
44 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

systems were available 15 years ago.
HPC systems rely on fast (low-latency)
and efficient interconnection net-
works capable of providing both high
bandwidth and efficient messaging for
fine-grained (for example, cache-line
size) communication. This zealous
attention to performance and low la-
tency migrated to financial enterprise
systems where a fraction of a micro-
second can make a difference in the
value of a transaction.

In recent years, Ethernet networks
have made significant inroads into
bridging the performance and scal-
ability gap between capacity-oriented
clusters built using COTS (commod-
ity-off-the-shelf) components and
purpose-built custom system architec-
tures. This is evident from the growth
of Ethernet as a cluster interconnect
on the Top500 list of most powerful
computers (top500.org). A decade
ago high-performance networks were
mostly custom and proprietary inter-
connects, and Ethernet was used by
only 2% of the Top500 systems. Today,
however, more than 42% of the most
powerful computers are using Gigabit
Ethernet, according to the November
2011 list of Top500 computers. A close
second place is InfiniBand, which
is used by about 40% of the systems.
These standards-based interconnects
combined with economies of scale
provide the genetic material of a mod-
ern data-center network.

A modern data center,13,17,24 as
shown in Figure 1, is home to tens of
thousands of hosts, each consisting of
one or more processors, memory, net-
work interface, and local high-speed
I/O (disk or flash). Compute resources
are packaged into racks and allocated
as clusters consisting of thousands of
hosts that are tightly connected with
a high-bandwidth network. While the
network plays a central role in the over-
all system performance, it typically
represents only 10%–15% of the clus-
ter cost. Be careful not to confuse cost
with value—the network is to a cluster
computer what the central nervous sys-
tem is to the human body.

the MaGIC of the cloud is that it is always on and
always available from anywhere. Users have come to
expect that services are there when they need them.
A data center (or warehouse-scale computer) is the
nexus from which all the services flow. It is often
housed in a nondescript warehouse-sized building
bearing no indication of what lies inside. Amidst the
whirring fans and refrigerator-sized computer racks is
a tapestry of electrical cables and fiber optics weaving
everything together—the data-center network. This
article provides a “guided tour” through the principles
and central ideas surrounding the network at the heart
of a data center—the modern-day loom that weaves
the digital fabric of the Internet.

Large-scale parallel computers are grounded in HPC
(high-performance computing) where kilo-processor

A Guided Tour
of Data-Center
networking

Doi:10.1145/2184319.2184335

 Article development led by
 queue.acm.org

A good user experience depends on predictable
performance within the data-center network.

By Dennis ABTs AnD BoB feLDeRMAn

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 45

Each cluster is homogeneous in
both the processor type and speed. The
thousands of hosts are orchestrated to
exploit thread-level parallelism central
to many Internet workloads as they di-
vide incoming requests into parallel
subtasks and weave together results
from many subtasks across thousands
of cores. In general, in order for the re-
quest to complete, all parallel subtasks
must complete. As a result, the maxi-
mum response time of any one subtask
will dictate the overall response time.25
Even in the presence of abundant
thread-level parallelism, the commu-
nication overhead imposed by the net-
work and protocol stack can ultimately
limit application performance as the
effects of Amdahl’s Law2 creep in.

The high-level system architecture
and programming model shape both
the programmer’s conceptual view
and application usage. The latency and
bandwidth “cost” of local (DRAM) and
remote (network) memory references

are often baked into the application
as programming trade-offs are made
to optimize code for the underlying
system architecture. In this way, an ap-
plication organically grows within the
confines of the system architecture.

The cluster-application usage mod-
el, either dedicated or shared among
multiple applications, has a significant
impact on SLAs (service-level agree-
ments) and application performance.
HPC applications typically use the sys-
tem in a dedicated fashion to avoid
contention from multiple applications
and reduce the resulting variation in
application performance. On the other
hand, Web applications often rely on
services sourced from multiple clusters,
where each cluster may have several ap-
plications simultaneously running to
increase overall system utilization. As
a result, a data-center cluster may use
virtualization for both performance and
fault isolation, and Web applications are
programmed with this sharing in mind.

Web applications such as search,
email, and document collaboration
are scheduled resources and run with-
in a cluster.4,8 User-facing applications
have soft real-time latency guaran-
tees or SLAs that the application must
meet. In this model, an application has
approximately tens of milliseconds
to reply to the user’s request, which is
subdivided and dispatched to worker
threads within the cluster. The worker
threads generate replies that are aggre-
gated and returned to the user. Unfor-
tunately, if a portion of the workflow
does not execute in a timely manner,
then it may exceed a specified timeout
delay—as a result of network conges-
tion, for example—and consequently
some portion of the coalesced results
will be unavailable and thus ignored.
This needlessly wastes both CPU cycles
and network bandwidth, and may ad-
versely impact the computed result.

