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Abstract

We prove that many mirror descent algo-
rithms for online convex optimization (such
as online gradient descent) have an equiva-
lent interpretation as follow-the-regularized-
leader (FTRL) algorithms. This observation
makes the relationships between many com-
monly used algorithms explicit, and provides
theoretical insight on previous experimental
observations. In particular, even though the
FOBOS composite mirror descent algorithm
handles L; regularization explicitly, it has
been observed that the FTRL-style Regular-
ized Dual Averaging (RDA) algorithm is even
more effective at producing sparsity. Our re-
sults demonstrate that the key difference be-
tween these algorithms is how they handle
the cumulative L; penalty. While FOBOS
handles the L, term exactly on any given up-
date, we show that it is effectively using sub-
gradient approximations to the L; penalty
from previous rounds, leading to less spar-
sity than RDA, which handles the cumulative
penalty in closed form. The FTRL-Proximal
algorithm, which we introduce, can be seen
as a hybrid of these two algorithms, and sig-
nificantly outperforms both on a large, real-
world dataset.

1 INTRODUCTION

We consider the problem of online convex optimization
and its application to online learning. On each round
t=1,...,T, we pick a point z; € R™. A convex loss
function f; is then revealed, and we incur loss fi(x¢).

In this work, we investigate the relationship between
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two of the most important and successful families
of low-regret algorithms for online convex optimiza-
tion. On the surface, follow-the-regularized-leader al-
gorithms like Regularized Dual Averaging [Xiao, 2009]
appear quite different from gradient descent (and more
generally, mirror descent) style algorithms like FO-
BOS [Duchi and Singer, 2009]. However, here we show
that in the case of quadratic stabilizing regularization
there are essentially only two differences between the
algorithms:

e How they choose to center the additional strong
convexity used to guarantee low regret: RDA cen-
ters this regularization at the origin, while FO-
BOS centers it at the current feasible point.

e How they handle an arbitrary non-smooth regu-
larization function . This includes the mecha-
nism of projection onto a feasible set and how L,
regularization is handled.

To make these differences precise while also illustrat-
ing that these families are actually closely related, we
consider a third algorithm, FTRL-Proximal. When
the non-smooth term ¥ is omitted, this algorithm is
in fact identical to FOBOS. On the other hand, its up-
date is essentially the same as that of dual averaging,
except that additional strong convexity is centered at
the current feasible point (see Table 1).

Previous work has shown experimentally that Dual
Averaging with L; regularization is much more effec-
tive at introducing sparsity than FOBOS [Xiao, 2009,
Duchi et al., 2010a]. Our equivalence theorems provide
a theoretical explanation for this: while RDA considers
the cumulative L; penalty tA||z|/; on round ¢, FOBOS
(when viewed as a global optimization using our equiv-
alence theorem) considers ¢1.;—1-x+M||z||1, where ¢, is
a certain subgradient approximation of A||xs||1 (we use
@1.¢—1 as shorthand for 22;11 ¢s, and extend the nota-
tion to sums over matrices and functions as needed).

In Section 2, we consider general formulations of
mirror descent and follow-the-regularized-leader, and
prove theorems relating the two. In Section 3, we com-
pare FOBOS, RDA, and FTRL-Proximal experimen-
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Table 1: Summary of algorithms expressed as global optimizations against functions f;(z) = ¢;(z) + ¥(x), where
U(x) is an arbitrary and typically non-smooth convex function, for example ¥(z) = A||z||;. Each algorithm’s
objective has three components: (A) an approximation to ¢1.; based on the gradients g = V/l:(x:), (B) terms
for the non-smooth portion ¥ (the ¢; are certain subgradients of ¥), and (C) additional strong convexity to
stabilize the algorithm, needed to guarantee low regret (the matrices @5 are generalized learning rates). These
four algorithms are the cross product of 2 design decisions: how the ¥ function is handled, and where additional
strong convexity is centered. See Section 1 for details and references.

(4)

FOBOS 441 =argmin, g¢i.-z

AOGD 441 =argmin, g¢i:-z

RDA 441 =argming g1 @
FTRL-Proximal x;y; =argmin, g1

tally. The FTRL-Proximal algorithm behaves very
similarly to RDA in terms of sparsity, confirming that
it is the cumulative subgradient approximation to the
L, penalty that causes decreased sparsity in FOBOS.

