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ABSTRACT 
A user task often spans multiple heterogeneous devices, 
e.g., working on a PC in the office and continuing the work 
on a laptop or a mobile phone while commuting on a 
shuttle. However, there is a lack of support for users to 
easily migrate their tasks across devices. To address this 
problem, we created Deep Shot, a framework for capturing 
the user’s work state that is needed for a task (e.g., the 
specific part of a webpage being viewed) and resuming it 
on a different device. In particular, Deep Shot supports two 
novel and intuitive interaction techniques, deep shooting 
and deep posting, for pulling and pushing work states, 
respectively, using a mobile phone camera. In addition, 
Deep Shot provides a concise API for developers to 
leverage its services and make their application states 
migratable. We demonstrated that Deep Shot can be used to 
support a range of everyday tasks migrating across devices. 
An evaluation consisting of a series of experiments showed 
that our framework and techniques are feasible. 
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INTRODUCTION 
The landscape of personal computing has shifted from one 
computer per user to multiple heterogeneous devices per 
user [7]. To carry out an everyday task, such as finding a 
restaurant for dinner, a user often switches from one device 
to another according to the situation. For example, a user 
has looked up the directions to the restaurant on her PC at 
home but then redoes the search on her phone for 
navigation in her car. A recent study found that this and 
other common tasks, such as email and web browsing, were 

the source of the most frustration while switching between 
different devices [12].  

The lack of tool support for migrating tasks across devices 
has also been pointed out by several previous studies. A 
survey [18] conducted in 1997 showed that 62.9% of people 
stated they transferred information for completing a task on 
other devices “by hand”, i.e., reading a text string on a 
display and typing it on another computer. A non-trivial 
number of people transferred data through shared files, 
FTP, or emails. Surprisingly, a more recent study in 2008 
[7] showed that people were still using these old-fashioned 
mechanisms plus emerging cloud services (e.g., Google 
Docs) to transfer information across devices. Although 
cloud services and ubiquitous access to the Internet seem to 
be an antidote, the study found people were still frustrated 
as they have to manually reconstruct their work state, e.g., 
opening and locating the part of a PDF article that was 
viewed on the previous computer to continue reading. 
Furthermore, moving between heterogeneous devices (e.g., 
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Figure 1. A user takes a picture of the screen of her computer 
and then sees the application with the current state on her 

phone. Our system recognizes the application that the user is 
looking through the camera, automatically migrates it onto 

the mobile phone, and recovers its state. 

* This work was conducted during an internship at Google Research. 



 

a PC and a mobile phone) amplifies the task resumption 
overhead due to various contextual and resource constraints 
[2,3,12]. 

Prior work made substantial progress in providing more 
integrated user experience for task migration across devices 
(e.g., [8,15,16,19]). However, existing solutions are 
insufficient in two ways. First, prior work primarily focused 
on infrastructure for transferring data across devices, not 
user interaction. Compared to moving data or application 
windows around on a single computer by drag-and-drop, 
there is no similarly easy method for cross-device 
migration. Secondly, existing tools are mostly document-
centric with little support for recovering a work state [2,3]. 
Manually recovering a work state requires users to deal 
with many details that can distract them from the task that 
they want to resume.  

To address these issues, we present Deep Shot, a 
framework that supports task migration by allowing users to 
transfer not only documents but also application states 
across devices using a mobile phone camera. Deep Shot 
provides two novel camera-based interaction techniques, 
deep shooting and deep posting. These two techniques 
allow seamless and intuitive migration of user tasks from 
one device to another by one uniform operation: taking 
pictures. 

Deep shooting allows a user to capture and to persist the 
deep information, i.e., the information behind the raw 
pixels, such as application states, with a camera-like mobile 
phone application in a single click (see Figure 1). The 
captured work state can be resumed immediately on the 
mobile phone, opened later, or migrated to another device 
with deep posting, which pushes deep information to a 
device with a camera as well.  

To support deep shooting and deep posting, we created a 
framework, Deep Shot, for application developers to easily 
incorporate these techniques into their applications. It 
includes two key ideas. First, Deep Shot uses robust 
computer vision algorithms to identify what portion of the 
screen the user is looking at through the camera. We 
conducted two experiments to show the feasibility of this 
technology. Second, Deep Shot requires the applications to 
encode the deep information as Uniform Resource 
Identifiers (URIs) so that a task can be resumed even using 
different applications, such as viewing a Microsoft Outlook 
contact’s information with a native Android application. 

We make the following contributions in this paper: 

• Deep shooting and posting: two novel techniques for 
pulling and pushing a task (information or application 
states) using a mobile phone camera. 

• Deep Shot: a framework for developers to easily make 
their application states migratable across devices. 

In the rest of the paper, we first clarify our motivation using 
a running example in which a user searches for a restaurant 
and discuss how Deep Shot supports this task by allowing a 

user to easily migrate the task across devices. Next, we 
discuss the design of our framework, and implementation 
details. We also show how developers can leverage our 
framework to enable deep shooting and posting in their 
applications. We then discuss the range of scenarios that 
Deep Shot can address. Finally, we describe an evaluation 
of our techniques and framework, and conclude with related 
and future work. 

MOTIVATION 
Here we discuss why it is important to address task 
migration across devices. Let us assume a user, Bob, is 
searching for a restaurant for dinner on Yelp at home. Bob 
has read several reviews of a restaurant on his desktop 
computer. He decides to try one restaurant and clicks on the 
map on the review page to read the driving directions. 
Everything is going smoothly until he needs to leave home 
and move the directions to his mobile phone for navigation 
in his car. How can Bob open the same region of the map 
on his phone?  