To reduce the likelihood of conges-
tion, the network can be overprovi-

figure 1. An example data center and warehouse-scale computer.

46 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

The transient load imbalance in-
duced by elephant flows can adversely
affect any innocent-bystander flows
that are patiently waiting for a heavily
utilized link common to both routes.
For example, an elephant flow from A
to B might share a common link with
a flow from C to D. Any long-lived con-
tention for the shared link increases
the likelihood of discarding a packet
from the C-to-D flow. Any packet dis-
cards will result in an unacknowl-
edged packet at the sender’s trans-
port layer and be retransmitted when
the timeout period expires. Since the
timeout period is generally one or two
orders of magnitude more than the
network’s round-trip time, this addi-
tional latency22 is a significant source
of performance variation.3

Today’s typical multitiered data-
center network23 has a significant
amount of oversubscription, where the
hosts attached to the rack switch (that
is, first tier) have significantly more—
say an order of magnitude more—pro-
visioned bandwidth between one an-
other than they do with hosts in other
racks. This rack affinity is necessary
to reduce network cost and improve
utilization. The traffic intensity emit-
ted by each host fluctuates over time,
and the transient load imbalance that
results from this varying load can cre-
ate contention and ultimately result
in discarded packets for flow control.
Traffic between clusters is typically
less time critical and as a result can
be staged and scheduled. Inter-cluster
traffic is less orchestrated and consists
of much larger payloads, whereas in-
tra-cluster traffic is often fine-grained
with bursty behavior. At the next level,
between data centers, bandwidth is of-
ten very expensive over vast distances
with highly regulated traffic streams
and patterns so that expensive links
are highly utilized. When congestion
occurs the most important traffic gets
access to the links. Understanding the
granularity and distribution of net-
work flows is essential to capacity plan-
ning and traffic engineering.

Data-Center network Architecture
The network topology describes pre-
cisely how switches and hosts are in-
terconnected. This is commonly rep-
resented as a graph in which vertices
represent switches or hosts, and links

sioned by providing ample bandwidth
for even antagonistic traffic patterns.
Overprovisioning within large-scale
networks is prohibitively expensive. Al-
ternatively, implementing QoS (quality
of service) policies to segregate traffic
into distinct classes and provide per-
formance isolation and high-level traf-
fic engineering is a step toward ensur-
ing application-level SLAs are satisfied.
Most QoS implementations are imple-
mented by switch and NIC (network
interface controller) hardware where
traffic is segregated based on priority
explicitly marked by routers and hosts
or implicitly steered using port ranges.
The goal is the same: a high-perfor-
mance network that provides predict-
able latency and bandwidth character-
istics across varying traffic patterns.

Data-Center Traffic
Traffic within a data-center network is
often measured and characterized ac-
cording to flows, which are sequences
of packets from a source to destination
host. When referring to Internet proto-
cols, a flow is further refined to include
a specific source and destination port
number and transport type—UDP or
TCP, for example. Traffic is asymmet-
ric with client-to-server requests being
abundant but generally small. Server-
to-client responses, however, tend to
be larger flows; of course, this, too,

depends on the application. From the
purview of the cluster, Internet traffic
becomes highly aggregated, and as a
result the mean of traffic flows says very
little because aggregated traffic exhib-
its a high degree of variability and is
non-Gaussian.16

As a result, a network that is only
10% utilized can see lots of packet dis-
cards when running a Web search. To
understand individual flow character-
istics better, applications are instru-
mented to “sample” messages and de-
rive a distribution of traffic flows; this
knowledge allows you to infer a taxono-
my of network traffic and classify indi-
vidual flows. The most common classi-
fication is bimodal, using the so-called
“elephant” and “mice” classes.

Elephant flows have a large number
of packets and are generally long lived;
they exhibit “bursty” behavior with a
large number of packets injected in
the network over a short time. Traf-
fic within a flow is generally ordered,
which means elephant flows can cre-
ate a set of “hotspot” links that can
lead to tree saturation or discarded
packets in networks that use lossy
flow control. The performance impact
from elephant flows can be significant.
Despite the relatively low number of
flows—say less than 1%—they can ac-
count for more than half the data vol-
ume on the network.

figure 2. A conventional tree-like data-center network topology.