In recent years, online gradient descent and stochas-
tic gradient descent (its batch analogue) have proven
themselves to be excellent algorithms for large-scale
machine learning. In the simplest case FTRL-
Proximal is identical, but when L; or other non-
smooth regularization is needed, FTRL-Proximal sig-
nificantly outperforms FOBOS, and can outperform
RDA as well. Since the implementations of FTRL-
Proximal and RDA only differ by a few lines of code,
we recommend trying both and picking the one with
the best performance in practice.

Algorithms We begin by establishing notation and
introducing more formally the algorithms we consider.
While our theorems apply to more general versions
of these algorithms, here we focus on the specific in-
stances we use in our experiments. We consider loss
functions fi(z) = ¢;(z)+¥(z), where VU is a fixed (typ-
ically non-smooth) regularization function. In a typ-
ical online learning setting, given an example (0, y;)
where 0; € R" is a feature vector and y; € {—1,1} is
a label, we take ¢;(x) = loss(0; - x,y:). For example,
for logistic regression we use log-loss, loss(0; - x,y;) =
log(1+ exp(—y:b; - ©)). We use the standard reduction
to linear functions, letting g; = V4 (x¢). All of the al-
gorithms we consider support composite updates (con-
sideration of ¥ explicitly rather than through a gra-
dient v fi(z:)) as well as positive semi-definite matrix
learning rates ) which can be chosen adaptively (the
interpretation of these matrices as learning rates will
be clarified in Section 2).

The first algorithm we consider is from the gradient-
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descent family, namely FOBOS, which plays

1

res = argmingy -+ Nl + 3193, (& — ).

x
We state this algorithm implicitly as an optimization,
but a gradient-descent style closed-form update can
also be given [Duchi and Singer, 2009]. The algorithm
was described in this form as a specific composite-
objective mirror descent (COMID) algorithm by Duchi
et al. [2010Db].

The Regularized Dual Averaging (RDA) algorithm of
Xiao [2009] plays

t
. 1 1
Trp1 = argmingy - @ + tA[|z]1 + 3 > 1IQZ (x — 0)]13.
T

s=1

In contrast to FOBOS, the optimization is over the
sum gp.; rather than just the most recent gradient g.
We will show (in Theorem 4) that when A = 0 and
the ¢, are not strongly convex, this algorithm is in fact
equivalent to the Adaptive Online Gradient Descent
(AOGD) algorithm [Bartlett et al., 2007].

The FTRL-Proximal algorithm plays

t
. 1 1
rp1 = argmingy - +iA|lfh + 5 Y Q2 (x— )3
xT

s=1

This algorithm was introduced in [McMahan and
Streeter, 2010], but without support for an explicit
W. Regret bounds for the more general algorithm that
handles a fixed ¥ function are proved in [McMahan,
2011].

One of our principle contributions is showing the close
connection between all four of these algorithms; Ta-
ble 1 summarizes the key results from Theorems 2 and
4, writing AOGD and FOBOS in a form that makes
the relationship to RDA and FTRL-Proximal explicit.
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In our analysis, we will consider arblitrary convex 1func—
tions R, and R, in place of the 1(|Q7 z[|3 and L (|Q7 (v—
x¢)||3 that appear here, as well as arbitrary convex
U(z) in place of A||z|;.  For all these algorithms,
the matrices @; are chosen adaptively. In the exper-
iments, we use per-coordinate adaptation where the
Q. are diagonal such that Q. = diag(dy,1,...,0¢n)
with 64 ; = %1/2211 g7 ;- See McMahan and Streeter
[2010] and Duchi et al. [2010a] for details. Since all of
the algorithms benefit from this approach, we use the
more familiar names of the original algorithms, even
though in most cases they were introduced with scalar

learning rates. The « is learning-rate scale parameter,
which we tune in experiments.

Efficient Implementations All of these algorithms
can be implemented efficiently, in that the update for a
g¢ with K nonzeros can be done in O(K) time. Both
FTRL-Proximal and RDA can be implemented (for
diagonal learning rates) by storing two floating-point
values for each attribute, a quadratic term and a linear
term. When z;; is needed, it can be solved for lazily
in closed form (see for example [Xiao, 2009]).

For FOBOS, the presence of A||z||; in the update im-
plies all coefficients x; ; needs to be updated even when
gt = 0. However, by storing the index ¢ of the last
round on which g¢;; was nonzero, the L; part of the
update can be made lazy [Duchi and Singer, 2009].

