
Google Search Appliance Connectors
Developer’s Guide

Google Search Appliance Connectors software version 4
Google Search Appliance software version 7.2 and later

July 2015

Google Search Appliance Connectors Developer’s Guide 1

Contents

Introduction
Purpose
Audience
Assumptions
Conventions
GSA example use cases
Updates to the GSA Connector V4

Get started
Set up your development environment
Test your setup

Set up the GSA
Add a sample connector
Run the connector
Validate indexed content in GSA
Review the Index Diagnostics
Validate the GSA search results

GSA connector architecture
Communication flow
Security
The Lister and Retriever model
Secure search

Early- binding authorization with ACLs
Late- binding authorization
Authentication

Connector development
Create a Lister and Retriever

The Lister
The Retriever
Connector configuration

Update the index
Full listing
Incremental updates
Deleted documents
Runtime configuration

Google Search Appliance Connectors Developer’s Guide 2

Customize the connector
Display URL
Add metadata
Crawling behavior
Lock document index
Additional response attributes

Secure your content
Authorization by ACL
Authentication
Set up system
Configure the connector as a SAML IdP
Implement authentication within the connector
Configure the GSA Universal Login form
Authorization by connector

Add a SAML rule to the GSA
Implement authorization within the connector
Inherit security definitions

Document ACL inheritance
Named resource ACL inheritance
Advanced Access Control : Fragment ACL

Implement access- controlled serving by the connector
Non- Java connectors

Create the Executable Lister and Retriever programs
Lister executable application
Retriever executable application

Connector configuration
Run the connector

Transforms
Metadata transforms

Class requirements
Configuration
Factory method
Transform method

ACL transforms
Configuration

Graph traversal
Use the Retriever as a Lister

Tutorials
Write your first connector

Google Search Appliance Connectors Developer’s Guide 3

HelloWorld
Create a connector class
Initialize the connector
Create the Lister method
Create the Retriever method
Add support for incremental updates

Authentication and authorization
Create the Authenticator class
Authenticate the user
Determine if the user is authorized
Handle the submitted login

Meta transforms
Create the transform class
Create custom constructor and factory methods
Create the transform method

References

Google Search Appliance Connectors Developer’s Guide 4

Introduction
A Google Search Appliance Connector is a custom program that sits between the Google Search
Appliance (GSA) and your non-HTTP content repository. The connector provides all of the
information that the GSA requires to index your content, including security and metadata.

Purpose

This document guides developers through the creation of a simple connector, and demonstrates the
many useful features that developers can use to customize the indexed content.

Audience

This document is intended for software developers who are familiar with the GSA and need to index
content sources not easily crawled by the GSA (such as portal content or non-HTTP content). This
document may also serve as a resource for architects and systems analysts who require an
architectural overview of the communication and security model between the GSA and GSA
connector.

Assumptions

This document makes the following assumptions:

● The reader is a developer who has a basic understanding of the GSA, and is familiar with
compiling and running code.

● Although you may communicate with a connector using any language, the connector
software is written in Java®.

● The developer must be able to sign in to the GSA to configure and validate the connector.
● From a network perspective, the GSA must be able to communicate with the computer

where the connector code is running.

Conventions

Type Style Example

File names, configuration
variables, domain names, Class
and Method names

Courier New
font

HelloWorldConnector

Google Search Appliance Connectors Developer’s Guide 5

Literal strings and commands in
the GSA Admin Console

Bold Click Administration > SSL Settings.

URLs Normal text http://googlegsa. github. io/ adaptor/ index. html

GSA example use cases

Altostrat College is using GSA to index and serve information from departmental webpages, meeting
minutes, memos, and so on. They also have a legacy, in-house academic personnel information
system that includes information about hires, terminations, promotions, sabbaticals, and so on. The
college administration would like to have the records from the academic personnel information
system indexed and served by the GSA, along with the other content. To accomplish this goal, they
can develop a custom connector. Using the connector, the GSA can crawl, index, and serve the
records in the index.

Another use case involves an organization that wants the GSA to index content from an SAP ®
database, for which there is no connector. By developing and implementing a custom connector for
the SAP database, the organization enables the GSA to crawl, index, and serve SAP database records
to search users.

Updates to the GSA Connector V4

The GSA Connector V4 improves the developer experience, making it simple
to create a custom connector while still providing security, performance, and
scalability.

Google has developed several connectors to connect the GSA to common
non-HTTP sources, such as Microsoft® SharePoint, Microsoft® SharePoint
User Profiles, Microsoft Windows® Shares, and Microsoft® Active Directory.

You can download these connectors with their deployment guides.

One of the new features of the GSA Connector V4 is the ability to communicate with a connector
using any programming language and a command line adaptor connector. You can view a full
description in Non- Java c onnectors.

Google Search Appliance Connectors Developer’s Guide 6

http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2F&sa=D&sntz=1&usg=AFQjCNFE-4-6IcPpc1zWb1JCJks4stwcfg
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html

Get started

This section guides you through the process of running a sample connector. Running a sample
connector demonstrates communication from the GSA to the connector and ensures that your
development environment is properly setup.

1. Set up your development environment
2. Test your setup

Set up your development environment

Before you can run a sample connector, you must first download the Java library, and add it to your
development environment.

1. Go to the Google Search Appliance Adaptors resource page.
2. In “Instructions for developing your own Adaptor,” click the Download the library link.
3. After you’ve downloaded the library, unzip the file.
4. Create a new Java project.
5. Add the downloaded connector libraries to your Java project.

Test your setup

With your development environment set up with the connector libraries, you can test a sample
connector and validate that the GSA has indexed sample content.

These steps guide you through the processes of testing a sample connector in your development
environment:

1. Set up the GSA
2. Add a sample connector
3. Run the connector
4. Validate indexed content in GSA
5. Review the Index Diagnostics
6. Validate the GSA search results

Set up the GSA

Set up the GSA to allow the hostname/IP address to be crawled.

1. In the GSA Admin Console, go to Content Sources > Web Crawl > Start and Block URLs.

Google Search Appliance Connectors Developer’s Guide 7

http://googlegsa.github.io/adaptor/index.html
http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2Findex.html&sa=D&sntz=1&usg=AFQjCNHK7oxYdINvsaDDBjsZXwQY0iJBnw
http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2Findex.html&sa=D&sntz=1&usg=AFQjCNHK7oxYdINvsaDDBjsZXwQY0iJBnw
http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2Findex.html&sa=D&sntz=1&usg=AFQjCNHK7oxYdINvsaDDBjsZXwQY0iJBnw
http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2Findex.html&sa=D&sntz=1&usg=AFQjCNHK7oxYdINvsaDDBjsZXwQY0iJBnw
http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2Findex.html&sa=D&sntz=1&usg=AFQjCNHK7oxYdINvsaDDBjsZXwQY0iJBnw
http://www.google.com/url?q=http%3A%2F%2Fgooglegsa.github.io%2Fadaptor%2Findex.html&sa=D&sntz=1&usg=AFQjCNHK7oxYdINvsaDDBjsZXwQY0iJBnw

2. In the Follow Patterns section, click Add.
3. Enter the URL where the connector will reside. For example, you might enter

http://connector. example. com:5678/doc/ where connector.example.com is the
hostname of the machine that hosts the connector. By default, the connector runs on port
5678.

4. Click Save.

If the GSA is not set up to trust feeds from all IP addresses, then add your IP address as follows:

1. In the GSA Admin Console, go to Content Sources > Feeds.
2. In the List of Trusted IP Addresses section, if the Only trust feeds from these IP

addresses option is selected, add the IP address for the connector to the list.
3. Click Save.

Add a sample connector

1. Download the sample connector.
2. Add this connector class to your project.
3. Create a properties file at the root of your project named adaptor-config.properties.
4. Add a single entry within this file that defines the hostname or IP address of your GSA:

gsa.hostname=(add your GSA hostname or IP address)

Run the connector

Execute the main()method of the AdaptorTemplate class. For example:
java -cp adaptor-4.0.3-withlib.jar;examples/adaptor-4.0.3-examples.jar
com.google.enterprise.adaptor.examples.AdaptorTemplate

Validate indexed content in GSA

1. In the GSA Admin Console, go to Content Sources > Feeds.
2. In the Current Feeds section, you should see a feed that can be identified by Source Name.
3. Verify that the status is In Progress or Completed.
4. When feed status is Completed, review the Index Diagnostics.

Review the Index Diagnostics

1. In the GSA Admin Console, go to Index > Diagnostics > Index Diagnostics. There may be a
delay of up to ten minutes before content is reflected in Index Diagnostics.

2. Verify that the Connector feed URL has a value greater than 0 for Crawled URLs. This
indicates that the feed was successfully crawled.

Google Search Appliance Connectors Developer’s Guide 8

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglegsa%2Flibrary%2Fblob%2Fmaster%2Fsrc%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2Fexamples%2FAdaptorTemplate.java&sa=D&sntz=1&usg=AFQjCNG8c6E9iehPcn5sLf0dFH5B6VOkGA
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/
http://connector.example.com:5678/doc/

3. Click the Crawled URLs number link, then the doc link to review the crawled documents.
Verify that the two sample documents 1001 and 1002 are listed.

Validate the GSA search results

1. Go to the GSA search page.
2. Enter the following search terms: apple orange.
3. Validate that there’s at least one search result.
4. Click a search result to view the file in your browser.