Internet

BR
BR

CR CR CR...

AS AS

L2S L2S L2S L2S...

...
HHH

HHH
HHH

HHH
HHH

HHH
HHH

HHH cluster

Aggregation
Switches

Top of Rack
Switches

Cluster Router

Data-Center
Border Router

ToR ToR ToR ToR

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 47

The high-level
system architecture
and programming
model shape both
the programmer’s
conceptual view
and application
usage.

are the edges that connect them. The
topology is central to both the perfor-
mance and cost of the network. The
topology affects a number of design
trade-offs, including performance,
system packaging, path diversity, and
redundancy, which, in turn, affect the
network’s resilience to faults, average
and maximum cable length, and, of
course, cost.12 The Cisco Data Center In-
frastructure 3.0 Design Guide6 describes
common practices based on a tree-like
topology15 resembling early telephony
networks proposed by Charles Clos,7
with bandwidth aggregation at differ-
ent levels of the network.

A fat-tree or folded-Clos topology,
similar to that shown in Figure 2, has
an aggregate bandwidth that grows in
proportion to the number of host ports
in the system. A scalable network is
one in which increasing the number
of ports in the network should linearly
increase the delivered bisection band-
width. Scalability and reliability are
inseparable since growing to large sys-
tem size requires a robust network.

Network addressing. A host’s ad-
dress is how endpoints are identified
in the network. Endpoints are distin-
guished from intermediate switch-
ing elements traversed en route since
messages are created by and delivered
to an endpoint. In the simplest terms,
the address can be thought of as the
numerical equivalent of a host name
similar to that reported by the Unix
hostname command.

An address is unique and must be
represented in a canonical form that
can be used by the routing function to
determine where to route a packet. The
switch inspects the packet header cor-
responding to the layer in which rout-
ing is performed—for example, IP ad-
dress from layer 3 or Ethernet address
from layer 2. Switching over Ethernet
involves ARP (address resolution pro-
tocol) and RARP (reverse address reso-
lution protocol) that broadcast mes-
sages on the layer 2 network to update
local caches mapping layer 2 to layer
3 addresses and vice versa. Routing at
layer 3 requires each switch to main-
tain a subnet mask and assign IP ad-
dresses statically or disseminate host
addresses using DHCP (dynamic host
configuration protocol), for example.

The layer 2 routing tables are auto-
matically populated when a switch is

plugged in and learns its identity and
exchanges route information with its
peers; however, the capacity of the
packet-forwarding tables is limited to,
say, 64K entries. Further, each layer 2
switch will participate in an STP (span-
ning tree protocol) or use the TRILL
(transparent interconnect of lots of
links) link-state protocol to exchange
routing information and avoid tran-
sient routing loops that may arise while
the link state is exchanged among
peers. Neither layer 2 nor layer 3 rout-
ing is perfectly suited to data-center
networks, so to overcome these limi-
tations many new routing algorithms
have been proposed (for example, Port-
Land1,18 and VL211).

Routing. The routing algorithm de-
termines the path a packet traverses
through the network. A packet’s route,
or path, through the network can be
asserted when the message is cre-
ated, called source routing, or may be
asserted hop by hop in a distributed
manner as a packet visits intermediate
switches. Source routing requires that
every endpoint know the prescribed
path to reach all other endpoints, and
each source-routed packet carries the
full information to determine the set of
port/link traversals from source to des-
tination endpoint. As a result of this
overhead and inflexible fault handling,
source-routed packets are generally
used only for topology discovery and
network initialization, or during fault
recovery when the state of a switch is
unknown. A more flexible method of
routing uses distributed lookup tables
at each switch, as shown in Figure 3.

For example, consider a typical Eth-
ernet switch. When a packet arrives at
a switch input port, it uses fields from
the packet header to index into a look-
up table and determine the next hop,
or egress port, from the current switch.

A good topology will have abundant
path diversity in which multiple pos-
sible egress ports may exist, with each
one leading to a distinct path. Path di-
versity in the topology may yield ECMP
(equal-cost multipath) routing; in that
case the routing algorithm attempts to
load-balance the traffic flowing across
the links by spreading traffic uniformly.
To accomplish this uniform spreading,
the routing function in the switch will
hash several fields of the packet header
to produce a deterministic egress port.

48 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

can become unstable, as illustrated by
the dotted line in the figure, when the
offered load exceeds the saturation
point, α. The saturation point is the of-
fered load beyond which the network is
said to be congested. In response to this
congestion, packets may be discarded
to avoid overflowing an input buffer.
This lossy flow control is commonplace
in Ethernet networks.

