-LLC, S-FSB
contentAnalyzer {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {X*X*X*X*}: D-LLC, D-FSB
webSearch {X.X.X.X.}: D-LLC, D-FSB {XXXX****}: S-LLC, S-FSB {XX**XX**}: S-LLC, D-FSB
PARSEC does not matter N/A N/A
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Figure 16: 2 threads of a latency sensitive applica-
tion colocated with 6 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {X...X...} mapping
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Figure 17: 6 threads of a latency sensitive applica-
tion colocated with 2 threads of a batch application,
normalized to the latency sensitive application’s solo
performance in {XXX.,XXX.} mapping

memory controller, and has 3 channels of 8.5GB/s/channel
bus connecting to DIMM. Processors are connected through
QuickPath interconnect (QPI). We conduct experiments to
evaluate the performance impact of sharing the LLC and
memory bandwidth on the same socket versus distributing
threads to two sockets for our three key latency sensitive
datacenter applications. Figures 18 and 19 present the re-
sults when each application is running alone with 2 threads
and 6 threads. We use a similar notation to present the
thread-to-core mapping. For example, {X.....X.....} in-
dicates two threads are mapped to two different sockets on
this architecture. In both figures, each application’s perfor-
mance is normalized to its performance when its threads are
evenly distributed across 2 sockets. These results show that,
due to the different memory resource sharing patterns, dif-
ferent thread-to-core mappings can cause significant perfor-
mance variability. This is similar to results on Clovertown.
On Westmere, the performance swing is as high as 10%.
Bigtable behaves similarly on both architectures as it always
benefits from cache sharing. However, interestingly, while
contentAnalyzer on Westmere benefits from cache sharing
in the 2-thread case, in the 6-thread case, it suffers from
cache sharing. In the 8-thread case, which we do not show
here, its performance degradation due to cache sharing is
over 20%. On the other hand, on Clovertown, it always
suffers from cache sharing. This discrepancy between its
sharing preference on two architectures may be due to the
fact that Westmere has a 12MB LLC instead of 4MB LLCs
on Clovertown. Whether an application can benefit from
last level cache sharing also depends on the size of the cache
and the number of threads that are executing.

In light of the space constraint, for the co-location study,
we only present the results when 6 threads of latency sensi-
tive application co-running with 6 threads of corunner (Fig-
ure 20). The y axis shows each latency sensitive applica-
tion’s performance, normalized to its performance when run-
ning alone in mapping scenario {XXX...XXX...}. This result
shows that on Westmere, depending on the co-runner, the
optimal thread-to-core mapping may also change. This is
also consistent with the observation on Clovertown.

5. THREAD-TO-CORE MAPPING
To achieve a good thread-to-core mapping to best uti-

lize shared resources, it is important to characterize appli-
cations’ interaction with these shared resources, and pin-
point the potential bottlenecks among the shared resources.
In this work, we have identified three important memory
characteristics of an application that can be exploited to
understand the preferences in memory resource sharing con-
figurations, including: its memory bandwidth consumption,
the amount of data sharing within the application, and its
footprint in the shared cache.

[Memory Bandwidth Usage] We first investigate our
applications’ memory bandwidth usage. On Clovertown, we
focus on the FSB bandwidth because FSB is a main shar-
ing point for memory bandwidth on this architecture. Our
previous experiments in Sections 3 and 4 show that when
threads are sharing the FSB, their performance may de-
grade. The amount of degradation may differ for each ap-
plication, depending on which application is co-located with
it. We hypothesize that the amount of bus bandwidth usage
for each application is a good indicator for determining its
proper FSB sharing configuration.

Figure 21 presents the bus bandwidth consumption per
thread pinned to one core for all five applications. The bus
request rate is measured using the BUS_TRANS_BURST event.
15,000 bus transactions/ms for a thread of contentAnalyzer

translates to 15, 000 × 64Byte = 0.96GB/s. The total bus
transactions/ms for all fours threads running on four cores
can be as high as 0.96GB/s × 4 = 3.8GB/s. The theoretical
FSB peak bandwidth on this platform is 10.6 GB/s. When
using a micro-benchmark that measures peak bandwidth,
STREAM [30], the observed maximum sustained bandwdith is
5.6GB/s. When four threads of contentAnalyzer are sharing
a single FSB, the bus utilization is close to 70%. Using a
similar calculation, stitcher ’s bandwidth demand is 1.6GB/s
per core. This figure shows that stitcher has the highest bus
bandwidth usage. WebSearch and bigtable have medium
bus demands and protobuf has the lowest bus bandwidth
demand. This is consistent with the mapping preferences
shown in Table 3. When webSearch and contentAnalyzer
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Figure 18: 2 threads of la-
tency sensitive applications run-
ning alone on Westmere