Google Search Appliance Connectors Developer’s Guide 9

GSA connector architecture

There are 4 key aspects of the GSA connector architecture:

● Communication flow
● Security
● The Lister and Retriever model
● Secure search

Communication flow

GSA connectors enable the GSA to index content within a content repository. The connector
provides all of the information required by the GSA to index the content and, optionally, provides
metadata and security definitions.

The connector runs as a separate application and provides communication between the GSA and
the content repository. After the connector has been registered with the GSA, a simple
communication flow is as follows:

● The connector provides a list of Doc IDs for the GSA.
● The GSA requests the document contents for each Doc ID.
● The connector provides the document contents and, optionally, provides metadata and

security definitions.

Google Search Appliance Connectors Developer’s Guide 10

Another approach to provide the unique IDs to the GSA in smaller batches is called graph traversal.
This technique provides a virtual webpage containing content links to the GSA to crawl and index.

Security

Connectors can send access control lists (ACLs) with documents to the GSA for early-binding,
document-level authorization.

Late-binding authorization is also possible through a Security Assertion Markup Language (SAML)
interface. In this case, the connector facilitates authorization and authentication using SAML as the
communication protocol. Authentication can be performed within the connector, or authentication
can be handed off to another service.

The following diagram shows the communication between the GSA, the connector, and the content
repository:

Google Search Appliance Connectors Developer’s Guide 11

Google Search Appliance Connectors Developer’s Guide 12

The Lister and Retriever model

In order for the GSA to crawl the content within the repository, the connector must provide a Lister
and a Retriever. The Lister provides a list of unique DocIds that the GSA uses to request the content
to be indexed from the Retriever.

The following diagram demonstrates how the GSA communicates with the connector:

Secure search

There are 3 concepts related to securing your search:

● Early- binding authorization with ACLs
● Late- binding authorization
● Authentication

Early-binding authorization with ACLs

ACLs define document access for users and groups. You can program the connector to build ACLs
and pass them to the GSA within the Retriever. If this configuration isn’t appropriate for your
environment, you can implement Late- binding authorization.

Google Search Appliance Connectors Developer’s Guide 13

Late-binding authorization

The connector framework can handle both the authentication of users and authorization of GSA
search results. Connectors have embedded support for the SAML 2.0 protocol that integrates with
the GSA.

A connector can implement the following optional components:

● A SAML Identity Provider (IdP) endpoint (authentication)
● A document authorizer (authorization)

Authentication

The authentication process verifies the identity of the user so that authorization can be performed.
A SAML IdP endpoint can be:

● Implemented within the connector
● Configured to use an external SAML IdP

Google Search Appliance Connectors Developer’s Guide 14

Connector development

Developing a connector involves one or more of the following:

● Create a Lister and Retriever
● Configure index update behavior
● Customize the Connector
● Secure Your Content

Create a Lister and Retriever

To create a Lister and Retriever, your custom connector needs to implement the Adaptor interface.
The Adaptor interface has the following methods:

Method Description

initConfig(Config config) Provides the opportunity for the connector to
specify keys for its own configuration.

init(AdaptorContext context) Provides available context—including read in
configuration—to the connector.

getDocIds(DocIdPusher pusher) Pushes all the DocIds to be indexed by the GSA.

getDocContent(Request request,
Response response)

Provides contents, metadata and ACLs of a
particular document.

destroy() Shuts down and releases connector resources.

One common option is to extend the AbstractAdaptor class; it provides default implementations
for common GSA Connector V4 methods.

public class HelloWorldConnector extends AbstractAdaptor

The AbstractAdaptor class provides a default implementation for most of the connector methods.
The connector must override the methods that serve as the Lister and Retriever. For a complete
class description, the Javadocs can be found here.

Google Search Appliance Connectors Developer’s Guide 15

https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/index.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/index.html

At minimum, a connector is comprised of:

● The Lister
● The Retriever
● Connector configuration

The Lister

The getDocIds()method serves as the Lister. The implementation of the Lister would require you
to obtain a list of unique DocIds that you want indexed by the GSA. The following code
demonstrates returning some mock DocIds that will be fed to the GSA in preparation for indexing
the content:

/** Gives list of document ids that you'd like on the GSA. */
@Override
public void getDocIds(DocIdPusher pusher) throws InterruptedException {
 ArrayList<DocId> mockDocIds = new ArrayList<DocId>();
 /* Replace this mock data with code that lists your repository. */
 mockDocIds.add(new DocId("1001"));
 mockDocIds.add(new DocId("1002"));
 pusher.pushDocIds(mockDocIds);
}

The Retriever

The getDocContent()method serves as the Retriever. The following code shows a skeleton
Retriever method:

public void getDocContent(Request req, Response resp) throws IOException {
 // TODO Auto-generated method stub
}

The implementation of the Retriever contains the content lookup by DocId and returns this content
back to the GSA for indexing. The following code demonstrates returning some mock content that is
indexed by the GSA:

/** Gives the bytes of a document referenced with id. */
@Override
public void getDocContent(Request req, Response resp) throws IOException {
 DocId id = req.getDocId();
 String str;
 if ("1001".equals(id.getUniqueId())) {

Google Search Appliance Connectors Developer’s Guide 16

 str = "Document 1001 says hello and apple orange";
 } else if ("1002".equals(id.getUniqueId())) {
 str = "Document 1002 says hello and banana strawberry";
 } else {
 resp.respondNotFound();
 return;
 }
 resp.setContentType("text/plain; charset=utf-8");
 OutputStream os = resp.getOutputStream();
 os.write(str.getBytes(encoding));
}

Connector configuration

A connector must have a configuration file that, at a minimum, defines the location of the GSA.

The file must be at the root of the connector project. By default, the expected configuration file
name is adaptor-config.properties. If you would like to use a different configuration file name,
it can be specified when executing your connector application by specifying an
adaptor.configfile flag.

To define the location of the GSA, add the following entry within this file:
gsa.hostname=(add your GSA hostname or IP address)

Update the index

When the content in your repository changes, you’ll want the GSA index to be updated. Depending
on your freshness requirements, you may want to schedule full index or incremental updates, or
provide more detailed control on a document-by-document basis.

The following sub-sections describe each of these processes:

● Full listing
● Incremental updates
● Deleted documents
● Runtime configuration

Full listing

The getDocIds()Lister provides a full list of DocIds from your content repository to the GSA for
indexing. You can configure the connector to perform this full listing on a schedule by adding a
configuration setting to the adaptor-config.properties file:

Google Search Appliance Connectors Developer’s Guide 17

adaptor.fullListingSchedule=(value is in cron format (minute, hour, day of
month, month, day of week). Defaults to 0 3 * * *)

By default, a full listing is performed when the connector starts. To prevent this from occurring, add
the following setting to the adaptor-config.properties file:
adaptor.pushDocIdsOnStartup=false

Incremental updates

As the GSA crawls the content within your repository via your connector, you can develop the Lister
to only pass DocIds for the content that has been modified recently.
To do this, follow these steps:

1. Implement the PollingIncrementalLister interface.
2. Override the getModifiedDocIds()method.
3. Register the incremental lister with the AdaptorContext method.
4. Configure the polling period.

As shown below, the connector class implements the PollingIncrementalLister interface:

public class HelloWorldConnector extends AbstractAdaptor implements
 PollingIncrementalLister

The getModifiedDocIds()method would be developed to obtain a list of modified DocIds within
your repository. The following example shows a single mockDocId identified as a modified
document:

@Override
public void getModifiedDocIds(DocIdPusher pusher) throws IOException,
InterruptedException {
 ArrayList<DocId> mockDocIds = new ArrayList<DocId>();
 mockDocIds.add(new DocId("1002"));
 pusher.pushDocIds(mockDocIds);
}

The incremental lister must be registered with the AdaptorContext method within the
init()method:

@Override
public void init(AdaptorContext context) throws Exception {
 context.setPollingIncrementalLister(this);
}

Google Search Appliance Connectors Developer’s Guide 18

If it’s not easy to identify modified documents within your repository, then don’t use this interface.
Without the PollingIncrementalLister interface, the GSA can be left to naturally find changes.

The default polling period is 900 seconds, but you can configure the polling time by adding the
following setting to the adaptor-config.properties file:
adaptor.incrementalPollPeriodSecs=(number of seconds between polling)

Deleted documents

When the Retriever attempts to load a document that’s been deleted from the content repository,
the GSA should be informed that the deleted document should be removed from the index. You can
do this by using the respondNotFound()method of the Response object.

public void getDocContent(Request req, Response resp) throws IOException {
 ...
 resp.respondNotFound();
 ...
}

Runtime configuration

In a basic configuration, the Lister only provides DocIds to the GSA. However, the Lister can provide
a more detailed configuration along with each DocId by passing a DocIdPusher.Record object to
the pushRecords()method in the Lister.

The Record class uses the builder pattern to set the appropriate attributes. The following code
demonstrates the following runtime configuration:

● The setCrawlImmediately(true)method indicates that the GSA should give the record
priority to re-crawl.

● The setLastModified()method specifies the last modified date.

DocIdPusher.Record record = new DocIdPusher.Record.Builder(new DocId("1009"))
 .setCrawlImmediately(true).setLastModified(new Date()).build();
pusher.pushRecords(Collections.singleton(record));

Google Search Appliance Connectors Developer’s Guide 19

Customize the connector

You can customize the behavior of the connector through the implementation of interfaces and
through configuration. Some of the frequently used customizations are described in this guide, but
you can explore all customization options by reviewing the following sources:

● Complete listing of available configurations
● Complete Javadoc library

The available connector customizations include:

● Display URL
● Add metadata
● Authorization by ACL
● Crawling behavior
● Lock document index
● Additional response attributes

Display URL

You can set the display URL in the Retriever by using the setDisplayUrl()method of the
Response class.

resp.setDisplayUrl(new URI("http://fake.com/a"));

This method changes the URL returned in the search results, displaying http://fake. com/ a
instead of the connector-based URL.