Discarding packets, while concep-
tually simple and easy to implement,
puts an onus on transport-level mech-
anisms to detect and retransmit lost
packets. Note, packets that are lost or
corrupted during transmission are
handled by the same transport-level
reliable delivery protocol. When the of-
fered load is low (less than α), packet
loss as a result of corruption is rare,
so paying the relatively large penalty
for transport-level retransmission is
generally tolerable. Increased traffic
(greater than α) and adversarial traf-
fic patterns will cause packet discards
after the switch’s input queue is ex-
hausted. The resulting retransmission
will only further exacerbate an already
congested network, yielding an unsta-
ble network that performs poorly, as
shown by the dotted line in Figure 4.
Alternatively, with lossless flow control,
when congestion arises packets may be
blocked or held at the source until re-
sources are available.

A global congestion control mecha-
nism prevents the network from op-
erating in the post-saturation region.
Most networks use end-to-end flow
control, such as TCP,5 which uses a win-
dowing mechanism between pairs of
source and sink in an attempt to match
the source’s injection rate with the
sink’s acceptance rate. TCP, however,
is designed for reliable packet delivery,
not necessarily timely packet delivery,
and as a result, requires tuning (TCP
congestion-control algorithms will au-
to-tune to find the right rate) to balance
performance and avoid unnecessary
packet duplication from eagerly re-
transmitting packets under heavy load.

Improving the network stack. Sever-
al decades ago the network designers of
early workstations made trade-offs that
led to a single TCP/IP/Ethernet network
stack, whether communicating over a
few meters or a few kilometers. As pro-
cessor speed and density improved, the
cost of network communication grew

In the event of a link or switch failure,
the routing algorithm will take advan-
tage of path diversity in the network to
find another path.

A path through the network is said
to be minimal if no shorter (that is,
fewer hops) path exists; of course,
there may be multiple minimal paths.
A fat-tree topology,15 for example, has
multiple minimal paths between any
two hosts, but a butterfly topology9 has
only a single minimal path between
any two hosts. Sometimes selecting a
non-minimal path is advantageous—
for example, to avoid congestion or
to route around a fault. The length of
a non-minimal path can range from
min+1 up to the length of a Hamilto-
nian path visiting each switch exactly
once. In general, the routing algo-
rithm might consider non-minimal
paths of a length that is one more than
a minimal path, since considering all
non-minimal paths would be prohibi-
tively expensive.

network Performance
Here, we discuss the etiquette for
sharing the network resources—spe-
cifically, the physical links and buf-
fer spaces are resources that require
flow control to share them efficiently.
Flow control is carried out at different
levels of the network stack: data-link,
network, transport layer, and possibly
within the application itself for ex-
plicit coordination of resources. Flow
control that occurs at lower levels of
the communication stack is transpar-
ent to applications.

Flow control. Network-level flow
control dictates how the input buf-
fers at each switch or NIC are man-
aged: store-and-forward, virtual cut-
through,14 or wormhole,19 for example.
To understand the performance impli-
cations of flow control better, you must
first understand the total delay, T, a
packet incurs:

T = H(tr + Ltp) + ts

H is the number of hops the packet
takes through the network; tr is the
fall-through latency of the switch,
measured from the time the first flit
(flow-control unit) arrives to when the
first flit exits; and tp is the propagation
delay through average cable length
L. For short links—say, fewer than 10

meters—electrical signaling is cost-ef-
fective. Longer links, however, require
fiber optics to communicate over the
longer distances. Signal propagation
in electrical signaling (5 nanoseconds
per meter) is faster than it is in fiber (6
nanoseconds per meter).

Propagation delay through elec-
trical cables occurs at sublumenal
speeds because of a frequency-de-
pendent component at the surface of
the conductor, or “skin effect,” in the
cable. This limits the signal velocity
to about three-quarters the speed of
light in a vacuum. Signal propagation
in optical fibers is even slower because
of dielectric waveguides used to al-
ter the refractive index profile so that
higher-velocity components of the sig-
nal (such as shorter wavelengths) will
travel longer distances and arrive at
the same time as lower-velocity com-
ponents, limiting the signal velocity to
about two-thirds the speed of light in
a vacuum. Optical signaling must also
account for the time necessary to per-
form electrical-to-optical signal con-
version, and vice versa.