Feasible Sets In some applications, we may be re-
stricted to only play points from a restricted convex
feasible set F C R™, for example, the set of (fractional)
paths between two nodes in a graph. Since all the al-
gorithms we consider support composite updates, this
is accomplished for free by choosing ¥ to be the indi-
cator function Uz on F, that is Ur(x) = 0if z € F,
and oo otherwise. It is straightforward to verify that
argmingcpn g1:t - ¢ + Ri.¢(x) + Y £(2) is equivalent to
argmingc r g1 - ¢ + Rq.4(2), and so in this work we
can generalize (for example) the results of [McMahan
and Streeter, 2010] for specific feasible sets without ex-
plicitly discussing F, and instead considering arbitrary
extended convex functions V.

Notation and Technical Background We write
x "y or x -y for the inner product between z,y € R™.
The ith entry in a vector x is denoted z; € R; when we
have a sequence of vectors z; € R” indexed by time,
the ith entry is x;; € R. For positive semi-definite B,
we write B1/2 for the square root of B, the unique X €
S% such that XX = B, so |Bzz|2 = 27 Bx. Unless
otherwise stated, convex functions are assumed to be
extended, with domain R™ and range RU{oo} (see, for
example [Boyd and Vandenberghe, 2004, 3.1.2]). For

a convex function f, we let df(x) denote the set of
subgradients of f at x (the subdifferential of f at z).
By definition, g € 9f(z) means f(y) > f(z)+g' (y—2)
for all y. When f is differentiable, we write V f(z) for
the gradient of f at x. In this case, 0f(z) = {Vf(z)}.
All mins and argmins are over R™ unless otherwise
noted. We make frequent use of the following standard
results, summarized as follows:

Theorem 1. Let R : R® — R be strongly con-
vex with continuous first partial derivatives, and let
U : R*" - RU{oo} be an arbitrary convexr func-
tion. Define g(x) = R(x) + ¥ (x). Then, there exists a
unique pair (x*, ¢*) such that both

¢* € 0V (x™)

and
z* =argmin R(z) + ¢* - z.

Further, this x* is the unique minimizer of g.

Note that an equivalent condition to x* =
argmin, R(z) + ¢* - x is VR(z*) + ¢* = 0.

Proof. Since R is strongly convex, g is strongly convex,
and so has a unique minimizer x* (see for example,
[Boyd and Vandenberghe, 2004, 9.1.2]). Let r = VR.
Since x* is a minimizer of g, there must exist a ¢* €
OV (z*) such that r(a*)+¢* = 0, as this is a necessary
(and sufficient) condition for 0 € dg(z*). It follows
that z* = argmin, R(z) + ¢* - z, as r(z*) + ¢* is the
gradient of this objective at z*. Suppose some other
(2',¢') satisfies the conditions of the theorem. Then,
r(z') +¢ = 0, and so 0 € 9g(z), and so 2’ is a
minimizer of g. Since this minimizer is unique, =’ =

z*, and ¢ = —r(z*) = ¢*. O

2 MIRROR DESCENT FOLLOWS
THE LEADER

In this section we consider the relationship between
mirror descent algorithms (the simplest example being
online gradient descent) and FTRL algorithms. Let
fe(x) = g+ - ¢ + V(x) where g € 0l (xt). Let Ry be
strongly convex, with all the R; convex. We assume
that min, R;(z) = 0, and assume that = 0 is the
unique minimizer unless otherwise noted.

Follow The Regularized Leader (FTRL) The
simplest follow-the-regularized-leader algorithm plays

. O1:
vt = argming o+ el ()
x

For t = 1, we typically take 1 = 0. We can generalize
]lz||3 to an arbitrary strongly convex R by:

Typ1 = argmingy - « + 01 R(x) (2)
xT
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We could choose o1.; independently for each ¢, but we
need o1.; to be non-decreasing in t, and so writing
it as a sum of the per-round increments o; > 0 is
reasonable. The most general update is

Tyr1 = argmin gy, - T + Ri4(x). (3)

where we add an additional convex function R; on each
round. Letting R:(x) = o+ R(x) recovers the previous
formulation.