Add metadata

You can index additional metadata, along with the content, by using the addMetadata() method of
the Response class.

resp.addMetadata("flavor", "vanilla");
resp.addMetadata("flavor", "hazel nuts");
resp.addMetadata("taste", "strawberry");

As demonstrated above, the connector can send multiple values for the same key by making
multiple calls to the addMetadata()method. The metadata is returned in the X-GSA-External-
Metadata header. Learn how external metadata is sent in an HTTP header.

Google Search Appliance Connectors Developer’s Guide 20

http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/metadata/metadata.html#1075058
http://fake.com/a
http://fake.com/a
http://fake.com/a
http://fake.com/a
http://fake.com/a
http://fake.com/a
http://fake.com/a
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/index.html
https://www.google.com/url?q=https%3A%2F%2Fgooglegsa.github.io%2Flibrarydocsreleased%2F4.0.3%2Flib%2Findex.html&sa=D&sntz=1&usg=AFQjCNFp7GIXQQNaxwR5S_T_skStR0WYnA
https://www.google.com/url?q=https%3A%2F%2Fgooglegsa.github.io%2Flibrarydocsreleased%2F4.0.3%2Flib%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2FConfig.html&sa=D&sntz=1&usg=AFQjCNFYZLtZOx4e51GL3sAHPNhrPV1-yQ
https://www.google.com/url?q=https%3A%2F%2Fgooglegsa.github.io%2Flibrarydocsreleased%2F4.0.3%2Flib%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2FConfig.html&sa=D&sntz=1&usg=AFQjCNFYZLtZOx4e51GL3sAHPNhrPV1-yQ

Crawling behavior

By default, documents are re-crawled periodically. To customize the behavior to only crawl a
document once, use the setCrawlOnce()method of the Response class.

resp.setCrawlOnce(true);

Lock document index

When the GSA license limit is reached, unlocked documents are deleted before locked documents.
To lock a document within the GSA index, use the setLock()method of the Response class.

resp.setLock(true);

Additional response attributes

For a complete listing of available Response attributes, review the Response class Javadoc.

Google Search Appliance Connectors Developer’s Guide 21

https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/com/google/enterprise/adaptor/Response.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/com/google/enterprise/adaptor/Response.html

Secure your content

Using the connector framework, you can secure content through an authentication mechanism, and
you can identify the documents a user is authorized to view.

Securing your content involves the following topics:

● Authorization by ACL
● Authentication
● Authorization by connector

Authorization by ACL
ACLs define the users and groups that are either permitted or denied access to the document. You
can build an ACL that can be sent along with the document content by the Retriever method.

The ACL uses the Builder pattern for creation, the ACL includes the following attributes:

● Permitted and denied groups
● Permitted and denied users
● Inheritance
● Case sensitivity

You can use the setAcl()method of the Retriever’s Response object to set the ACL on a document.

The following code demonstrates sending an ACL with a document from the Retriever:

public void getDocContent(Request req, Response resp) throws IOException {
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new UserPrincipal("user1", "Default"));
 permits.add(new UserPrincipal("eric", "Default"));
 permits.add(new GroupPrincipal("group1", "Default"));
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new UserPrincipal("user2", "Default"));
 denies.add(new GroupPrincipal("group2", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setPermits(permits).setDenies(denies).build());

 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1005 says americano");
 writer.close();
}

Google Search Appliance Connectors Developer’s Guide 22

The inheritance type that’s defined with the ACL determines which ACL takes precedence when
inheriting the ACL from an other document. The following table demonstrates the effect of setting
different inheritance types:

Document
ACL

Inherited from
ACL

Inheritance Type Resulting ACL

Permit
Group A

Deny Group A Acl.InheritanceType.PARENT_OVERRIDE
S

Deny Group A

Permit
Group A

Deny Group A Acl.InheritanceType.CHILD_OVERRIDES Permit Group A

Authentication

The connector framework uses the SAML 2.0 protocol to integrate with the GSA. This allows the
connector to authenticate a user and pass identity information to the GSA used by the authorization
process described in Authorization.

The authentication flow is as follows:

1. User performs a secure search.
2. The browser is redirected to the SAML IdP (/samlip).
3. The connector’s implementation of the AuthnAuthority interface

authenticateUser()method is called.
○ The credentials can be authenticated either by the connector itself, or by a another

service. One option for the connector to perform the authenticaton is ri to have the
authenticateUser()method respond with a login form for the user to enter their
credentials.

○ If another service is used, the authenticateUser()method redirects the browser
to that service. The redirect would include a return URL so that when the
authentication is completed, the other service knows where to return the user and
the connector can continue with the SAML protocol.

4. An HTTP handler that’s defined within the connector processes the response from the user.
The handler passes the user’s identity to the SAML code so that it can return the SAML
assertion to the search appliance.

Google Search Appliance Connectors Developer’s Guide 23

The following diagram illustrates the authentication flow:

The process of configuring and implementing authentication is as follows:

1. Set up system.
2. Configure the c onnector as a SAML IdP.
3. Implement authentication for the c onnector.
4. Configure the GSA Universal Login form.

Set up system
To secure the link between the connector and GSA, follow the instructions provided in the “Enable
Connector Security” section of the Google Search Appliance Connectors Administration Guide. You can
perform SAML authentication over an insecure connection between GSA and connector, but that is
highly discouraged for production systems.

Configure the connector as a SAML IdP

You can configure the connector as a SAML IdP by adding the following settings to the adaptor-
config.properties file:

gsa.samlEntityId http://google.com/enterprise/gsa/<APPLIANCE_ID>

server.samlEntityId A string that uniquely identifies the connector instance.

server.keyAlias A keystore alias where encryption keys are stored. Default is “adaptor”.

Google Search Appliance Connectors Developer’s Guide 24

http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://static.googleusercontent.com/media/www.google.com/en//support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf

To obtain the correct Entity ID from the GSA, go to Search > Secure Search > Access Control, and
copy the value defined under SAML Issuer Entity ID.

Implement authentication within the connector

Implementing authentication for the connector consists of the following guidelines:

● A class that implements the AuthnAuthority interface, which is responsible for handling
the authentication calls.

● One or more classes that implement the HttpHandler interface, which handles the
authentication form submission or external service callback.

● Registration of an HTTP handler within the Connector’s init()method. This handler is used
to process the response from the user, or redirect from an external authentication service.

● A class that implements the AuthnIdentity interface.This is used to pass user credential to
the connector’s SAML implementation to generate assertion.

The following example initializes the authentication components within the connector’s
init()method:

public void init(AdaptorContext context) throws Exception {
 ...
 HelloWorldAuthenticator authenticator = new HelloWorldAuthenticator(context);
 context.setAuthnAuthority(authenticator);
 context.createHttpContext("/response", authenticator);
 ...
}

In this example, the HelloWorldAuthenticator class is registered as the AuthnAuthority
interface and as the HTTP handler. Therefore, the class must implement both AuthnAuthority and
HttpHandler interfaces.

class HelloWorldAuthenticator implements AuthnAuthority, HttpHandler {

By implementing the AuthnAuthority interface, the class must override the
authenticateUser()method. In this example, the connector is to perform the user
authentication.

public void authenticateUser(HttpExchange exchange, Callback callback)
throws IOException {
 context.getUserSession(exchange, true).setAttribute("callback", callback);

Google Search Appliance Connectors Developer’s Guide 25

 Headers responseHeaders = exchange.getResponseHeaders();
 responseHeaders.set("Content-Type", "text/html");
 exchange.sendResponseHeaders(200, 0);
 OutputStream os = exchange.getResponseBody();
 String str = "<html><body><form action=\"/google-response\" method=Get>"
 + "<input type=text name=userid/>"
 + "<input type=password name=password/>"
 + "<input type=submit value=submit></form></body></html>";
 os.write(str.getBytes());
 os.flush();
 os.close();
 exchange.close();
}

When the authenticateUser()method is called, a CallBack object is passed, which is used later
to send the identity information back to the GSA. The connector framework provides the ability to
store objects in Session.

This sample code writes a simple login form for demonstration purposes, but the code could be
written to redirect to an external authentication service. After the user submits the completed form,
the request is intercepted by the registered HttpHandler interface, and the handle()method is
called.

public void handle(HttpExchange ex) throws IOException {
 log.entering("HelloWorldAuthenticator", "handle");

 callback = getCallback(ex);
 if (callback == null) {
 return;
 }

 Map<String, String> parameters = extractQueryParams(ex.getRequestURI()
 .toString());
 if (parameters.size() == 0 || null == parameters.get("userid")) {
 log.warning("missing userid");
 callback.userAuthenticated(ex, null);
 return;
 }
 String userid = parameters.get("userid");
 SimpleAuthnIdentity identity = new SimpleAuthnIdentity(userid);
 callback.userAuthenticated(ex, identity);
}

Utility methods retrieve the CallBack object from Session and the query parameters from the
submitted form. This simple example skips the process of verifying the passed credentials. A
SimpleAuthnIdentity object is created that consists of the userid. You can also add groups to

Google Search Appliance Connectors Developer’s Guide 26

the identity object. This identity is then is passed back through the
callback.userAuthenticated()method.