The average cable length, L, is large-
ly determined by the topology and the
physical placement of system racks
within the data center. The packet’s se-
rialization latency, ts, is the time nec-
essary to squeeze the packet onto a nar-
row serial channel and is determined
by the bit rate of the channel. For ex-
ample, a 1,500-byte Ethernet packet
(frame) requires more than 12µs (ig-
noring any interframe gap time) to be
squeezed onto a 1Gb/s link. With store-
and-forward flow control, as its name
suggests, a packet is buffered at each
hop before the switch does anything
with it:

Tsf = H(tr + Ltp + ts)

As a result, the serialization delay,
ts, is incurred at each hop, instead of
just at the destination endpoint as is
the case with virtual cut-through and
wormhole flow control. This can po-
tentially add on the order of 100µs to
the round-trip network delay in a data-
center network.

A stable network monotonically
delivers messages as shown by a char-
acteristic throughput-load curve in
Figure 4. In the absence of end-to-end
flow control, however, the network

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 49

relative to processor cycles, exposing
the network stack as a critical latency
bottleneck.22 This is, in part, the result
of a user-kernel context switch in the
TCP/IP/Ethernet stack—and possibly
additional work to copy the message
from the application buffer into the
kernel buffer and back again at the re-
ceiver. A two-pronged hardware/soft-
ware approach tackled this latency pen-
alty: OS bypass, and zero copy, both of
which are aimed at eliminating the us-
er-kernel switch for every message and
avoiding a redundant memory copy by
allowing the network transport to grab
the message payload directly from the
user application buffers.

To ameliorate the performance
impact of a user/kernel switch, OS by-
pass can be used to deposit a message
directly into a user-application buffer.
The application participates in the
messaging protocol by spin-waiting
on a doorbell memory location. Upon
arrival, the NIC deposits the message
contents in the user-application buf-
fer, and then “rings” the doorbell to
indicate message arrival by writing the
offset into the buffer where the new
message can be found. When the user
thread detects the updated value, the
incoming message is processed entire-
ly from user space.

Zero-copy message-passing proto-
cols avoid this additional memory copy
from user to kernel space, and vice ver-
sa at the recipient. An interrupt signals
the arrival of a message, and an inter-
rupt handler services the new message
and returns control to the user applica-
tion. The interrupt latency—the time
from when the interrupt is raised until
control is handed to the interrupt han-
dler—can be significant, especially if
interrupt coalescing is used to amor-
tize the latency penalty across multiple
interrupts. Unfortunately, while in-
terrupt coalescing improves message
efficiency (that is, increased effective
bandwidth), it does so at the cost of
both increased message latency and la-
tency variance.

scalable, Manageable, And flexible
In general, cloud computing requires
two types of services: user-facing com-
putation (for example, serving Web
pages) and inward computation (for
example, indexing, search, and map/
reduce). Outward-facing functionality

can sometimes be done at the “border”
of the Internet where commonly re-
quested pages are cached and serviced
by edge servers, while inward computa-
tion is generally carried out by a cluster
in a data center with tightly coupled,
orchestrated communication. User
demand is diurnal for a geographic
region; thus, multiple data centers
are positioned around the globe to
accommodate the varying demand.
When possible, demand may be spread
across nearby data centers to load-bal-
ance the traffic.

The sheer enormity of this comput-
ing infrastructure makes nimble de-
ployment very challenging. Each clus-
ter is built up rack by rack and tested
as units (rack, top-of-rack switch,
among others), as well as in its entirety
with production-level workloads and
traffic intensity.

The cluster ecosystem undergoes
organic growth over its life span, pro-
pelled by the rapid evolution of soft-

ware—both applications and, to a less-
er extent, the operating system. The
fluid-like software demands of Web
applications often consume the cluster
resources that contain them, making
flexibility a top priority in such a fluid
system. For example, adding 10% ad-
ditional storage capacity should mean
adding no more than 10% more serv-
ers to the cluster. This linear growth
function is critical to the scalability of
the system—adding fractionally more
servers results in a commensurate
growth in the overall cluster capac-
ity. Another aspect of this flexibility is
the granularity of resource additions,
which is often tied to the cluster pack-
aging constraints. For example, adding
another rack to a cluster, with, say, 100
new servers, is more manageable than
adding a whole row, with tens of racks,
on the data-center floor.

