
GRAPHEME-TO-PHONEME CONVERSION USING
LONG SHORT-TERM MEMORY RECURRENT NEURAL NETWORKS

Kanishka Rao, Fuchun Peng, Haşim Sak, Françoise Beaufays

Google Inc. U.S.A.
{kanishkarao,fuchunpeng,hasim,fsb}@google.com

ABSTRACT

Grapheme-to-phoneme (G2P) models are key components
in speech recognition and text-to-speech systems as they de-
scribe how words are pronounced. We propose a G2P model
based on aLong Short-Term Memory(LSTM) recurrent neu-
ral network (RNN). In contrast to traditional joint-sequence
based G2P approaches, LSTMs have the flexibility of taking
into consideration the full context of graphemes and trans-
form the problem from a series of grapheme-to-phoneme
conversions to a word-to-pronunciation conversion. Train-
ing joint-sequence based G2P require explicit grapheme-
to-phoneme alignments which are not straightforward since
graphemes and phonemes don’t correspond one-to-one. The
LSTM based approach forgoes the need for such explicit
alignments.

We experiment with unidirectional LSTM (ULSTM)
with different kinds of output delays and deep bidirectional
LSTM (DBLSTM) with a connectionist temporal classifica-
tion (CTC) layer. The DBLSTM-CTC model achieves a word
error rate (WER) of 25.8% on the public CMU dataset for US
English. Combining the DBLSTM-CTC model with a joint
n-gram model results in a WER of 21.3%, which is a 9%
relative improvement compared to the previous best WER of
23.4% from a hybrid system.

Index Terms— speech recognition, pronunciation, RNN,
LSTM, G2P, CTC

1. INTRODUCTION

Knowing how words are pronounced is an essential ingre-
dient in any automatic speech recognition (ASR) or in text-
to-speech (TTS) systems. In ASR, pronunciations are the
middle-layer between the acoustic model and the language
model and the performance of the overall system relies on
the coverage and quality of the pronunciation component.
A pronunciation system typically comprises a static word-
pronunciation dictionary which is typically written by experts
or may even be generated using a data-driven approach [1].
However, such a static list can never cover all the possible
words in a language and is usually complemented with a G2P
engine to generate pronunciations. A G2P converts a word,

as a series of characters or graphemes, to a prounciation, asa
series of phones. For example, given a word ‘google’ a G2P
would predict;

google → g u g @ l

A robust G2P is an essential piece in the ASR system as it is
invoked anytime a word is not in the static dictionary which
may be very frequent depending on the size of the dictionary.

For some languages with consistent pronunciations, like
Spanish, this task is relatively easy, but for languages like US
English pronunciations are much harder to predict. In typi-
cal G2P approaches, such as joint-sequence models [2], the
problem is sub-divided into three parts:

• Aligning: aligningG → P

• Training: learning theG → P conversions

• Decoding: finding the most likely pronunciation given
the model

Joint-sequence models create an initialG → P alignment
and then model the sequence of such joint tokens. However,
such alignments may not always be straightforward. For ex-
ample, the wordable may be pronounced as ”eI b @ l”: here
the graphemesa, b andl align with the phonemeseI, b and
l respectivelym however, the graphemee is omitted from the
phoneme sequence and instead the phoneme@ is inserted. A
joint-sequence model approach may overcome this with the
use of an empty symbol,ǫ and align:

a : eI b : b ǫ : @ l : l e : ǫ

However, establishing such an alignment is not endemic to the
G2P task which only requires the final sequence of phonemes
for a given word without the need of specific grapheme-to-
phoneme alignments.