You can view the utility methods used in the HelloWorldAuthenticator class on github.

The SimpleAuthnIdentity class implements the AuthnIdentity interface and is used to pass
identity information back to SAML.

Google Search Appliance Connectors Developer’s Guide 27

https://github.com/googlegsa/library/blob/master/src/com/google/enterprise/adaptor/examples/helloworldconnector/HelloWorldAuthenticator.java
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglegsa%2Flibrary%2Fblob%2Fmaster%2Fsrc%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2Fexamples%2Fhelloworldconnector%2FHelloWorldAuthenticator.java&sa=D&sntz=1&usg=AFQjCNH-Na6zu1ZO0D6f8DTViBjpeN9V7w

class SimpleAuthnIdentity implements AuthnIdentity {

 private UserPrincipal user;
 private Set<GroupPrincipal> groups;

 public SimpleAuthnIdentity(String uid) throws NullPointerException {
 if (uid == null) {
 throw new NullPointerException("Null user not allowed");
 }
 this.user = new UserPrincipal(uid);
 }

 //Constructor with user & single group
 public SimpleAuthnIdentity(String uid, String gid) throws NullPointerException {
 this(uid);
 this.groups = new TreeSet<GroupPrincipal>();
 if (gid != null && !"".equals(gid)) {
 this.groups.addAll(Collections.singleton(new GroupPrincipal(gid)));
 }
 this.groups = Collections.unmodifiableSet(this.groups);
 }

 // Constructor with user & groups
 public SimpleAuthnIdentity(String uid, Collection<String> gids)
 throws NullPointerException {
 this(uid);
 this.groups = new TreeSet<GroupPrincipal>();
 for (String n : gids) {
 if (n != null && !"".equals(n)) {
 this.groups.addAll(Collections.singleton(new GroupPrincipal(n)));
 }
 }
 this.groups = Collections.unmodifiableSet(this.groups);
 }

 @Override
 public UserPrincipal getUser() {
 return user;
 }

 @Override
 public String getPassword() {
 return null;
 }

 @Override
 public Set<GroupPrincipal> getGroups() {
 return groups;
 }
}

Google Search Appliance Connectors Developer’s Guide 28

Configure the GSA Universal Login form
Before a user can perform a secure search, they must submit their credentials to view the
authorized search results. They submit their credential using the GSA Universal Login form. You
must configure the GSA to present the Universal Login form from the connector.

Within the GSA Admin console, go to Search > Secure Search > Universal Login Auth Mechanisms
> SAML. Complete the form as follows:

● Mechanism Name: Type a unique name for the authentication mechanism.
● IDP Entity ID: Add the SAML Entity IdP ID to match the server.samlEntityId entry value in

the connector configuration file.
● Login URL: Add the SAML IdP URL for the connector: https://connector-host-

name:port/samlip. The default connector port is 5678.
● Artifact Resolver URL: This value should be left blank. as the Public Key value is used for

signing an assertion.
● Public Key of IDP: Enter the public key that was configured in Set up system. This public key

must match that as identified by the value of server.keyAlias in the adaptor-
config.properties connector configuration file.

● Timeout (seconds): Enter the time allowed for making a network connection. If left blank, the
default value is 3 seconds.

Learn more about the Google Search Appliance.

Authorization by connector

Instead of sending the ACLs with the document content by the Retriever, you can implement late-
binding authorization of documents by way of the connector.

Implementing late-binding authorization requires you to:

● Add a SAML rule to the GSA.
● Implement authorization within the c onnector.

Add a SAML rule to the GSA

Within the GSA Admin Console, perform the following steps:

1. Go to Search > Secure Search > Flexible Authorization.
2. From the drop-down list, select the SAML rule and click Add another rule.
3. Complete the form as follows:

a. URL Pattern: https://connector-host-name:port/doc

Google Search Appliance Connectors Developer’s Guide 29

http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/secure_search/secure_search_crwlsrv.html#1072898
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/secure_search/secure_search_crwlsrv.html#1072898
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/secure_search/secure_search_crwlsrv.html#1072898
https://bruteforce.mtv.corp.google.com:5678/samlip

b. Authorization service ID: Entity ID of the connector from server.samlEntityId
c. Authorization service URL: https://connector-host-name:port/saml-authz
d. Check the Use batched SAML Authorization Requests box.

4. Once saved, move this SAML rule above “HEADREQUEST”.

Implement authorization within the connector

To implement authorization within the connector:

1. Identify the content as being secure content in the Retriever.
2. Create an authorizer class that implements the AuthzAuthority interface.
3. Register the authorizer class with the connector.

To identify the content as being secure, add a call to the setSecure()method of the Response
class:

public void getDocContent(Request req, Response resp) throws IOException {
 ...
 resp.setSecure(true);
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1009 says espresso");
 writer.close();
 ...
}

Create an authorizer class that implements the AuthzAuthority interface and contains an
isUserAuthorized()method:

class HelloWorldAuthorizer implements AuthzAuthority {
 public Map<DocId, AuthzStatus> isUserAuthorized(AuthnIdentity userIdentity,
 Collection<DocId> ids) throws IOException {

 HashMap<DocId, AuthzStatus> authorizedDocs = new HashMap<DocId, AuthzStatus>();

 for (Iterator<DocId> iterator = ids.iterator(); iterator.hasNext();) {
 DocId docId = iterator.next();
 // if authorized
 authorizedDocs.put(docId, AuthzStatus.PERMIT);
 }
 return authorizedDocs;
 }
}

Google Search Appliance Connectors Developer’s Guide 30

For brevity, this simple sample excludes the logic that would be performed to determine if the user
is authorized to access the documents. For each document that the user is permitted to access, the
docId is added to a Map along with the AuthzStatus.PERMIT value.

This authenticator class is then registered with the connector:

public void init(AdaptorContext context) throws Exception {
 ...
 HelloWorldAuthorizer authorizer = new HelloWorldAutherizer(context);
 context.setAuthzAuthority(autherizer);
 ...
}

Inherit security definitions

There are 3 mechanisms that allow security definitions to be inherited:
● Document ACL inheritance
● Named resource ACL inheritance
● Fragment ACL inheritance

Document ACL inheritance
When defining the ACL for a document in the Retriever, you may inherit an ACL from another
document. When you build an ACL by using the Acl.Builder(), you specify a DocId with
setInheritFrom()and the type of inheritance with setInheritanceType(). The following
example demonstrates inheriting an ACL from another document:

public void getDocContent(Request req, Response resp) throws IOException {
 ...
 // Inherit ACLs from 1005
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new GroupPrincipal("group3", "Default"));
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new GroupPrincipal("group3", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setInheritFrom(new DocId("1005")).setPermits(permits)
 .setDenies(denies).build());

 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1006 says misto");
 writer.close();
 ...
}

Google Search Appliance Connectors Developer’s Guide 31

Named resource ACL inheritance
In some content repositories, the ACL information is defined separately from the content. The GSA
supports this case through named resources. A named resource is an ACL that’s not associated with
a document. Named resources can be pushed to the GSA using the
pushNamedResources()method of the DocIdPusher. Documents may inherit these named
resource ACLs; see Document ACL inheritance.The following example demonstrates the creation of
a named resource ACL:

public void getDocIds(DocIdPusher pusher) throws InterruptedException {
 ...
 // push named resources
 HashMap<DocId, Acl> aclParent = new HashMap<DocId, Acl>();
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new UserPrincipal("user1", "Default"));
 aclParent.put(new DocId("fakeID"), new
Acl.Builder().setEverythingCaseInsensitive()
 .setPermits(permits).setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .build());
 pusher.pushNamedResources(aclParent);
 ...
}

Advanced Access Control : Fragment ACL
For situations which require multiple ACLs for every folder or document there is a facility which
allows ACLs to be rooted at particular folder or document.

Google Search Appliance Connectors Developer’s Guide 32

Google Search Appliance Connectors Developer’s Guide 33

The following example demonstrates a Retriever returning a document that includes a fragment ACL
definition along with the document ACL:

public void getDocContent(Request req, Response resp) throws IOException {
 ...
 // Inherit ACLs from 1005 & 1006
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new GroupPrincipal("group5", "Default"));

 resp.putNamedResource("Whatever", new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritFrom(new DocId("1006")).setPermits(permits)
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES).build());

 ArrayList<Principal> permits2 = new ArrayList<Principal>();
 permits2.add(new GroupPrincipal("group4", "Default"));
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new GroupPrincipal("group4", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setInheritFrom(new DocId("1005")).setPermits(permits2)
 .setDenies(denies).build());

 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1007 says frappuccino");
 writer.close();

...
}

The inheritance type that’s defined with the ACL determines which ACL takes precedence when
inheriting the ACL from an other document. The following table demonstrates the effect of setting
different inheritance types:

Document
ACL

Inherited
from ACL

Inheritance Type Resulting ACL

Permit
Group A

Deny Group A Acl.InheritanceType.PARENT_OVERRIDES Deny Group A

Permit
Group A

Deny Group A Acl.InheritanceType.CHILD_OVERRIDES Permit Group A

Implement access-controlled serving by the connector

In release 4.1.0, you can configure the database or file system connectors to serve access-controlled
content to users by setting up secure mode and using the GSA 7.4 as a SAML IdP. So rather than

Google Search Appliance Connectors Developer’s Guide 34

using a native query method to access content, users can click the URLs that link to content and view
results in a browser. The connector only serves results that users are allowed to view.