When argmin,cpn R¢(x) = 0, we call the functions R,
(and associated algorithms) origin-centered. We can
also define prozimal versions of FTRL! that center
additional regularization at the current point rather
than at the origin. In this section, we write Ry(z) =
Ri(x — x¢) and reserve the R; notation for origin-
centered functions. Note that R, is only needed to
select 41, and x; is known to the algorithm at this
point, ensuring the algorithm only needs access to
the first ¢ loss functions when computing x;11 (as re-
quired). The general update is

Typ1 = argming - + Ry.(x), (4)

In the simplest case, this becomes

t
) o
ZTyr1 = argmin gy ﬂCJrZ?SHIE*szH% (5)
xr

s=1

Mirror Descent The simplest version of mirror de-
scent is gradient descent using a constant step size 7,
which plays

Ti+1 = Tt — NGt = —1G1:¢- (6)

In order to get low regret, 7' must be known in advance
so 7 can be chosen accordingly (or a doubling trick can
be used). But, since there is a closed-form solution for
the point z;11 in terms of g1, and 7, we generalize
this to a “revisionist” algorithm that on each round
plays the point that gradient descent with constant
step size would have played if it had used step size 7;
on rounds 1 through ¢ — 1. That is, ;11 = —ng1..
When Ry(z) = % ||z||3 and 1, = i, this is equivalent
to the FTRL of Equation (1).

In general, we will be more interested in gradient de-
scent algorithms which use an adaptive step size that
depends (at least) on the round ¢. Using a variable
step size 7y on each round, gradient descent plays:

Ti41 = Tt — NGt (7)

We adapt the name “proximal” from [Do et al., 2009],
but note that while similar proximal regularization func-
tions were considered, that paper deals only with gradient
descent algorithms, not FTRL.

An intuition for this update comes from the fact it can
be re-written as

Tyy1 = argming - v + QLHx — x5
x ui

This version captures the notion (in online learning
terms) that we don’t want to change our hypothesis
x¢ too much (for fear of predicting badly on examples
we have already seen), but we do want to move in a di-
rection that decreases the loss of our hypothesis on the
most recently seen example (which is approximated by
the linear function g¢).

Mirror descent algorithms use this intuition, replacing
the Lo-squared penalty with an arbitrary Bregman di-
vergence. For a differentiable, strictly convex R, the
corresponding Bregman divergence is

Br(z,y) = R(z) — (R(y) + VR(y) - (z —y))

for any z,y € R™. We then have the update

. 1
v = argming, v+ Ba(rr).  (8)
x t

or explicitly (by setting the gradient of (8) to zero),

o1 =17 (r(x4) = 109e) (9)
where 7 = VR. Letting R(z) = 1[lz[|3 so that
Br(z,2;) = 3|lv — 4]|3 recovers the algorithm of

Equation (7). One way to see this is to note that
r(z) = r~}(x) = x in this case.

We can generalize this even further by adding a new
strongly convex function R; to the Bregman diver-
gence on each round. Namely, let

t
Bl:t(xa y) = Z BRs (SC, y)’
s=1

so the update becomes

ZTyp1 = argmin gy - « + B (z, x4) (10)
xT

or equivalently x;11 = (r14) '(rie(z¢) — g¢) where
Tl = Zizl VR; = VR4 and (r1.4) ! is the inverse of
r1.¢. The step size 7, is now encoded implicitly in the
choice of R;.

Composite-objective mirror descent (COMID) [Duchi
et al., 2010b] handles ¥ functions? as part of the ob-
jective on each round: fi(z) = g;-x+ ¥(x). Using our
notation, the COMID update is

Tir1 = argminng; - x + Bz, z) + n¥(x),

2Qur ¥ is denoted r in [Duchi et al., 2010b]
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which can be generalized to

Tyr1 =argming; - T + U(z) + Bry(z,z),  (11)

where the learning rate 1 has been rolled into the def-
inition of Ry,...,R;. When W is chosen to be the
indicator function on a convex set, COMID reduces to
standard mirror descent with greedy projection.

2.1 An Equivalence Theorem for Proximal
Regularization

In Theorem 2, we show that mirror descent algorithms
can be viewed as FTRL algorithms.