In this paper we present a novel approach to the problem
usingLong Short-Term Memory(LSTM) neural networks [3]
which are a class of recurrent neural network especially suited
for sequence modeling. LSTMs avoids the need for explicit
alignment before training; instead, with a dynamic contextual



window, the LSTM may see several graphemes before out-
putting any phoneme, which allows it to make contextually-
aware decisions. For example, in the wordable → eI b @ l

the graphemee is not rendered in the phoneme sequence,
while in get → gEt the graphemee corresponds to phoneme
E. The contextual window over the previous graphemes, eg
abl versusg, help the LSTM make the correct prediction for
the graphemee. In some cases the left context may not be
enough, e.g. incar → k A r vs. care → k E r: here the
model needs to see thefuture(right) context to output the cor-
rect phoneme. To exploit the future context, we experiment
with output delays where the output is delayed by a certain
amount and with bidirectional LSTM which can see the en-
tire input word before outputting phonemes.

We show that LSTM models outperform previous state of
the art techniques. A hybrid approach that combines LSTMs
with joint ngram models further improves accuracy.

2. RELATED WORK

G2P conversion can be considered as a machine translation
problem where we need to translate source graphemes into
target phonemes. In such a formulation, an alignment model
needs to be first constructed and then a translation model –
such as a joint ngram model – is built from the alignments [2,
4]. Such ngram based translation models are usally imple-
mented as a weighted finite state transducer (WFST) [5, 6].
G2P can also be seen as a classification problem and imple-
mented with a maximum entropy classifier [7], or as a se-
quence labeling problem where statistical sequence labeling
techniques such as conditional random fields (CRF) [8, 9]
and perceptron HMM [10] can be used. Neural network ap-
proaches have also been proposed for G2P problems. For ex-
ample, Bilcu [11] investigated different types of neural net-
work structures and found that multilayer perceptrons per-
formed best. Hybrid models were found effective. For ex-
ample, Wu et al. [12] combines a joint ngram model with
a CRF model, and Hahn et al. [13] combines a basic joint
ngram model with a decision tree model. In this paper, we ex-
plore various LSTM archictures, and we show that combining
LSTM with a basic joint ngram model achieves the best G2P
performance.

3. LSTM

Recurrent neural networks (RNN), unlike feedforward neu-
ral networks (FFNN), can utilize the context of previous in-
puts while processing the current input using cyclic connec-
tions. This makes RNNs well suited for sequence modeling
tasks where context within the sequence is useful, such as
with phoneme recognition and handwriting recognition tasks.
RNNs store the activations from previous steps in their inter-
nal state and can build a dynamic temporal context window

instead of a fixed context window which may be used with
FFNNs.

However, conventional RNNs suffer from the vanish-
ing gradient and exploding gradient problems [14, 15] which
limit their ability to model long range dependencies. LSTM [3]
RNNs have been proposed to overcome these limitations.
LSTMs contain special units calledmemory unitsin the re-
current hidden layer that have self connections which allow
them to store their temporal state. Special multiplicative
gates in these units control the temporal flow of inputs and
outputs. They may alsoforget or reset their states. These
gates dynamically maintain the temporal context window in
the LSTM.

Having such a contextual memory makes LSTMs ideal for
sequential tasks where the current task output may depend on
previous task inputs. LSTMs have successfully been applied
to, e.g. phonetic labeling of acoustic frames [14], handwrit-
ing recognition [16], and language modeling [17]. They have
been shown to outperform standard RNNs and deep neural
networks (DNNs) in acoustic frame labeling tasks. LSTMs
are very well-suited for the G2P task which can be modeled
as a sequence transcription task requiring temporal context.
In this paper, we develop an LSTM based G2P which to our
knowledge is the first such application of LSTMs.

4. LSTM-BASED G2P IMPLEMENTATION

We configure LSTMs with an input layer of size equal to
the number of graphemes and an output layer of size equal
to the number of phonemes. In US English, this means 27
graphemes for the lowercase alphabet symbols plus the apos-
trophe, and 40 phonemes following the XSampa phoneset1.
The inputs (outputs) are constructed as 27 (40) dimension
”one-hot” vector representations with a value of one for the
index representing the grapheme (phoneme), and values of
zero for all other indices. The input layer is connected to a
hidden LSTM layer which is connected to the output layer.
In some experiments we consider deep LSTM models where
multiple hidden LSTM layers are connected in a series.