You can also configure a custom connector this way. Google recommends using this functionality
with connectors only. Google does not recommend configuring the GSA to act as a corporate SAML
Identity Provider.

Implementing access-controlled serving in secure mode for the connector requires you to:

1. Implement the isUserAuthorized() method within the connector.
2. Configure an authentication mechanism on the GSA.
3. Configure secure serve for the connector.

For information about performing these tasks, see Implement authorization within the connector in
this guide, as well as "Access-Controlled serving in secure mode” in Deploying the Connector for
Databases 4.1.0 and in Deploying the Connector for File Systems 4.1.0.

Google Search Appliance Connectors Developer’s Guide 35

http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforFileSystems.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforDatabases.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforDatabases.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforDatabases.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforDatabases.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforDatabases.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/410/DeployingtheConnectorforDatabases.pdf
https://github.com/googlegsa/library/blob/master/src/com/google/enterprise/adaptor/AuthzAuthority.java
https://github.com/googlegsa/library/blob/master/src/com/google/enterprise/adaptor/AuthzAuthority.java
https://github.com/googlegsa/library/blob/master/src/com/google/enterprise/adaptor/AuthzAuthority.java
https://github.com/googlegsa/library/blob/master/src/com/google/enterprise/adaptor/AuthzAuthority.java

Non-Java connectors

You can provide data to the GSA through a connector using any programming language. You can do
this by using a command line adaptor connector.

The 3 steps to develop and run a non-Java connector are:

1. Create the Executable Lister and Retriever programs
2. Configure the Connector
3. Run the Connector

Create the Executable Lister and Retriever programs

To provide the content from your repository to the GSA, create two executable programs:

● One to feed the connector the DocIds (for the Lister)
● One to provide the document content (for the Retriever)

The command line adaptor connector is configured to define the location of these two executable
application files. The Lister executable application provides a formatted list of DocIds for the
connector’s Lister to consume. The Retriever executable application provides the document content
for the connector’s Retriever to consume.

The basic flow of operation is as follows:

● The command line adaptor connector executes the Lister executable application.
● The Lister executable application provides a formatted list of DocIds to be indexed.
● The formatted data is converted to Records.
● The Recordsare pushed to the DocIdPusher, which is sent to the GSA.

Google Search Appliance Connectors Developer’s Guide 36

GSA requests document content for indexing:

● The command line adaptor connector executes the Retriever executable application, passing
the DocId as a parameter.

● The Retriever executable application provides a formatted document containing the
document content.

● The document content is extracted from the formatted output provided by the Retriever
executable application and is sent to the GSA for indexing.

Two executable applications are required to communicate with the GSA through the command line
adaptor connector:

1. Lister executable application
2. Retriever executable application

Lister executable application

The Lister executable application provides the DocIds used by the Lister. A header is required as the
first line and must adhere to the following format:

GSA Adaptor Data Version 1 [<delimiter>]

The spacing of this header text must match the provided sample. The version number may change
in the future if the format is enhanced. The delimiter within the square brackets is to match the
delimiter used to separate commands in the output from the Lister executable application. The
delimiter usage has some restrictions that are described in the CommandStreamParser Javadoc.

Google Search Appliance Connectors Developer’s Guide 37

https://www.google.com/url?q=https%3A%2F%2Fgooglegsa.github.io%2Flibrarydocsreleased%2F4.0.3%2Flib%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2FCommandStreamParser.html&sa=D&sntz=1&usg=AFQjCNHvwT76MUn5iCrn-UGQy7e9wT8uSg

At minimum, the Lister executable application must provide a list of DocIds. There are two
recommended approaches. The first is to specify the id command and the DocId value on each line:

GSA Adaptor Data Version 1 [\n]
 id=/home/repository/docs/file1
 id=/home/repository/docs/file2

The second approach is to use the id-list command, followed by all of the DocIds.

GSA Adaptor Data Version 1 [\n]
 id-list
 /home/repository/docs/file1
 /home/repository/docs/file2
 /home/repository/docs/file3
 /home/repository/docs/file4
 /home/repository/docs/file5

You can send additional information to the Lister. The following example demonstrates setting the
last-modified date, and instructs the GSA to crawl these documents immediately:

GSA Adaptor Data Version 1 [\n]
 id=/home/repository/docs/file1
 id=/home/repository/docs/file2
 crawl-immediately
 last-modified=20110803 16:07:23

For a complete description of the available commands, see the CommandStreamParser Javadoc.

Retriever executable application
The Retriever executable application provides the content commands used by the Retriever. A
header is required as the first line as described in Lister executable application .

The Retriever executable application must provide the DocId and at least one command. The
following demonstrates the Retriever executable application providing the content to be indexed by
the GSA:

GSA Adaptor Data Version 1 [\n]
 id=/home/repository/docs/file1
 content
 Document says hello

For a complete description of the available commands, see the CommandStreamParser Javadoc.

Google Search Appliance Connectors Developer’s Guide 38

https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/com/google/enterprise/adaptor/CommandStreamParser.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/com/google/enterprise/adaptor/CommandStreamParser.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/com/google/enterprise/adaptor/CommandStreamParser.html

Connector configuration

The connector configuration must define the location of the Lister executable application and the
Retriever executable program. The following example demonstrates the entries within adaptor-
config.properties:

...
commandline.lister.cmd=./adaptor-template-get-doc-ids.sh
commandline.retriever.cmd=./adaptor-template-get-doc-contents.sh
...

Run the connector

The configuration properties may be set from the command line when starting the connector. The
following demonstrates running a command line adaptor connector and passing in the required
configuration:

java -cp adaptor-withlib.jar:examples/adaptor-examples.jar
 com.google.enterprise.adaptor.prebuilt.CommandLineAdaptor
 -Dgsa.hostname=mygsahostname
 -Dcommandline.lister.cmd=./adaptor-template-get-doc-ids.sh
 -Dcommandline.retriever.cmd=./adaptor-template-get-doc-contents.sh

Google Search Appliance Connectors Developer’s Guide 39

Transforms

A transform is a process that makes modifications to a document before the GSA can index the
document.

The two types of transforms currently supported are:

● Metadata transforms
● ACL transforms

Metadata transforms

When a connector is used to index documents from the content repository, it can be customized to
modify metadata values using a metadata transform. This transform could be written to move
metadata values from one key to another, modify metadata values, or perform other required
metadata customizations. The mechanism that allows this metadata customization is called a
metadata transform.

The aspects of developing a Metadata transform include:

● Class requirements
● Configuration
● Factory method
● Transform method

Class requirements

A metadata transform class must implement the
com.google.enterprise.adaptor.DocumentTransform interface, override the
transform()method, contain a factory method, and be properly configured within the adaptor-
config.properties file.

Configuration

The configuration of the metadata transform is added to the adaptor-config.properties file
and uses a pipeline structure. The output of one pipeline stage is fed into the next pipeline stage.
This allows for reuse of pipeline stages in other transforms.

Google Search Appliance Connectors Developer’s Guide 40

The first configuration line defines all of the stages in the transform pipeline:

transform.pipeline=stage1, stage2...stageX

The next line defines the factory method of the stage1 pipeline:

transform.pipeline.stage1.factoryMethod=<fully qualified factory method name>

The next lines define all of the variables required by this transform:

transform.pipeline.stage1.<arg1>=<value1>
transform.pipeline.stage1.<arg2>=<value2>
transform.pipeline.stage1.<arg3>=<value3>

The above example refers to stage1, but you can assign the pipeline stage names (as appropriate)
to best describe the pipeline stage purpose.

Factory method

The factory method is a static method within the transform class that’s responsible for returning an
instance of the transform class with the configuration data.

The following example demonstrates a factory method that returns an instance of the
MetadataTransformExample class, passing in the configuration values for the src and dest keys:

public static MetadataTransformExample create(Map<String, String> cfg) {
 return new MetadataTransformExample(cfg.get("src"), cfg.get("dest"));
}

The method argument is fixed as a Map of configuration name/value pairs. These values are passed
in by the connector framework’s transform pipeline loader.

The HelloWorldConnector class contains a metadata transform example that adds configured
"taste" values to the metadata of the indexed documents. You can download the sample
MetadataAddition transform class from this URL.

For this metadata transform, the factory method only requires the setting of a single "taste" value
from the configuration file.

Google Search Appliance Connectors Developer’s Guide 41

https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor/examples/helloworldconnector
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor/examples/helloworldconnector

public static MetadataAddition load(Map<String, String> cfg) {
 return new MetadataAddition(cfg.get("taste"));
}

Transform method

The transform()method performs the customized modifications to the metadata for each
document before the GSA indexes it. Two parameters are passed into this method: a Metadata
object and a params Map.

The Metadata object contains all of the metadata associated with the document before the
transform. The transform makes modifications to this object. The params Map contains two entries:
one for DocId and the other for Content-Type. You can use these values as needed for the
transform logic.

Using the sample MetadataAddition transform class (in Factory method), the
transform()method demonstrates reading the "taste" values from the configuration file, and
adding them to the existing "taste" metadata values.

public void transform(Metadata metadata, Map<String, String> params) {
 Set<String> values = metadata.getAllValues(META_TASTE);
 if (values.isEmpty()) {
 log.log(Level.INFO, "no metadata {0}. Skipping", META_TASTE);
 } else {
 log.log(Level.INFO, "adding values {1} for existing metadata {0} ",
 metadata.set(META_TASTE, combine(values, valuesToAdd));
 }
}

ACL transforms

You can use ACL transforms to conditionally modify the ACL rules of a document before it’s indexed
by the GSA.