  0.85x

  0.9x

  0.95x

  1x

  1.05x

  1.1x

  1.15x

con_Analyzer bigtable webSearchN
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

{XXX...,XXX...}
{XXXXXX,......}

Figure 19: 6 threads of la-
tency sensitive applications run-
ning alone on Westmere
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Figure 20: 6 threads of latency sensitive
applications co-running with 6 threads
of batch applications on Westmere;
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are running alone, because of the medium-high bus demand,
it is preferable to spread threads on two sockets and use 2
FSBs. However, when they run with stitcher, both pre-
fer not to share a FSB with stitcher because stitcher has a
much higher bus demand and can cause more performance
degradation. On the other hand, when running with proto-

buf, both webSearch and contentAnalyzer both benefit from
sharing FSB with protobuf instead of their own threads.
Bigtable benefits from sharing last level cache and FSB when
it is running alone, thus it is preferable for bigtable to share
these two resources with its own threads when running with
other applications. This experiment demonstrates that bus
bandwidth consumption is an important characteristic when
determining good thread-to-core mappings.

Our experiments in Sections 3 and 4 also demonstrate that
sharing a cache can cause significant performance impact.
There are two key characteristics to consider when studying
the interaction between an application and a shared cache:
the amount of data sharing among an application’s threads
and the application’s footprint in the shared cache.

[Data sharing] In Section 3 we show that the percentage
of cache lines that are in the ”share” states can indicate an
application’s level of data sharing. Figure 22 presents the
average LLC reference rate for a thread of each application.
In this figure, we bin LLC references into three categories:
LLC misses, LLC references that are in ”share” state, and
others (including prefetch state and cache hit that are not in
”share” state). Bigtable has the highest percentage of cache
requests that are in the share state and contentAnalyzer has
the lowest. This is consistent with our findings that bigtable

prefers to share LLC when it is running alone as well as when
it is running with other applications while contentAnalyzer

does not. On the other hand,webSearch has a relatively high
level of data sharing. However, sharing the last level cache

among its threads would cause a performance degradation.
This is because when deciding if sharing a cache would im-
prove or degrade an application’s performance and which
thread the application should share the cache with, we need
to consider not only data sharing but also the potential of
cache contention.

[Cache Footprint] When the total size of two or more
threads’ footprints is larger than the shared cache, con-

tention occurs. Previous work has studied how to identify an
application’s cache contention characteristics. Zhuravlev et.
al [46], Knauerhase et. al [25] and Mars et. al [29] show that
last level cache miss rate is a good indicator to estimate the
footprint size and predict the potential performance degra-
dation an application may cause to its co-runners. Figure 22
presents the LLC miss rate for all five applications. This
figure shows that contentAnalyzer has a higher LLC miss
rate than webSearch and less percentage of share state cache
lines. This is consistent with the fact that contentAnalyzer

suffers more from cache contention than webSearch, shown
in Figure 6. An application’s cache characteristics are im-
portant when deciding a good TTC mapping. And both
data sharing and cache footprint need to be considered.

5.1 A Heuristic Approach to TTC Mapping
Based on an application’s characteristics in terms of their

resource usage when running alone, we can predict a good
thread-to-core mapping that takes advantage of the memory
sharing topology when applications are co-located. Algo-
rithm 1 shows a heuristic algorithm to make such a decision.

The basic idea behind the heuristic is that since we can
characterize applications based on their potential bottle-
necks (bus usage, shared cache usage and the level of data
sharing), when co-locating, we should maximize the poten-
tial benefit from sharing and avoid mapping threads that



have the same resource bottleneck. For example, if the
application has a high level of data sharing, the mapping
should allow its threads to share resources such as LLC.
We also prioritize the latency-sensitive application’s perfor-
mance (denoted as P in the algorithm) over its corunner
(C) ’s. For example, the heuristic algorithm compares the
resource usage of P’s threads with that of the co-running
applications’ threads and select the thread(s) that have the
least usage of the same resource to co-locate.