Theorem 2. Let R; be a sequence of differentiable
origin-centered convex functions (VR:(0) = 0), with
Ry strongly convex, and let ¥ be an arbitrary convex
function. Let x1 = &1 = 0. For a sequence of loss
functions fi(x) = gt - © + ¥(z), let the sequence of
points played by the composite-objective mirror descent
algorithm be

B4 = argmin g, - @+ U(z) + Bra(z,3),  (12)

where Rf(x) = Ri(x — 34), and B, = Bg,, so By is
the Bregman divergence with respect to Ry + - - + Ry.
Consider the alternative sequence of points xy played
by a proximal FTRL algorithm, applied to these same

ft, defined by
Tip1 = argmin (gr.¢+¢r1) -2+ Ry (@) +0(z) (13)

where ¢p € O0V(wi11) such that gy + ¢r.e-1 +
VR1.¢+(xi41)+¢: = 0. Then, these algorithms are equiv-
alent, in that xy = & for all t > 0.

The Bregman divergences used by mirror descent in
the theorem are with respect to the proximal functions
Ry, whereas typically (as in Equation (10)) these
functions would not depend on the previolus points
played. We will show when Ry(z) = 1||Q7 (|3, this
issue disappears. Considering arbitrary ¥ functions
also complicates the theorem statement somewhat.
The following Corollary sidesteps these complexities,
to state a simple direct equivalence result:

Corollary 3. Let fi(x) = g¢ - x. Then, the following
algorithms play identical points:

e Gradient descent with positive semi-definite learn-
ing rates Qy, defined by:
Tipr =T — QLige
e FTRL-Proximal with regularization functions

- 1
Ri(z) = %HQE (x — ) ||3, which plays

Typ1 = argmingy - T + Rl:t(fl?)-
xT

Proof. Let Ri(x) = %xTth. It is easy to show that
Ry and Rlzt differ by only a linear function, and so
(by a standard result) Bi.; and By are equal, and
simple algebra reveals

1Q7,(x — )12

Then, it follows from Equation (9) that the first algo-
rithm is a mirror descent algorithm using this Bregman
divergence. Taking ¥(z) = 0 and hence ¢; = 0, the
result follows from Theorem 2. O

Bl;t(l',y) = 5,lzt(xa y) =

Extending the approach of the corollary to FOBOS,
we see the only difference between that algorithm
and FTRL-Proximal is that FTRL-Proximal optimizes
over tU(x), whereas in Equation (13) we optimize over
¢1:4—1 -+ Y(x) (see Table 1). Thus, FOBOS is equiv-
alent to FTRL-Proximal, except that FOBOS approx-
imates all but the most recent ¥ function by a subgra-
dient.

The behavior of FTRL-Proximal can thus be different
from COMID when a non-trivial ¥ is used. While we
are most concerned with the choice ¥(x) = Aljz||1, it is
also worth considering what happens when ¥ is the in-
dicator function on a feasible set F. Then, Theorem 2
shows that mirror descent on fi(x) = g¢ - + U(x)
(equivalent to COMID in this case) approximates pre-
viously seen Us by their subgradients, whereas FTRL-
Proximal optimizes over ¥ explicitly. In this case, it
can be shown that the mirror-descent update corre-
sponds to the standard greedy projection [Zinkevich,
2003], whereas FTRL-Proximal corresponds to a lazy
projection [McMahan and Streeter, 2010].3

Proof of Theorem 2. The proof is by induction. For
the base case, we have 1 = &1 = 0. For the induction
step, assume z; = Z;. Theorem 1 guarantees the ex-
istence of a suitable ¢; for use in the update of Equa-
tion (13), and so in particular there exists a unique
di—1 € 0¥ (xy) such that

Grit—1 + Gri—2 + VRig—1(z¢) + d1—1 = 0,
and so applying the induction hypothesis,

~VRiy—1(d4) = gri—1 + bri—1. (14)

3Zinkevich [2004, Sec. 5.2.3] describes a different lazy

projection algorithm, which requires an appropriately cho-
sen constant step-size to get low regret. FTRL-Proximal
does not suffer from this problem, because it always centers
the additional regularization R; at points in F, whereas our
results show the algorithm of Zinkevich centers the addi-
tional regularization outside of F, at the optimum of the
unconstrained optimization. This leads to the high regret
in the case of standard adaptive step sizes, because the al-
gorithm can get “stuck” too far outside the feasible set to
make it back to the other side.
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Then, starting from Equation (12),

Ti41 = argming - + BM(JU, Ze) + U(x).
x

We now manipulate this expression for &4, 1. Applying
Theorem 1, for some ¢, € OU(Z411),