ACL transforms are accomplished through the Configuration of your connector.

Google Search Appliance Connectors Developer’s Guide 42

Configuration

An ACL transform differs from a metadata transform: there’s no ability to override a transform class.
All of the ACL transform rules are added to the adaptor-config.properties file, following a
specific format:

transform.acl.<rule sequence>=<ACL entry in document to be matched>;<ACL to be
converted to>

The ACL transform uses a rules-based configuration, and each configured rule is applied to each
document. The rule sequence starts at 0, and increments for each additional rule entry. The rule
value contains a semicolon, delimited list defining the ACL entry for each document to be matched,
and the ACL to be converted to.

The “ACL match” portion of this value is what the transform uses to identify a matching ACL to be
changed. The “ACL to be converted” portion of the value defines the change to be made to the ACL.

The following ACL transform configuration demonstrates three different ACL transforms:

transform.acl.0=type=user, domain=gsatestlab; domain=gsaprodlab
transform.acl.1=type=group, domain=gsatestlab; domain=gsatestlab.com
transform.acl.2=type=user, name=user1; domain=gsatestlab, name=user2

The above rule entries behave as follows:

1. Rule 0: For documents where the ACL matches user principles with a domain of “gsatestlab”,
change the domain to be “gsaprodlab”.

2. Rule 1: For documents where the ACL matches group principles with a domain of
“gsatestlab”, change the domain to be “gsatestlab.com”.

3. Rule 2: For documents where the ACL matches for user principles with a name of “user1”,
change the name to be “user2” and the domain to be “gsatestlab”.

Google Search Appliance Connectors Developer’s Guide 43

Graph traversal

As described in The Lister, the Lister provides all of the unique DocIds to the GSA for indexing.
There’s another approach to provide the unique IDs to the GSA. This approach is called graph
traversal.

Graph traversal is a technique of providing virtual webpages containing content links for the GSA to
crawl and index.

To implement graph traversal, develop your connector to Use the Retriever as a Lister.

Use the Retriever as a Lister

The GSA can be configured to “Follow and Crawl” links within the content. It’s this feature of the GSA
that’s utilized to send the document links in logical batches to be indexed.

For content stored in a hierarchy, the virtual HTML pages contain links to the content found within a
folder, and virtual links to sub folders. The Retriever determines what action to take based on the
passed DocId. If the DocId is identified as a virtual page ID, then a virtual HTML page is constructed
and sent to the GSA. Otherwise, the document content is provided to the GSA for indexing.

The following example demonstrates the creation of a virtual HTML page that contains links to
documents and a virtual link to a sub folder:

public void getDocContent(Request req, Response resp) throws IOException {
 DocId id = req.getDocId();

 if ("vdoc_1".equals(id.getUniqueId())) {
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("<!DOCTYPE html>\n<html><body>");
 writer.write("
</br>");
 writer.write("doc 1001");
 writer.write("
</b r>");
 writer.write("doc 1002");
 writer.write("
</br>");
 writer.write("doc 1003");
 writer.write("
</br>");
 writer.write("Sub Folder");
 writer.write("
</br>");
 writer.write("</body></html>");
 writer.close();
 }
 // Retriever implementation removed for brevity

Google Search Appliance Connectors Developer’s Guide 44

}

When using this approach, ensure that the virtual IDs used to identify the logical grouping of content
don’t conflict with the DocIds in the content repository.

Google Search Appliance Connectors Developer’s Guide 45

Tutorials

The tutorials walk through the implementation of many features offered by GSA Connectors 4.0.
These contain everything that you’ll need to develop your own connector, to allow the GSA to index
your non-HTTP content.

All of the tutorial source code can be downloaded from the Plexi resource Wiki site.

The included tutorials are:

● Write your first connector
● HelloWorld
● Authentication and authorization
● Meta transforms

Write your first connector

If you’re not familiar with the connector Lister or Retriever model, we recommend to first review the
overview in the Lister or Retriever model.

This tutorial covers the most basic connector and can be downloaded here. In this tutorial, you will:

● Create a class that implements the Adaptor interface.
● Create the Lister and Retriever methods.

The connector class must implement the Adaptor interface and override two methods; getDocIds
(the Lister), and getDocContent (the Retriever). One common option is to extend the
AbstractAdaptor class; it provides default implementations for common GSA Connector V4
methods.

The following code shows an example of adding new DocId objects to an array that’s passed back to
the DocIdPusher to allow the GSA to begin the next step, which is to call the Retriever. These
unique DocIds represent a meaningful identifier to your content, which could be a file, a node in an
XML document, a row in a database, or any other content source.

/** Gives list of document ids that you'd like on the GSA. */
@Override
public void getDocIds(DocIdPusher pusher) throws InterruptedException {
 ArrayList<DocId> mockDocIds = new ArrayList<DocId>();

Google Search Appliance Connectors Developer’s Guide 46

https://github.com/googlegsa/library/blob/master/src/com/google/enterprise/adaptor/examples/AdaptorTemplate.java
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor/examples
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglegsa%2Flibrary%2Ftree%2Fmaster%2Fsrc%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2Fexamples&sa=D&sntz=1&usg=AFQjCNFH6iTAly6YmOyD4Oe67RzVF0izxw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglegsa%2Flibrary%2Ftree%2Fmaster%2Fsrc%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2Fexamples&sa=D&sntz=1&usg=AFQjCNFH6iTAly6YmOyD4Oe67RzVF0izxw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglegsa%2Flibrary%2Ftree%2Fmaster%2Fsrc%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2Fexamples&sa=D&sntz=1&usg=AFQjCNFH6iTAly6YmOyD4Oe67RzVF0izxw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fgooglegsa%2Flibrary%2Ftree%2Fmaster%2Fsrc%2Fcom%2Fgoogle%2Fenterprise%2Fadaptor%2Fexamples&sa=D&sntz=1&usg=AFQjCNFH6iTAly6YmOyD4Oe67RzVF0izxw

 /* Replace this mock data with code that lists your repository. */
 mockDocIds.add(new DocId("1001"));
 mockDocIds.add(new DocId("1002"));
 pusher.pushDocIds(mockDocIds);
}

The following Retriever demonstrates how the GSA requests the content to be indexed by ID.
In this example:

/** Gives the bytes of a document referenced with id. */
@Override
public void getDocContent(Request req, Response resp) throws IOException {
 DocId id = req.getDocId();
 String str;
 if ("1001".equals(id.getUniqueId())) {
 str = "Document 1001 says hello and apple orange";
 } else if ("1002".equals(id.getUniqueId())) {
 str = "Document 1002 says hello and banana strawberry";
 } else {
 resp.respondNotFound();
 return;
 }
 resp.setContentType("text/plain; charset=utf-8");
 OutputStream os = resp.getOutputStream();
 os.write(str.getBytes(encoding));
}

The default main method is used to execute the connector:

/** Call default main for adaptors. */
public static void main(String[] args) {
 AbstractAdaptor.main(new AdaptorTemplate(), args);
}

HelloWorld

The HelloWorld tutorial showcases most of the features available for use when developing a
connector. You can download the files required for this tutorial.

The aspects of developing the HelloWorld connector includes:

● Create a connector class
● Initialize the connector

Google Search Appliance Connectors Developer’s Guide 47

https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor/examples/helloworldconnector

● Create the Lister method
● Create the Retriever method
● Add support for incremental updates

Create a connector class

The minimum prerequisite for a connector class is that it must implement the Adaptor interface
and implement the getDocIds(DocIdPusher)Lister method and the
getDocContent(Request,Response)Retriever method. In this example, the connector extends
the AbstractAdaptor class (which implements the Adaptor interface) and also implements the
PollingIncrementalLister interface, which is used to discover recently changed documents and
inform the GSA.

public class HelloWorldConnector extends AbstractAdaptor implements
 PollingIncrementalLister

Initialize the connector

The following code shows the init()method initializing the connector with the current context:

@Override
public void init(AdaptorContext context) throws Exception {
 context.setPollingIncrementalLister(this);
 HelloWorldAuthenticator authenticator = new HelloWorldAuthenticator(context);
 context.setAuthnAuthority(authenticator);
 context.setAuthzAuthority(authenticator);
 context.createHttpContext("/google-response", authenticator);
}

The incremental lister is registered with the AdaptorContext object. For further details of the
PollingIncrementalLister interface, see Incremental Updates.

An instance of the custom HelloWorldAuthenticator class is registered with the
AdaptorContext object to be identified as providing authentication and authorization.
An HTTP handler is registered for use by the authentication process. For further information, see
Authentication and Authorization.

Google Search Appliance Connectors Developer’s Guide 48

Create the Lister method

The following code demonstrates a Lister that provides an example of pushing simple DocIds to the
GSA, a more detailed Record, and a named resource. For a description of a Lister, see Lister.
Configuring and pushing Records is detailed in Runtime configuration. Building and pushing named
resources is described in Named resource ACL inheritance.