4.1. Unidirectional models

A unidirectional LSTM is setup with 1024 memory units with
an output layer with softmax activations and a cross-entropy
loss function. LSTMs with fewer units (512, 128 and 64)
were also evaluated but did not perform as well. The LSTM
is intialized with random weights, trained with a learning rate
0.002, and terminated according to performance on a develop-
ment data set. Since ULSTMs only exploit left/past context,
we introduce a concept of output delays, and experiment with
various configurations.

1http://en.wikipedia.org/wiki/X-SAMPA



4.1.1. Zero-delay

In the simplest approach, without any output delay, the in-
put sequence is the series of graphemes and the output se-
quence as the series of phonemes. In the (common) case of
unequal number of graphemes and phonemes we pad the se-
quence with an empty marker,φ. For example, we have:
Input: {g, o, o, g, l, e}
Output:{g, u, g, @, l,φ}

4.1.2. Fixed-delay

In this mode, we pad the output phoneme sequence with a
fixed delay, this allows the LSTM to see several graphemes
before outputting any phoneme, and builds a contextual win-
dow to help predict the correct phoneme. As before, in the
case of unequal input and output size, we pad the sequence
with φ. For example, with a fixed delay of 2, we have:
Input: {g, o, o, g, l, e,φ}
Output:{φ, φ g, u, g, @, l}

4.1.3. Full-delay

In this approach, we allow the model to see the entire input
sequence before outputting any phoneme. The input sequence
is the series of graphemes followd by an end marker,∆, and
the output sequence contains a delay equal to size of the input
followed by the series of phonemes. Again we pad unequal
input and output sequences withφ. For example;
Input: {g, o, o, g, l, e,∆, φ, φ, φ, φ}
Output:{φ, φ, φ, φ, φ, φ, g, u, g, @, l}

With the full delay setup we use an additional end marker
to indicate that all the input graphemes have been seen and
that the LSTM can start outputting phonemes. We discuss the
impact of these various configurations of output delay on the
G2P performance in Section 6.1.

4.2. Bidirectional models

While unidirectional models require artificial delays to build
a contextual window, bidirectional LSTMs (BLSTM) achieve
this naturally as they see the entire input before outputting
any phoneme. The BLSTM setup is nearly identical to the
unidirectional model, but has ”backward” LSTM layers (as
described in [14]) which process the input in the reverse di-
rection.

4.2.1. Deep Bidirectional LSTM

We found that deep-BLSTM (DBLSTM) with mutiple hid-
den layers perform slightly better than a BLSTM with a sin-
gle hidden layer. The optimal performance was achieved with
a architecture, shown in Figure 1, where a single input layer
was fully connected to two parallel layers of 512 units each;

Fig. 1. The best performing G2P neural network architecture
using a DBLSTM-CTC.

one unidirectional and one bidirectional. This first hidden
layer was fully connected to a single unidirectional layer of
128 units. The second hidden layer was connected to an out-
put layer. The model was initialized with random weights and
trained with a learning rate of 0.01.

4.2.2. Connectionist Temporal Classification

Along with the DBLSTM we use a connectionist temporal
classification [18] (CTC) output layer which interprets the
network outputs as a probability distribution over all possible
output label sequences, conditioned on the input data. The
CTC objective function directly maximizes the probabilities
of the correct labelings.

The CTC output layer has a softmax output layer with
41 units, one each for the 40 output phoneme labels and an
additional ”blank” unit. The probability of the CTC ”blank”
unit is interpretted as observing no label at the given time step.
This is similar to the use ofǫ described earlier in the joint-
sequence models, however, the key difference here is that this
is handled implicitly by the DBSLTM-CTC model instead of
having explicit alignments with join-sequence models.