411 = argming; -« + Bl;t(x, )+ ¢y x
x
=argming; - ¢ + Ry (x) — Ry ()

— VR (i) (z — a4) + AR Defn. of By

Dropping terms independent of z,
—argming, - ¢ + Ry (2) — VR4 (3)z + ¢} -
x

=argming; - T + Rlzt(x) — VRlzt_l(:Et)z +¢;-x

since VR (&) = 0, and then using Eq (14)

=argming; - © + Riu(2) + (gru—1 + dra—1)z + ¢} - 2.
T

We conclude #4411 = 441, as (£441, ¢}) satisty the con-

ditions of Theorem 1 with respect to the objective in

the optimization defining ;1. O

2.2 An Equivalence Theorem for
Origin-Centered Regularization

For the moment, suppose ¥(z) = 0. So far, we have
shown conditions under which gradient descent on
fi(x) = g4 - with an adaptive step size is equivalent to
follow-the-proximally-regularized-leader. In this sec-
tion, we show that mirror descent on the regularized
functions ff¥(x) = g; - = + Ry(x), with a certain natu-
ral step-size, is equivalent to a follow-the-regularized-
leader algorithm with origin-centered regularization.

The algorithm we consider was introduced by Bartlett
et al. [2007, Theorem 2.1]. Letting Ry(z) = %|z|3
and fixing 7, = -, their adaptive online gradient
descent algorithm is

Tog1 =2 — MV [ (@) = 20 — u(ge + o).

We show (in Corollary 5) that this algorithm is iden-
tical to follow-the-leader on the functions ff*(x) =
gt - © + Ri(z), an algorithm that is minimax opti-
mal in terms of regret against quadratic functions like
fT [Abernethy et al., 2008]. As with the previous the-
orem, the difference between the two is how they han-
dle an arbitrary W. If one uses Ry(z) = Lz — 43
in place of R;(x), this algorithm reduces to standard

online gradient descent [Do et al., 2009].

The key observation of [Bartlett et al., 2007] is that
if the underlying functions ¢; have strong convexity,

we can roll that into the R; functions, and so intro-
duce less additional stabilizing regularization, lead-
ing to regret bounds that interpolate between /T for
linear functions and logT for strongly convex func-
tions. Their work did not consider composite objec-
tives (¥ terms), but our equivalence theorems show
their adaptivity techniques can be lifted to algorithms
like RDA and FTRL-Proximal that handle such non-
smooth functions more effectively than mirror descent
formulations.

We will prove our equivalence theorem for a general-
ized versions of the algorithm. Instead of vanilla gra-
dient descent, we analyze the mirror descent algorithm
of Equation (11), but now g, is replaced by Vv ff(x;),
and we add the composite term ¥(x).

Theorem 4. Let fi(x) = gy - x, and let fF(x) =
gt -+ Ri(x), where Ry is a differentiable convex func-
tion. Let W be an arbitrary convex function. Con-
sider the composite-objective mirror-descent algorithm
which plays

Z¢r1 = arg min VftR(fct) cx 4+ U(x) + Bra(z, 24), (15)

and the FTRL algorithm which plays

Tpy1 = argmin f15(2) + @11 -2+ ¥(z),  (16)

for ¢ € 0¥ (wy41) such that gi14 + VRyg(wie1) +
¢1.4—1 + ¢¢ = 0. If both algorithms play &1 = 1 = 0,
then they are equivalent, in that xy = &y for all t > 0.

The most important corollary of this result is that it
lets us add the Adaptive Online Gradient Descent al-
gorithm to Table 1. It is also instructive to specialize
to the simplest case when ¥(z) = 0 and the regular-
ization is quadratic:

Corollary 5. Let fi(x) = g; - = and fF(x) =g -2 +
Z|z||3. Then following update algorithms play identi-
cal points:

e FTRL, which plays x4y, = argmin, f{, ().

o Gradient descent on the functions f% using the
step size ny = i, which plays

Tep1 = 2 — V[ (2)

e Revisionist constant-step size gradient descent
with ny = i, which plays

Ti41 = —MeG1:¢-

The last equivalence in the corollary follows from de-
riving the closed form for the point played by FTRL.
We now proceed to the proof of the general theorem:



H. Brendan McMahan

Proof of Theorem 4. The proof is by induction, using
the induction hypothesis &; = x;. The base case for
t = 1 follows by inspection. Suppose the induction
hypothesis holds for t; we will show it also holds for
t+1. Again let r; = VR, and consider Equation (16).
Since R; is assumed to be strongly convex, applying
Theorem 1 gives us that x; is the unique solution to
fo?t_l(xt) + ¢14—1 = 0 and S0 g1.4—1 + T14—1(ze) +
¢1:t—1 = 0. Then, by the induction hypothesis,

—7T1:4—1(Z4) = g1:4—1 + Pr:0—1. (17)

Now consider Equation (15). Since R; is strongly con-
vex, By.(x, &) is strongly convex in its first argument,
and so by Theorem 1 we have that Z;4; and some
@} € OU(Z441) are the unique solution to

VIR (@) + @) 4+ r1a(@eg1) — ria(d) = 0,

since V,Bgr(p,q) = r(p) — r(q). Beginning from this

equation,
0= VIR (&) + ¢ + r1e(Eeg1) — rra(de)
=gt + (&) + &y + 114 (Te1) — r1e(84)

=g; + 71 1)+ @ — rie—1(&)
=gi +T1:¢ 1) + ¢y + gri—1 + P1:4-1
= g1t + (&) + P11 + @)

(T4
(T4 Eq (17)

Applying Theorem 1 to Equation (16), (zy1,¢:) are
the unique pair such that

g1t + 116 (Tpg1) + Grie—1 + G =0

and ¢y € 0¥ (z1y1), and so we conclude Zy11 = Tpyq
and ¢; = . O

3 EXPERIMENTS

We compare FOBOS, FTRL-Proximal, and RDA on
a variety of datasets to illustrate the key differences
between the algorithms, from the point of view of in-
troducing sparsity with L, regularization. In all ex-
periments we optimize log-loss (see Section 1).

Binary Classification We compare FTRL-
Proximal, RDA, and FOBOS on several public
datasets. We used four sentiment classification data
sets (Books, Dvd, Electronics, and Kitchen), available
from [Dredze, 2010], each with 1000 positive examples
and 1000 negative examples,* as well as the scaled
versions of the rcvl.binary (20,242 examples) and
news20.binary (19,996 examples) data sets from
LIBSVM [Chang and Lin, 2010].

4We used the features provided in processed_acl.tar.gz,
and scaled each vector of counts to unit length.

All our algorithms use a learning rate scaling parame-
ter v (see Section 1). The optimal choice of this param-
eter can vary somewhat from dataset to dataset, and
for different settings of the L; regularization strength
M. For these experiments, we first selected the best
v for each (dataset, algorithm, A\) combination on a
random shuffling of the dataset. We did this by train-
ing a model using each possible setting of v from a
reasonable grid (12 points in the range [0.3,1.9]), and
choosing the v with the highest online AUC. We then
fixed this value, and report the average AUC over 5
different shufflings of each dataset. We chose the area
under the ROC curve (AUC) as our accuracy metric
as we found it to be more stable and have less vari-
ance than the mistake fraction. However, results for
classification accuracy were qualitatively very similar.

Ranking Search Ads by Click-Through-Rate
We collected a dataset of about 1,000,000 search ad
impressions from a large search engine,® correspond-
ing to ads shown on a small set of search queries. We
formed examples with a feature vector 6; for each ad
impression, using features based on the text of the ad
and the query, as well as where on the page the ad
showed. The target label y; is 1 if the ad was clicked,
and -1 otherwise.

Smaller learning-rates worked better on this dataset;
for each (algorithm, \) combination we chose the best
~ from 9 points in the range [0.03,0.20]. Rather than
shuffling, we report results for a single pass over the
data using the best v, processing the events in the or-
der the queries actually occurred. We also set a lower
bound for the stabilizing terms &; of 20.0, (correspond-
ing to a maximum learning rate of 0.05), as we found
this improved accuracy somewhat. Again, qualitative
results did not depend on this choice.