@Override
public void getDocIds(DocIdPusher pusher) throws InterruptedException {
 log.entering("HelloWorldConnector", "getDocIds");
 ArrayList<DocId> mockDocIds = new ArrayList<DocId>();
 // push docids
 mockDocIds.add(new DocId(""));
 mockDocIds.add(new DocId("1001"));
 mockDocIds.add(new DocId("1002"));
 pusher.pushDocIds(mockDocIds);
 // push records
 DocIdPusher.Record record = new DocIdPusher.Record.Builder(new DocId("1009"))
 .setCrawlImmediately(true).setLastModified(new Date()).build();
 pusher.pushRecords(Collections.singleton(record));
 // push named resources
 HashMap<DocId, Acl> aclParent = new HashMap<DocId, Acl>();
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new UserPrincipal("user1", "Default"));
 aclParent.put(new DocId("fakeID"), new Acl.Builder()
 .setEverythingCaseInsensitive().setPermits(permits)
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES).build());
 pusher.pushNamedResources(aclParent);
}

Create the Retriever method

The following code demonstrates a Retriever method, which is detailed in Retriever:

/** Gives the bytes of a document referenced with id. */
@Override
public void getDocContent(Request req, Response resp) throws IOException {
 log.entering("HelloWorldConnector", "getDocContent");
 DocId id = req.getDocId();
 log.info("DocId '" + id.getUniqueId() + "'");

Google Search Appliance Connectors Developer’s Guide 49

The following portion of the Retriever method demonstrates the creation of a virtual HTML page.
This page contains links that the GSA can crawl. This technique is detailed in Using the Retriever as a
Lister.

// Hard-coded list of our doc ids
if ("".equals(id.getUniqueId())) {
 // this is a the root folder, write some URLs
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("<!DOCTYPE html>\n<html><body>");
 writer.write("
</br>");
 writer.write("doc_not_changed");
 writer.write("
</b r>");
 writer.write("doc_changed");
 writer.write("
</br>");
 writer.write("doc_deleted");
 writer.write("
</br>");
 writer.write("doc_with_meta");
 writer.write("
</br>");
 writer.write("doc_with_ACL");
 writer.write("
</br>");
 writer.write("doc_with_ACL_Inheritance");
 writer.write("
</br>");
 writer.write("doc_with_Fragment");
 writer.write("
</br>");
 writer.write("doc_with_Fragment");
 writer.write("
</br>");
 writer.write("</body></html>");
 writer.close();

The following portion of the Retriever method checks the last modified date and conditionally
modifies the content to be indexed by the GSA. Normally, the last-modified date is retrieved from
the document and represents the time of the last modification of that the document.

} else if ("1001".equals(id.getUniqueId())) {
 // Example with If-Modified-Since
 // Set lastModifiedDate to 10 minutes ago
 Date lastModifiedDate = new Date(System.currentTimeMillis() - 600000);
 if (req.hasChangedSinceLastAccess(lastModifiedDate)) {
 if (req.getLastAccessTime() == null) {
 log.info("Requested docid 1001 with No If-Modified-Since");
 } else {
 log.info("Requested docid 1001 with If-Modified-Since < 10 minutes");
 }
 resp.setLastModified(new Date());
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1001 says latte");
 writer.close();
 } else {
 log.info("Docid 1001 Not Modified");
 resp.respondNotModified();

Google Search Appliance Connectors Developer’s Guide 50

}

The following portion of the Retriever is an example of content being sent to the GSA without any
further information:

} else if ("1002".equals(id.getUniqueId())) {
 // Very basic doc
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1002 says cappuccino");
 writer.close();

The following portion of the Retriever demonstrates a condition where the content is not found in
the repository. This respondNotFound()method is sent back to the GSA to update the index.

} else if ("1003".equals(id.getUniqueId())) {
 // Alternate between doc and a 404 response
 if (provideBodyOfDoc1003) {
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1003 says machiato");
 writer.close();
 } else {
 resp.respondNotFound();
 }
 provideBodyOfDoc1003 = !provideBodyOfDoc1003;

This demonstration uses the provideBodyOfDoc1003 variable to toggle whether the content body,
or a respondNotFound response is returned.

The following portion of the Retriever demonstrates sending additional metadata and a custom
display URL along with the document content:

} else if ("1004".equals(id.getUniqueId())) {
 // doc with metdata & different display URL
 resp.addMetadata("flavor", "vanilla");
 resp.addMetadata("flavor", "hazel nuts");
 resp.addMetadata("taste", "strawberry");

 try {
 resp.setDisplayUrl(new URI("http://fake.com/a"));
 } catch (URISyntaxException e) {
 log.info(e.getMessage());
 }
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1004 says espresso");
 writer.close();

Google Search Appliance Connectors Developer’s Guide 51

The following portion of the Retriever shows the creation of ACLs that are associated with a
document:

} else if ("1005".equals(id.getUniqueId())) {
 // doc with ACLs
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new UserPrincipal("user1", "Default"));
 permits.add(new UserPrincipal("eric", "Default"));
 permits.add(new GroupPrincipal("group1", "Default"));
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new UserPrincipal("user2", "Default"));
 denies.add(new GroupPrincipal("group2", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setPermits(permits).setDenies(denies).build());

 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1005 says americano");
 writer.close();

The following portion of the Retriever demonstrates ACL inheritance. For more information, see
Document ACL inheritance

} else if ("1006".equals(id.getUniqueId())) {
 // Inherit ACLs from 1005
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new GroupPrincipal("group3", "Default"));
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new GroupPrincipal("group3", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setInheritFrom(new DocId("1005")).setPermits(permits).setDenies(denies)
 .build());

 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1006 says misto");
 writer.close();

Google Search Appliance Connectors Developer’s Guide 52

The following portion of the Retriever demonstrates fragment ACL. This technique is used when a
single document provides different access controls to different children documents. For more
information, see Fragment ACL Inheritance.

} else if ("1007".equals(id.getUniqueId())) {
 // Inherit ACLs from 1005 & 1006
 ArrayList<Principal> permits = new ArrayList<Principal>();
 permits.add(new GroupPrincipal("group5", "Default"));

 resp.putNamedResource("Whatever", new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritFrom(new DocId("1006")).setPermits(permits)
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES).build());

 ArrayList<Principal> permits2 = new ArrayList<Principal>();
 permits2.add(new GroupPrincipal("group4", "Default"));
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new GroupPrincipal("group4", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setInheritFrom(new DocId("1005")).setPermits(permits2).setDenies(denies)
 .build());

 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1007 says frappuccino");
 writer.close();

The following portion of the Retriever demonstrates ACL inheritance; see Document ACL
inheritance:

} else if ("1008".equals(id.getUniqueId())) {
 // Inherit ACLs from 1007
 ArrayList<Principal> denies = new ArrayList<Principal>();
 denies.add(new GroupPrincipal("group5", "Default"));

 resp.setAcl(new Acl.Builder().setEverythingCaseInsensitive()
 .setInheritanceType(Acl.InheritanceType.PARENT_OVERRIDES)
 .setInheritFrom(new DocId("1007"), "Whatever").setDenies(denies).build());
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1008 says coffee");
 writer.close();

Google Search Appliance Connectors Developer’s Guide 53

The following portion of the Retriever shows that a document may be identified as a secure
document. For more information, see Authorization by Connector.

} else if ("1009".equals(id.getUniqueId())) {
 // Late Binding (security handled by connector)
 resp.setSecure(true);
 Writer writer = new OutputStreamWriter(resp.getOutputStream());
 writer.write("Menu 1009 says espresso");
 writer.close();

The following portion of the Retriever demonstrates the condition where document content cannot
be found for the passed DocId. The GSA is notified that the document cannot be found so that it
may delete it from the index.

} else {
 resp.respondNotFound();
}

Add support for incremental updates

The following method is used to identify modified documents. For more information, see
Incremental Updates.

@Override
public void getModifiedDocIds(DocIdPusher pusher) throws IOException,
InterruptedException {
 ArrayList<DocId> mockDocIds = new ArrayList<DocId>();
 mockDocIds.add(new DocId("1002"));
 pusher.pushDocIds(mockDocIds);
}

The main method is used to execute the connector.

/** Call default main for adaptors. */
public static void main(String[] args) {
 AbstractAdaptor.main(new HelloWorldConnector(), args);
}

Google Search Appliance Connectors Developer’s Guide 54

Authentication and authorization

Implementing authentication and authorization for the HelloWorld example includes:

● Create the Authenticator class
● Authenticate the user
● Determine if the user is authorized
● Handle the submitted login

Create the Authenticator class

As described in Authentication and Authorization, a custom class is required. In this example, the
same class provides both functions, so it must implement the following interfaces:
AuthnAuthority, AuthzAuthority, and HttpHandler.

class HelloWorldAuthenticator implements AuthnAuthority, AuthzAuthority, HttpHandler

Authenticate the user

For authentication, the authenticateUser()method of the AuthnAuthority interface must be
overridden. See Implement authentication within the c onnector for a description of this process.

@Override
public void authenticateUser(HttpExchange exchange, Callback callback)
throws IOException {

 log.entering("HelloWorldAuthenticator", "authenticateUser");
 context.getUserSession(exchange, true).setAttribute("callback", callback);

 Headers responseHeaders = exchange.getResponseHeaders();
 responseHeaders.set("Content-Type", "text/html");
 exchange.sendResponseHeaders(200, 0);
 OutputStream os = exchange.getResponseBody();
 String str = "<html><body><form action=\"/google-response\" method=Get>"
 + "<input type=text name=userid/>"
 + "<input type=password name=password/>"
 + "<input type=submit value=submit></form></body></html>";
 os.write(str.getBytes());
 os.flush();
 os.close();
 exchange.close();
}

Google Search Appliance Connectors Developer’s Guide 55

Determine if the user is authorized

To handle the authorization, the isUserAuthorized()method of the AuthzAuthority interface
must be overridden. See Implement authorization within the connector for a description of this
process.