Even a modest-sized cluster will
have several kilometers of fiber-optic
cable acting as a vast highway inter-

figure 3. example packet routing through a switch chip.

incoming
packet

dest.
address egress

port

crossbar

Routing
Lookup
Table

footer payload header

input
ports

output
ports

output port
(to next hop)

F H

figure 4. Throughput (accepted bandwidth) as load varies.

post-saturation
instability

th
ro

u
g

h
p

u
t

(b
it

s/
s)

offered load (bits/s)

α

50 CoMMuniCATions of The ACM | june 2012 | vol. 55 | no. 6

practice

The data-center
network serves
as a “central
nervous system”
for information
exchange between
cooperating tasks.

Bad things happen to good soft-
ware. Web applications must be de-
signed to be fault aware and, to the ex-
tent possible, resilient in the presence
of a variety of failure scenarios.10 The
network is responsible for the major-
ity of the unavailability budget for a
modern cluster. Whether it is a rogue
gamma ray causing a soft error in
memory or an inattentive worker acci-
dentally unearthing a fiber-optic line,
the operating system and underlying
hardware substrate work in concert to
foster a robust ecosystem for Web ap-
plications.

The data-center network serves as
a “central nervous system” for infor-
mation exchange between cooperat-
ing tasks. The network’s functionality
is commonly divided into control and
data planes. The control plane pro-
vides an ancillary network juxtaposed
with the data network and tasked with
“command and control” for the pri-
mary data plane. The control plane is
an autonomic system for configura-
tion, fault detection and repair, and
monitoring of the data plane. The
control plane is typically implement-
ed as an embedded system within
each switch component and is tasked
with fault detection, notification, and
repair when possible.

For example, when a network link
fails or has an uncharacteristically
high number of transmission errors,
the control plane will reroute the net-
work to avoid the faulty link. This
entails recomputing the routes ac-
cording to the routing algorithm and
emplacing new entries in the rout-
ing tables of the affected switches.
Of course, the effects of this patch-
work are not instantaneous. Once
the routing algorithm computes new
routes, taking into consideration the
newfound faulty links, it must dis-
seminate the routes to the affected
switches. The time needed for this in-
formation exchange is referred to as
convergence time, and a primary goal
of the routing protocol is to ensure it
is optimally confined to a small epoch.

Fault recovery is a very complicated
subject and confounds all but the sim-
plest of data-center networks. Among
the complicating factors are marginal
links that cause “flapping” by transi-
tioning between active and inactive
(that is, up and down), repeatedly creat-

connecting racks of servers organized
as multiple rows on the data-center
floor. The data-center network topol-
ogy and resulting cable complexity
is “baked in” and remains a rigid fix-
ture of the cluster. Managing cable
complexity is nontrivial, which is im-
mediately evident from the intricately
woven tapestry of fiber-optic cabling
laced throughout the data center. It
is not uncommon to run additional
fiber for redundancy, in the event of a
cable failure in a “bundle” of fiber or
for planned bandwidth growth. Fiber
cables are carefully measured to allow
some slack and to satisfy the cable’s
bend radius, and they are meticulously
labeled to make troubleshooting less
of a needle-in-a-haystack exercise.

Reliable and Available
Abstraction is the Archimedes lever
that lifts many disciplines within com-
puter science and is used extensively
in both computer system design and
software engineering. Like an array
of nested Russian dolls, the network-
programming model provides abstrac-
tion between successive layers of the
networking stack, enabling platform-
independent access to both data and
system management. One such ex-
ample of this type of abstraction is
the protocol buffer,21 which provides a
structured message-passing interface
for Web applications written in C++,
Java, or Python.

Perhaps the most common abstrac-
tion used in networking is the notion
of a communication channel as a virtual
resource connecting two hosts. The
TCP communication model provides
this abstraction to the programmer in
the form of a file descriptor, for exam-
ple, where reads and writes performed
on the socket result in the correspond-
ing network transactions, which are
hidden from the user application. In
much the same way, the InfiniBand QP
(queue-pair) verb model provides an
abstraction for the underlying send/
receive hardware queues in the NIC.
Besides providing a more intuitive pro-
gramming interface, abstraction also
serves as a protective sheath around
software when faults arise, depositing
layers of software sediment to insu-
late it from critical faults (for example,
memory corruption or, worse, host
power-supply failure).

practice

june 2012 | vol. 55 | no. 6 | CoMMuniCATions of The ACM 51

ing a deluge of error notifications and
resulting route recomputation based
on fluctuating and inconsistent link
status. Some link-layer protocols allow
the link speed to be adjusted down-
ward in hopes of improving the link
quality. Of course, lowering the link
speed results in a reduced bandwidth
link, which in turn may limit the overall
bandwidth of the network or at the very
least will create load imbalance as a re-
sult of increased contention across the
slow link. Because of these complicat-
ing factors, it is often better to logically
excise the faulty link from the routing
algorithm until the physical link can be
replaced and validated.