Results Table 2 reports AUC accuracy (larger num-
bers are better), followed by the density of the final
predictor 7 (number of non-zeros divided by the to-
tal number of features present in the training data).
We measured accuracy online, recording a prediction
for each example before training on it, and then com-
puting the AUC for this set of predictions. For these
experiments, we fixed A = 0.05/7" (where T is the num-
ber of examples in the dataset), which was sufficient
to introduce non-trivial sparsity. Overall, there is very
little difference between the algorithms in terms of ac-
curacy, with RDA having a slight edge for these choices
for A. Our main point concerns the sparsity numbers.
It has been shown before that RDA outperforms FO-

SWhile we report results on a single dataset, we re-

peated the experiments on two others, producing quali-
tatively the same results. No user-specific data was used
in these experiments.
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Table 2: AUC (area under the ROC curve) for online predictions and sparsity in parentheses. The best value
for each dataset is bolded. For these experiments, A was fixed at 0.05/7.

DATA FTRL-PROXIMAL RDA FOBOS
BOOKS 0.874 (0.081) 0.878 (0.079) 0.877 (0.382)
DVD 0.884 (0.078) 0.886 (0.075) 0.887 (0.354)
ELECTRONICS 0.916 (0.114) 0.919 (0.113) 0.918 (0.399)
KITCHEN 0.931 (0.129) 0.934 (0.130) 0.933 (0.414)
NEWS 0.989 (0.052) 0.991 (0.054) 0.990 (0.194)
RCV1 0.991 (0.319) 0.991 (0.360) 0.991 (0.488)
WEB SEARCH ADS 0.832 (0.615) 0.831 (0.632) 0.832 (0.849)
10 news 10 web search ads
107 F 3
c - 107}
g 8107

10"l e—e FTRL-Proximal
»—< RDA
+— FOBOS

0 L L L L 1 L L
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Figure 1: Sparsity versus accuracy tradeoffs on the
20 newsgroups dataset. Sparsity increases on the y-
axis, and AUC increases on the x-axis, so the top right
corner gets the best of both worlds. FOBOS is pareto-
dominated by FTRL-Proximal and RDA.

BOS in terms of sparsity. The question then is how
does FTRL-Proximal perform, as it is a hybrid of the
two, selecting additional stabilization R, in the man-
ner of FOBOS, but handling the L; regularization in
the manner of RDA. These results make it very clear:
it is the treatment of L, regularization that makes the
key difference for sparsity, as FTRL-Proximal behaves
very comparably to RDA in this regard.

Fixing a particular value of A\, however, does not tell
the whole story. For all these algorithms, one can trade
off accuracy to get more sparsity by increasing the A
parameter. The best choice of this parameter depends
on the application as well as the dataset. For exam-
ple, if storing the model on an embedded device with
expensive memory, sparsity might be relatively more
important. To show how these algorithms allow dif-
ferent tradeoffs, we plot sparsity versus AUC for the
different algorithms over a range of A values. Figure 1
shows the tradeoffs for the 20 newsgroups dataset, and
Figure 2 shows the tradeoffs for web search ads.

In all cases, FOBOS is pareto-dominated by RDA and
FTRL-Proximal. These two algorithms are almost
indistinguishable in the their tradeoff curves on the

e—e FTRL-Proximal
101E = RDA
+— FOBOS

0.8295 0.8300 0.8305 0.8310 0.8315 0.8320 0.8325 0.8330

Figure 2: The same comparison as the previous
figure, but on a large search ads ranking dataset.
On this dataset, FTRL-Proximal significantly outper-
forms both other algorithms.

newsgroups dataset, but on the ads dataset FTRL-
Proximal significantly outperforms RDA as well.®

Conclusions We have shown a close relationship be-
tween certain mirror descent algorithms like FOBOS,
and FTRL-style algorithms like RDA. This was accom-
plished by expressing the mirror descent update as a
global optimization in the style of FTRL. This refor-
mulation provides a clear characterization of the dif-
ference in how L; regularization (and in general, an ar-
bitrary non-smooth regularizer ¥) is handled by these
algorithms. Experimental results demonstrate that it
is this difference that accounts for the superior sparsity
produced by RDA. We also introduced the composite-
objective FTRL-Proximal algorithm that can be seen
as a hybrid between the other two, centering stabilizing
regularization in the manner of FOBOS, but handling
¥ (an in particular, L; regularization) in the manner
of RDA. We showed that this algorithm can outper-

form both of the others on a large, real-world dataset.

5The improvement is more significant than it first ap-
pears. A simple model with only features based on where
the ads were shown achieves an AUC of nearly 0.80, and
the inherent uncertainty in the clicks means that even pre-
dicting perfect probabilities would produce an AUC signif-
icantly less than 1.0, perhaps 0.85.
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