4.3. Combination G2P Implementation

LSTMs and joint n-gram models are two very different ap-
proaches to G2P modeling since LSTMs model the G2P
task at the full sequence (word) level instead of the n-gram
(grapheme) level. These two models may generalize in dif-
ferent ways and a combination of both approaches may result
in a better overall model. We combine both models by



representing the output of the LSTM G2P as a finite state
transducer (FST) and then intersect it with the output of the
n-gram model which is also represented as a FST. We select
the single best path in the resulting FST which corresponds to
a single best pronunciation. (We did not find any significant
gains by using a scaling factor between the two models.)

5. EXPERIMENTS

In this paper, we report G2P performance on the publicly
available CMU pronunciation dictionary. We evaluate per-
formance using phoneme error rate (PER) and word error
rate (WER) metrics. PER is defined as the number of in-
sertions, deletions and substitutions divided by the number
of true phonemes, while WER is the number of words er-
rors divided by the total number of words. The CMU dataset
contains 106,837 words and of these we construct a devel-
opment set using 2,670 words to determine stopping criteria
while training, and a test set using 12,000 words. We use the
same training and testing split as found in [12, 7, 4] and thus
the results are directly comparable.

6. RESULTS AND DISCUSSION

6.1. Impact of Output Delay

Table 1 compares the performance of unidirectional models
with varying output delays. As expected, we find that when
using fixed delays increasing the size of the delays helps, and
that full delay outperforms any fixed delay. This confirms the
importance of exploiting future context for the G2P task.

Output Delay Phoneme Error Rate (%)
0 32.0
3 10.2
4 9.8
5 9.5
7 9.5

Full-delay 9.1

Table 1. Accuracy of ULSTM G2P with output delays.

6.2. Impact of CTC and Bi-directional Modeling

Table 2 compares LSTM models to various approaches pro-
posed in the literature. The numbers reported for the LSTM
are raw outputs, i.e. we do not decode the output with any
language model. In our experiments, we found that while uni-
directional models benefitted from decoding with a phoneme
language model (which we implemented as another LSTM
trained on the same training data), the BLSTM with CTC
outputs did not see any improvement with the additional
phoneme language model, likely because it already memo-
rizes and enforces contextual dependencies similar to those
imposed by an external langauge model.

Model Word Error Rate (%)
Galescu and Allen [4] 28.5

Chen [7] 24.7
Bisani and Ney [2] 24.5

Novak et al. [6] 24.4
Wu et al. [12] 23.4

5-gram FST 27.2
8-gram FST 26.5

Unidirectional LSTM with Full-delay 30.1
DBLSTM-CTC 128 Units 27.9
DBLSTM-CTC 512 Units 25.8

DBLSTM-CTC 512 + 5-gram FST 21.3

Table 2. Comparison of various G2P technologies.

The table shows that BLSTM architectures outperform
unidirectional LSTMs, and also that they compare favorably
to WFST based ngram models (25.8% WER vs 26.5%). Fur-
thermore, a combination of the two technologies as described
in 4.3 outperforms both models, and other approaches pro-
posed in the literature.

Table 3 compares the sizes of some of the models we
trained and also their execution time in terms of average num-
ber of milliseconds per word. It shows that BLSTM architec-
tures are quite competitive with ngram models: the 128-unit
BLSTM which performs at about the same level of accuracy
as the 5-gram model is 10 times smaller and twice as fast, and
the 512-unit model remains extremely compact if arguably a
little slow (no special attempt was made so far at optimizing
our LSTM code for speed, so this is less of a concern). This
makes LSTM G2Ps quite appealing for on-device implemen-
tations.

Model Model Size Model Speed
5-gram FST 30 MB 35 ms/word
8-gram FST 130 MB 30 ms/word

DBLSTM-CTC 128 Units 3 MB 12 ms/word
DBLSTM-CTC 512 Units 11 MB 64 ms/word

Table 3. Model size and speed for n-gram and LSTM G2P.