Conclusion
The data-center network is gener-
ally regarded as a critical design ele-
ment in the system architecture and
the skeletal structure upon which
processor, memory, and I/O devices
are dynamically shared. The evolu-
tion from 1G to 10G Ethernet and the
emerging 40G Ethernet has exposed
performance bottlenecks in the com-
munication stack that require bet-
ter hardware-software coordination
for efficient communication. Other
approaches by Solarflare, Myricom,
and InfiniBand, among others, have
sought to reshape the conventional
sockets programming model with
more efficient abstractions. Internet
sockets, however, remain the domi-
nant programming interface for data-
center networks.

Network performance and reliabil-
ity are key design goals, but they are
tempered by cost and serviceability
constraints. Deploying a large cluster
computer is done incrementally and
is often limited by the power capac-
ity of the building, with power being
distributed across the cluster network
so that a power failure impacts only a
small fraction—say, less than 10%—of
the hosts in the cluster. When hard-
ware fails, as is to be expected, the
operating system running on the host
coordinates with a higher-level hyper-
visor or cluster operating system to
allow failures to be replaced in situ
without draining traffic in the clus-
ter. Scalable Web applications are de-
signed to expect occasional hardware
failures, and the resulting software is
by necessity resilient.

Transactions on Computers 34, 10 (1985), 892–901.
16. Mori, t., uchida, M., kawahara, r., Pan, J., and

Goto, s. Identifying elephant flows through
periodically sampled packets. In Proceedings of
the 4th ACM SIGCOMM Conference on Internet
Measurement (2004); 115–120; http://doi.acm.
org/10.1145/1028788.1028803.

17. Mudigonda, J., yalagandula, P., Mogul, J., stiekes, b.,
Pouffary, y. netlord: a scalable multi-tenant network
architecture for virtualized datacenters. SIGCOMM
Computer Communication Review 41, 4 (2011), 62-73;
http://doi.acm.org/10.1145/2043164.2018444.

18. Mysore, r.n., Pamboris, a., Farrington, n., Huang,
n., Miri, P., radhakrishnan, s., subramanya, V.,
Vahdat, a. Portland: a scalable fault-tolerant layer
2 data center network fabric. SIGCOMM Computer
Communication Review 39, 4 (2009), 39–50; http://doi.
acm.org/10.1145/1594977.1592575.

19. ni, l. M., Mckinley, P. k. a survey of wormhole routing
techniques in direct networks. Computer 26, 2 (1993),
62–76; http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=191995&isnumber=4947.

20. ousterhout, J., agrawal, P. erickson, d., kozyrakis,
C., leverich, J., Mazières, d., Mitra, s., narayanan, a.,
Parulkar, G., rosenblum, M., rumble, s.M., stratmann,
e. and stutsman, r. the case for raMClouds:
scalable high-performance storage entirely in draM.
SIGOPS Operating Systems Review 43, 4 (2010),
92–105; http://doi.acm.org/10.1145/1713254.171327.

21. Protocol buffers; http://code.google.com/apis/
protocolbuffers/.

22. rumble, s.M., ongaro, d., stutsman, r., rosenblum,
M., and ousterhout, J.k. It’s time for low latency. In
Proceedings of the 13th Usenix Conference on Hot
Topics in Operating Systems (2011).

23. Vahdat, a., al-Fares, M., Farrington, n., Mysore, r.n.,
Porter, G., and radhakrishnan, s. scale-out networking
in the data center. IEEE Micro 30, 4 (2010), 29–41;
http://dx.doi.org/10.1109/MM.2010.72.

24. Vahdat, a., liu, H., zhao, X. and Johnson, C. the
emerging optical data center. Presented at the Optical
Fiber Communication Conference. osa technical
digest (2011); http://www.opticsinfobase.org/abstract.
cfm?urI=oFC-2011-otuH2.

25. Wilson, C., ballani, H., karagiannis, t., and rowtron,
a. better never than late: Meeting deadlines in
datacenter networks. In Proceedings of the ACM
SIGCOMM 2011 Conference (2011), 50–61; http://doi.
acm.org/10.1145/2018436.2018443.