Algorithm 1: Resource-Characteristics-Based Mapping
Heuristics
Input: P: Latency-sensitive app; C: Corunning app
Output: a thread-to-core mapping
if P.DataSharing = high then1

map(P, share LLC);2
if P.Bus Usage < C.Bus Usage then3

map(P, [share LLC, sharing FSB]) ;4
else5

map(P, [share LLC, distributed FSB]) ;6
end7

else8
if P.Bus Usage < C.Bus Usage then9

map(P, sharing FSB) ;10
if P.LLC Footprint = high then11

map(P, [distributed LLC, sharing FSB]);12
else13

map(P, [share LLC, sharing FSB]);14
end15

else16
if P.LLC Footprint < C. LLC Footprint then17

map(P, [share LLC, distributed FSB]);18
else19

map(P, [distributed LLC, distributed FSB]);20
end21

end22

end23

5.1.1 Evaluating the Heuristics

To evaluate the heuristic algorithm, we apply it to six co-
running application pairs and compare the predicted best
mapping with the ground-truth best mapping. We use FSB
bandwidth consumption to compare the Bus_Usage in the al-
gorithm; and use LLC miss rate as an approximate proxy to
compare applications’ LLC_Footprint. To take data sharing
into account when comparing cache footprints for an multi-
threaded application, we use

LLC MissRate × (1 −
LLC shared state requests

LLC all requests
) (1)

The prediction result using heuristic algorithm is presented
in Table 4.

Our heuristic approach correctly predicts the best map-
ping in 4 out of 6 co-running pairs. In two cases, the heuristic
algorithm also makes fairly good decisions: the performance
difference between the predicted mapping and the optimal
mapping is less than 2% for both (Figures 14 and 15). The
advantages of our heuristic approach is that it is effective
and requires only simple runtime support. However, there
are two main limitations of this approach. First, these char-
acteristics must be collected for each application. Second,
because each architecture has different topologies and shar-
ing points, a new algorithm needs to be generated on an
architecture by architecture basis. Also, an application char-
acteristics may not be perfectly captured. For example, us-
ing LLC miss rate to approximate the cache footprint is not

Table 4: Predicted Thread-To-Core Mapping Using
the Heuristic Approach

Benchmark w/ Stitcher w/ Protobuf

bigtable Optimal:
{XXXX****};

Optimal: {XXXX****};

Predicted:
{XXXX****}

Predicted: {XX**XX**}

(suboptimal: 1% worse)
contentAnalyzer Optimal:

{XXXX****};
Optimal: {X*X*X*X*};

Predicted:
{XXXX****}

Predicted: {X*X*X*X*}

webSearch Optimal:
{XXXX****};

Optimal: {XX**XX**};

Predicted:
{XXXX****}

Predicted: {X*X*X*X*}

(suboptimal: 1% worse)

perfect [28], especially when there is data sharing between
threads. These limitations motivate an adaptive approach
that is more flexible and portable.

5.2 An Adaptive Approach to TTC Mapping
In this section we present AToM, an Adaptive Thread-to-

core Mapper. Our experiments in the previous sections
show that the optimal thread-to-core mapping may change
when the number of threads, co-running application, or ar-
chitecture changes. These variations indicate that an adap-
tive learning approach is promising for the intelligent thread-
to-core mapping. AToM uses a competition heuristic to adap-
tively search for the optimal thread-to-core assignment for
a given set of threads. This approach includes two phases:
a learning phase and an execution phase.

[Learning Phase] During the learning phase, AToM em-
pirically puts various thread-to-core mappings against each
other to learn which mapping performs best. Each thread-
to-core mapping is given an equal amount of time, and the
best performing mapping is selected as the winner of the
competition. Although randomly mapping threads to cores
may generate a large amount of varying mappings, because
most of memory topologies are symmetric, the search space
for equivalent mappings is greatly reduced. For example,
for 2 core mapping cases, there are only three classes of
mappings (Table 2) that represent three different sharing
configurations.

[Execution Phase] During this phase the winning thread-
to-core mapping is run for a fixed or adaptive period of time
before another competition is held. In this work, we al-
low our execution phase to run indefinitely. The datacen-
ter applications presented in this work have steady phases,
and each competition produces the same winner. Therefore,
reentering the learning phase only produces an unnecessary
overhead.

5.2.1 Evaluating AToM

In this work, we have constructed a prototype of AToM
tuned for the datacenter. During the learning phase, AToM
cycles through three taskset configurations for a period of 10
minutes each. For an application in the datacenter we use a
long period to minimize noise in our competition. The dat-
acenter applications presented in this work are long running
programs, running for days and weeks at a time; however
for our experimental runs we allow only 2 hours of execu-
tion. Figures 23 and 24 present the results of our experi-
mentation on both Clovertown and Westmere. In the fig-