@Override
public Map<DocId, AuthzStatus> isUserAuthorized(AuthnIdentity userIdentity,
Collection<DocId> ids) throws IOException {

 HashMap<DocId, AuthzStatus> authorizedDocs = new HashMap<DocId, AuthzStatus>();
 for (Iterator<DocId> iterator = ids.iterator(); iterator.hasNext();) {
 DocId docId = iterator.next();
 // if authorized
 authorizedDocs.put(docId, AuthzStatus.PERMIT);
 }
 return authorizedDocs;
}

Handle the submitted login

As described in Implement authentication within the c onnector, the handle() method of the
AuthnAuthority interface intercepts the submitted login form and returns the identity to the GSA.

/**
 * Handle the form submit from /samlip

 * If all goes well, this should result in an Authenticated user for the
 * session
 */
@Override
public void handle(HttpExchange ex) throws IOException {
 log.entering("HelloWorldAuthenticator", "handle");

 callback = getCallback(ex);
 if (callback == null) {
 return;
 }

 Map<String, String> parameters =
extractQueryParams(ex.getRequestURI().toString());
 if (parameters.size() == 0 || null == parameters.get("userid")) {
 log.warning("missing userid");
 callback.userAuthenticated(ex, null);
 return;
 }
 String userid = parameters.get("userid");

Google Search Appliance Connectors Developer’s Guide 56

 SimpleAuthnIdentity identity = new SimpleAuthnIdentity(userid);
 callback.userAuthenticated(ex, identity);
}

The following utility method is used by the sample getCallback()method. It sends a response that
include a String message and a 200 code (request has succeeded).

// Return a 200 with simple response in body
private void sendResponseMessage(String message, HttpExchange ex)
throws IOException {
 OutputStream os = ex.getResponseBody();
 ex.sendResponseHeaders(200, 0);
 os.write(message.getBytes());
 os.flush();
 os.close();
 ex.close();
}

The following code is used to retrieve the Callback object from Session. As described in
Implement authentication within the c onnector, this Callback object is used to send the identity
information back to the GSA.

// Return the Callback method,
// or print error if the handler wasn't called correctly
private Callback getCallback(HttpExchange ex) throws IOException {
 Session session = context.getUserSession(ex, false);
 if (session == null) {
 log.warning("No Session");
 sendResponseMessage("No Session", ex);
 return null;
 }
 Callback callback = (Callback) session.getAttribute("callback");
 if (callback == null) {
 log.warning("Something is wrong, callback object is missing");
 sendResponseMessage("No Callback Specified", ex);
 }
 return callback;
}

The following utility method is used to extract the username and password parameters from the
submitted form:

// Parse user/password/group params
private Map<String, String> extractQueryParams(String request) {
 Map<String, String> paramMap = new HashMap<String, String>();

Google Search Appliance Connectors Developer’s Guide 57

 int queryIndex = request.lastIndexOf("?");

 if (queryIndex == -1) {
 return paramMap;
 }
 String query = request.substring(queryIndex + 1);
 String params[] = query.split("&", 4);
 if (query.equals("")) {
 return paramMap;
 }
 try {
 for (int i = 0; i < params.length; ++i) {
 String param[] = params[i].split("%2F=", 2);
 paramMap.put(URLDecoder.decode(param[0], "UTF-8"),
 URLDecoder.decode(param[1], "UTF-8"));
 }
 } catch (UnsupportedEncodingException e) {
 log.warning("Request parameters may not have been properly encoded: "
 + e.getMessage());
 } catch (ArrayIndexOutOfBoundsException e) {
 log.warning("Wrong number of parameters specified: " + e.getMessage());
 }
 return paramMap;
}

Meta transforms

The MetaDataTransformExample class demonstrates the process of moving metadata values from
one key to another as defined in the Connector configuration file.
This example moves the values from one key to another key. As an example, the values of "creator"
are moved to "author".

The process of developing a meta transform is detailed in Metadata t ransforms.

Implementing metadata transform for the HelloWorld example includes:

● Create the transform class
● Create custom constructor and factory methods
● Create the transform method

Create the transform class

The custom transform class must implement the DocumentTransform interface and override the
transform()method.

Google Search Appliance Connectors Developer’s Guide 58

public class MetadataTransformExample implements DocumentTransform

Create custom constructor and factory methods

The private constructor receives the keys used for this transform and sets them with the object.

private MetadataTransformExample(String originalKey, String changedKey) {
 if (null == originalKey || null == changedKey) {
 throw new NullPointerException();
 }
 this.src = originalKey;
 this.dest = changedKey;
 if (src.equals(dest)) {
 log.log(Level.WARNING, "original and destination key the same: {0}", src);
 }
}

The following static factory method example returns an instance of the
MetadataTransformExample class:

/** Makes transform from config with "src" and "dest" keys. */
public static MetadataTransformExample create(Map<String, String> cfg) {
 return new MetadataTransformExample(cfg.get("src"), cfg.get("dest"));
}

Create the transform method

The following transform()method example demonstrates moving values from one metadata key
to another:

@Override
public void transform(Metadata metadata, Map<String, String> params) {
 if (src.equals(dest)) {
 return;
 }
 Set<String> valuesToMove = metadata.getAllValues(src);
 if (valuesToMove.isEmpty()) {
 log.log(Level.FINE, "no values for {0}. Skipping", src);
 } else {
 log.log(Level.FINE, "moving values from {0} to {1}: {2}",
 new Object[] { src, dest, valuesToMove });
 Set<String> valuesAlreadyThere = metadata.getAllValues(dest);
 metadata.set(dest, combine(valuesToMove, valuesAlreadyThere));

Google Search Appliance Connectors Developer’s Guide 59

 log.log(Level.FINER, "deleting source {0}", src);
 metadata.set(src, Collections.<String> emptySet());
 }
}

Google Search Appliance Connectors Developer’s Guide 60

References

● GSA Adaptors Page
● Connector 4 Javadocs
● Developer FAQ
● GSA Help Center
● GSA Administration Guide for Connectors
● Search Protocol Reference
● GSA Product Documentation 7.2
● Connector Framework Source Code
● Connector Examples
● Enabling Security

Google Search Appliance Connectors Developer’s Guide 61

https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/overview-summary.html#secure
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/overview-summary.html#secure
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor/examples
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor/examples
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor
https://github.com/googlegsa/library/tree/master/src/com/google/enterprise/adaptor
https://support.google.com/gsa/answer/3890846
https://support.google.com/gsa/answer/3890846
https://support.google.com/gsa/answer/3890846
https://support.google.com/gsa/answer/3890846
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/xml_reference/
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/xml_reference/
http://www.google.com/support/enterprise/static/gsa/docs/admin/72/gsa_doc_set/xml_reference/
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
http://www.google.com/support/enterprise/static/gsa/docs/admin/connectors/40/pdf/AdministrationGuideforGoogleConnectors4.0.3.pdf
https://support.google.com/gsa/
https://support.google.com/gsa/
https://support.google.com/gsa/
http://googlegsa.github.io/adaptor/docs/DeveloperFAQ.html
http://googlegsa.github.io/adaptor/docs/DeveloperFAQ.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/index.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/index.html
https://googlegsa.github.io/librarydocsreleased/4.0.3/lib/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html
http://googlegsa.github.io/adaptor/index.html

	Introduction
	Purpose
	Audience
	Assumptions
	Conventions
	GSA example use cases
	Updates to the GSA Connector V4
	Get started
	Set up your development environment
	Test your setup
	Set up the GSA
	Add a sample connector
	Run the connector
	Validate indexed content in GSA
	Review the Index Diagnostics
	Validate the GSA search results
	GSA connector architecture
	Communication flow
	Security
	The Lister and Retriever model
	Secure search
	Early-binding authorization with ACLs
	Late-binding authorization
	Authentication
	Connector development
	Create a Lister and Retriever
	The Lister
	The Retriever
	Connector configuration
	Update the index
	Full listing
	Incremental updates
	Deleted documents
	Runtime configuration
	Customize the connector
	Display URL
	Add metadata
	Crawling behavior
	Lock document index
	Additional response attributes
	Secure your content
	Authorization by ACL
	Authentication
	Set up system
	Configure the connector as a SAML IdP
	Implement authentication within the connector
	Configure the GSA Universal Login form
	Authorization by connector
	Add a SAML rule to the GSA
	Implement authorization within the connector
	Inherit security definitions
	Document ACL inheritance
	Named resource ACL inheritance
	Advanced Access Control : Fragment ACL
	Implement access-controlled serving by the connector
	Non-Java connectors
	Create the Executable Lister and Retriever programs
	Lister executable application
	Retriever executable application
	Connector configuration
	Run the connector
	Transforms
	Metadata transforms
	Class requirements
	Configuration
	Factory method
	Transform method
	ACL transforms
	Configuration
	Graph traversal
	Use the Retriever as a Lister
	Tutorials
	Write your first connector
	HelloWorld
	Create a connector class
	Initialize the connector
	Create the Lister method
	Create the Retriever method
	Add support for incremental updates
	Authentication and authorization
	Create the Authenticator class
	Authenticate the user
	Determine if the user is authorized
	Handle the submitted login
	Meta transforms
	Create the transform class
	Create custom constructor and factory methods
	Create the transform method
	References