 Related articles
 on queue.acm.org

Enterprise Grid Computing

Paul Strong
http://queue.acm.org/detail.cfm?id=1080877

Cooling the Data Center

Andy Woods
http://queue.acm.org/detail.cfm?id=1737963

Improving Performance on the Internet
Tom Leighton
http://queue.acm.org/detail.cfm?id=1466449

Dennis Abts is a member of the technical staff at Google,
where he is involved in the architecture and design of next-
generation large-scale clusters. Prior to joining Google,
abts was a senior principal engineer and system architect
at Cray Inc. He has numerous technical publications and
patents in areas of interconnection networks, data-center
networking, cache-coherence protocols, high-bandwidth
memory systems, and supercomputing.

Bob Felderman spent time at both Princeton and uCla
before starting a short stint at Information sciences
Institute. He then helped found Myricom, which became a
leader in cluster-computing networking technology. after
seven years there, he moved to Packet design where he
applied high-performance computing ideas to the IP and
ethernet space. He later was a founder of Precision I/o.
all of that experience eventually led him to Google where
he is a principal engineer working on issues in data-center
networking and general platforms system architecture.

© 2012 aCM 0001-0782/12/06 $10.00

A good user experience relies on pre-
dictable performance, with the data-
center network delivering predictable
latency and bandwidth characteristics
across varying traffic patterns. With
single-thread performance plateauing,
microprocessors are providing more
cores to keep pace with the relentless
march of Moore’s Law. As a result, ap-
plications are looking for increasing
thread-level parallelism and scaling
to a large core count with a commen-
surate increase in communication
among cores. This trend is motivating
communication-centric cluster comput-
ing with tens of thousands of cores in
unison, reminiscent of a flock darting
seamlessly amidst the clouds.

References
1. al-Fares, M., loukissas, a. and Vahdat, a. a scalable,

commodity data-center network architecture. In
Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication (2008), 63–74; http://doi.acm.
org/10.1145/1402958.1402967.

2. amdahl’s law; http://en.wikipedia.org/wiki/amdahl’s_
law.

3. ballani, H., Costa, P., karagiannis, t. and rowstron,
a. towards predictable data-center networks.
In Proceedings of the ACM SIGCOMM 2011
Conference (2011), 242–253; http://doi.acm.
org/10.1145/2018436.2018465.

4. barroso, l.a., dean, J. and Holzle, u. Web search
for a planet: the Google cluster architecture. IEEE
Micro 23, 2 (2003), 22–28; http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=1196112&isnumb
er=26907.

5. Cerf, V. and Icahn r.e. a protocol for packet
network intercommunication. SIGCOMM Computer
Communication Review 35, 2 (2005), 71–82; http://doi.
acm.org/10.1145/1064413.1064423.

6. Cisco Data Center Infrastructure 3.0 Design Guide.
data Center design—IP network Infrastructure;
http://www.cisco.com/en/us/docs/solutions/
enterprise/data_Center/dC_3_0/dC-3_0_IPInfra.
html.

7. Clos, C. a study of non-blocking switching networks. The
Bell System Technical Journal 32, 2 (1953), 406–424.

8. Fitzpatrick, b. distributed caching with Memcached.
Linux Journal 2004; http://www.linuxjournal.com/
article/7451.

9. dally, W. and towles, b. Principles and Practices
of Interconnection Networks. Morgan kaufmann
Publishers, san Francisco, Ca, 2003.

10. Gill, P., Jain, n. and nagappan, n. understanding
network failures in data centers: measurement,
analysis, and implications. In Proceedings of the ACM
SIGCOMM 2011 Conference (2011), 350–361; http://
doi.acm.org/10.1145/2018436.2018477.

11. Greenberg, a., Hamilton, J. r., Jain, n., kandula, s.,
kim, C., lahiri, P., Maltz, d. a., Patel, P. and sengupta,
s. Vl2: a scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication (2009): 51–62; http://doi.acm.
org/10.1145/1592568.1592576.

12. Greenberg, a., Hamilton, J., Maltz, d.a. and Patel, P.
the cost of a cloud: research problems in data center
networks. SIGCOMM Computer Communications
Review 39, 1 (2008), 68–73; http://doi.acm.
org/10.1145/1496091.1496103.

13. Hoelzle, u. and barroso, l. a. The Datacenter
as a Computer: An Introduction to the Design of
Warehouse-Scale Machines (1st ed.). Morgan &
Claypool Publishers, 2009.

14. kermani, P. and kleinrock, l. Virtual cut-through:
a new computer communication switching
technique, Computer Networks 3, 4 (1976), 267–286;
http://www.sciencedirect.com/science/article/
pii/0376507579900321.

15. leiserson, C.e. Fat-trees: universal networks
for hardware-efficient supercomputing. IEEE