7. CONCLUSION

We suggested LSTM-based architectures to perform G2P
conversions. We approached the problem as a word-to-
pronunciation sequence transcription problem in contrast
to the traditional joint grapheme-to-phoneme modeling ap-
proach and thus do not require explicit grapheme-to-phoneme
alignment for training. We trained unidirectional models with
various output delays to capture some amount of future con-
text, and found that models with greater contextual informa-
tion perform better. We also trained deep BLSTM models



that can leverage the context of the entire input sequence
along with a CTC output layer which directly maximizes the
probabilities of the correct output labelings. The DBLSTM-
CTC based G2P outperforms n-gram based approach in terms
of accuracy and a combination of the DBLSTM-CTC and the
n-gram models results in a word error rate of 21.3% on the
public CMU dataset, this is, to our knowledge, the best per-
formance reported so far on the CMU dataset.

8. REFERENCES

[1] A. Rutherford, F. Peng, and F. Beaufays, “Pronunciation
learning for named-entities through crowd-sourcing,” in
Proceedings of InterSpeech, 2014.

[2] M. Bisani and H. Ney, “Joint-sequence models for
grapheme-to-phoneme conversion,”Speech Communi-
cations, vol. 50, no. 5, pp. 434–451, 2008.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,”Neural Computation, vol. 9(8), pp. 17351780,
1997.

[4] L. Galescu and J. F. Allen, “Pronunciation of proper
names with a joint n-gram model for bi-directional
grapheme-to-phoneme conversion,” inProceedings of
InterSpeech, 2002.

[5] J. R. Novak et al., “Improving wfst-based g2p conver-
sion with alignment constraints and rnnlm n-best rescor-
ing,” in Proceedings of InterSpeech, 2012.

[6] J. R. Novak, N. Minematu, and K. Hirose, “Failure tran-
sitions for joint n-gram models and g2p conversion,” in
Proceedings of InterSpeech, 2013.

[7] S. F. Chen, “Conditional and joint models for grapheme-
to-phoneme conversion,” inProceedings of InterSpeech,
2003.

[8] D. Wang and S. King, “Letter-to-sound pronunciation
prediction using conditional random fields,”IEEE Sig-
nal Processing Letters, vol. 18 (2), pp. 122 – 125, 2011.

[9] P. Lehnen, A. Allauzen, T. Lavergne, F. Yvon, S. Hahn,
and H. Ney, “Structure learning in hidden conditional
random fields for grapheme-to-phoneme conversion,” in
Proceedings of InterSpeech, 2013.

[10] S. Jiampojamarn, C. Cherry, and G. Kondrak, “Joint
processing and discriminative training for letter-to-
phoneme conversion,” inProceedings of ACL, 2008, pp.
905 – 913.

[11] E. B. Bilcu, Text-to-Phoneme Mapping Using Neural
Networks, Ph.D. thesis, Tampere University of Technol-
ogy, 2008.

[12] K. Wu et al., “Encoding linear models as weighted
finite-state transducers,” inProceedings of InterSpeech,
2014.

[13] S. Hahn, P. Vozila, and M. Bisani, “Comparison of
grapheme-to-phoneme methods on large pronunciation
dictionaries and lvcsr tasks,” inProceedings of Inter-
Speech, 2012.

[14] A. Graves, A. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” inProceed-
ings of ICASSP, 2013, pp. 6645 – 6649.

[15] H. Sak, A. Senior, and F. Beaufays, “Long short-term
memory based recurrent neural network architectures
for large vocabulary speech recognition,” inProceed-
ings of InterSpeech, 2014.

[16] A. Graves and J. Schmidhuber, “Offline handwriting
recognition with multidimensional recurrent neural net-
works,” in Proceedings of NIPS, 2008, pp. 545 – 552.

[17] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neu-
ral networks for language modeling,” inProceedings of
InterSpeech, 2012, pp. 194 – 197.

[18] A. Graves, S. Ferńandez, F. Gomez, and J. Schmidhu-
ber, “Connectionist temporal classification: Labelling
unsegmented sequence data with recurrent neural net-
works,” in Proceedings of ICML, 2006.