P
er

fo
rm

an
ce

average
adaptive
optimal

  1x

  1.1x

  1.2x

  1.3x

  1.4x

  1.5x

  1.6x

C

C
+

S

C
+

P B

B
+

S

B
+

P W

W
+

S

W
+

P

m
ea

n

Figure 23: Adaptive Thread-To-Core Mapping on
Clovertown
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Figure 24: Adaptive Thread-To-Core Mapping on
Westmere

ures, we use C for contentAnalyzer, W for webSearch, B for
bigtable, S for stitcher and P for protobuf. The y axis shows
each of the three latency sensitive applications’ performance,
normalized by its performance when running alone in the
{X...X...} mapping. In both figures, the x axis shows 9
machine loads, including each of our latency sensitive appli-
cations running alone and co-located with our batch applica-
tions. Each application is configured to run on 4 cores. The
y axis shows the performance of our latency sensitive appli-
cation normalized to the worst assignment. As this figure
shows, AToM is quite effective, achieving near optimal per-
formance. In each case, AToM outperforms the average case
(average random assignment) by up to 22%, and is signifi-
cantly better performing than the worse case assignments.

6. RELATED WORK
Kozyrakis et al. [26] present a study of emerging large

scale online services workloads and show how their charac-
teristics effect the datacenter system design for architects.
Other studies that characterize the interaction between emerg-
ing datacenter workloads and underlying architectures in-
clude studies by Reddi et al. [37] and by Soundararajan
et. al. [40]. Hardavellas et al. [17, 16] investigate sharing
characteristics for database workloads and webservice work-
loads. Our work looks at large scale Google workloads and
focuses on their interactions with the underlying memory
resource sharing. Zhang et al. [45] examine the influence of
cache sharing on multithreaded applications using the PAR-
SEC suite, and conclude that there is neither significant con-
structive or destructive influence from cache sharing. Our
work expands the study to both cache and bus sharing using
commercial datacenter applications and shows that for these
applications, there is both positive and negative significant
performance impact. We also present approaches to take
advantage of the performance variability.

In the architecture community, much work has investi-
gated and proposed approaches to addressing memory re-
source sharing and contention. New architectural supports
for cache and memory bus partitioning, management and
monitoring are proposed and evaluated [10, 34, 36, 42, 27,
24, 41, 11, 19]. Most studies evaluate the performance im-
pact of resource sharing and different schemes of partitioning
using simulations. While simulations are important and nec-
essary when designing new architectures, examining large-
scale applications on existing hardware is important for im-
proving our understanding of emerging workloads as well
as improving performance in the deployed systems. Effec-
tive scheduling approaches to addressing resource sharing on
SMT processors are also proposed [39, 13, 35].

In the area of OS and runtime scheduling, most studies

focus on job co-scheduling to avoid co-locating cache con-
tentious applications together to improve performance and
fairness [25, 46, 14, 6, 31, 21, 20]. Approaches to alleviat-
ing resource contention and guaranteeing QoS by controlling
the execution rate through hardware features or a runtime
are proposed [18, 29]. Banikazemi et al. [4] present a sched-
uler to adaptively schedule threads to cores to take advan-
tage of the cache topology to alleviate resource contention.
Most of the above works use single threaded applications
and focus on the resource contention aspect. Tam et al. [44]
present a technique to cluster communicating threads onto
the same chip to reduce the communicating latency. How-
ever, their approach focuses on the constructive effect of
sharing resource without considering the potential resource
contention. There is also theoretical work to model shar-
ing caches among threads [7, 8]. In addition, compilation
techniques that are aware of the cache sharing and cache
topology also proposed [23, 22, 45, 38].

7. CONCLUSION
In this work, we present an in depth study of the inter-

action of industry-strength datacenter applications and the
shared resources in the underlying memory subsystem. We
have found a performance swing of up to 25% for web search
and 40% for other key applications, simply based on how ap-
plication threads are mapped to cores. This is particularly
significant considering that at the datacenter scale, a per-
formance improvement of even 1% can results in millions
of dollars saved. This finding demonstrates the importance
of performing intelligent thread-to-core mapping for appli-
cations in the datacenter. In this work, we have also pre-
sented key application characteristics that impact the opti-
mal thread-to-core mapping decisions, and show how these
characteristics can be used to build heuristics to perform
thread-to-core mappings. One key insight and observation
from this study is the fact that when threads of multiple
applications with diverse memory behaviors are co-located,
the ideal mapping for a given application is different than
if running alone on the system. In addition to the heuristic
approach, we present an adaptive approach, and conclude
that an adaptive approach is more attractive as it is simple
to implement and, at least for long running datacenter ap-
plications, is quite effective. Using this approach, the perfor-
mance of datacenter workloads improved by up to 22% over
status quo thread-to-core mapping and performs within 3%
of optimal mapping on average.
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