Bob could manually type the restaurant’s address or name 
and search on the phone. Or he could click “Link” on 
Google Maps to get a bookmarkable URL of the current 
region, and email that URL to himself so that he can look 
for the email and open the URL in it on his phone later. 
These approaches generally require the user to perform two 
steps: 1) inspecting the internal state of the application, e.g., 
the URL, and 2) copying it by hand or via a temporary 
medium, e.g., a file or an email, from one device to another. 

The inspecting step varies widely depending on the 
applications. In a web page or web application, the Uniform 
Resource Locator (URL) on the address bar often represents 
the application state that a user intends to transfer. 
However, in many web applications using Ajax, the URL 
no longer represents the current state of the application. A 
user is often required to perform extra steps to retrieve the 
real “bookmarkable” URL, such as what Bob would do in 
Google Maps.  However, many Ajax and desktop 
applications do not have a URL that represents what the 
user is viewing and working on. Tools have been developed 
to overcome this problem by recording the commands 
needed to return a page [10]. However, a desktop 
application’s state is generally inaccessible by end users. 

The copying step requires a user to either manually re-enter 
the information on another device, e.g., when transferring a 
small piece of information such as a short URL or the name 
of a landmark, or understand and deal with low-level 
operations such as how to save information in files and use 
file transferring software. 

Anecdotally, people often take a picture of a particular 
region of interest (ROI) on the monitor using a camera, 
which is generally available on modern mobile phones. 
This method utilizes the camera as a physical tool to 
directly inspect and copy the information at the same time. 
In Bob’s scenario, he could capture the portion of the map 
he needs in one simple step, i.e., taking a picture. This 



method is simple, independent of the application the user is 
using, and avoids many of the hassles of manual inspection 
and copying. However, it is limited in that information 
being transferred is encoded in raw pixels and will not 
allow a user to perform further interaction, e.g., panning or 
zooming a map. 

DEEP SHOOTING & POSTING 
Inspired by the picture-shooting metaphor above, we 
designed and implemented deep shooting and posting, two 
novel techniques that are as simple to perform as taking a 
picture, but copy deep information behind the raw pixels of 
the captured region, that is, the application state. 

With deep shooting (see Figure 1), Bob can copy a specific 
region of the map displayed on his computer’s screen to his 
mobile phone by simply taking a picture of it with the 
phone’s camera. The same region is then shown on the 
phone automatically. More importantly, the captured map 
remains interactive on the mobile phone. In other words, 
Bob can pan the map to see the area that is not originally 
captured by the camera, or zoom in to see more details of 
the streets. 

Based on the picture captured with deep shooting, our 
system automatically identifies the captured area on the 
screen and the front-most application containing that area. 
Our system then pulls information from the application and 
sends it to the mobile phone that took the picture. The 
information is encoded as a URI, which has been accepted 
as a standard way to launch applications on contemporary 
mobile operating systems such as Apple iOS and Android. 
Therefore, the user can view or manipulate the extracted 
information on the mobile phone with native applications. 

As a complement to deep shooting, deep posting allows a 
user to push information from a mobile phone to another 
device. Let us assume Bob has opened the restaurant review 
page on his mobile phone to write a review, but soon 
decides he would rather continue this task on his desktop 
computer, where it is easier to type. To do so, Bob aims the 
mobile phone camera at the computer screen with the 
review page still shown on the phone. Once deep posting is 
activated (e.g., via a hot-button on the phone), the review 
page becomes semi-transparent so that the user can see 
through it and know which part of the screen he is targeting 
at. Based on the screen region as seen through the camera, 
once Bob confirms, deep posting identifies the intended 
computer screen and automatically opens the same review 
page on it. 

Deep posting employs the same mechanism as deep 
shooting in identifying the target computer screen and the 
specific region on the screen that the user sees through the 
camera. However, unlike the deep shooting, deep posting 
does not need to identify which application the user is 
looking at, since the application for handling the 
information being posted may not be running.   

The deep shooting application running on the mobile phone 
maintains the history of deep shots that a user has taken. 
Similar to browsing photos in a photo gallery application, a 
user can browse all of his deep shots (see Figure 2). Each 
shot in this gallery shows the title and the thumbnail of the 
captured application. With the gallery, a user can directly 
launch a desired application with its captured state on the 
phone. The gallery provides a simple interface for users to 
manage their tasks and switch between them.  

Currently, the Deep Shot framework is designed for 
migrating tasks across personal devices. Thus, before using 
deep shooting or posting, a user needs to log into a remote 
server with the user’s credential on each personal device, 
and the credentials can be stored in the devices thereafter. 
Therefore, this authentication step only needs to be 
performed once for each device. We will discuss the 
possibilities of eliminating the authentication process in the 
Future Work section. 

THE DEEP SHOT FRAMEWORK 
To support deep shooting and posting, we designed the 
underlying Deep Shot framework with two goals in mind. 
First, from the user’s perspective, deep shooting and 
posting should be as easy to use as taking a picture with an 
ordinary camera. Therefore, the user should not have to do 
any network configuration beforehand nor pair any devices 
to use Deep Shot. Second, from the developer’s 
perspective, the Deep Shot framework should be easy to 
integrate with her applications. Developers should not need 
to worry about the communication between devices nor 
understand how to detect what portion of screen the user is 
looking at through the camera. 

To achieve these goals, we have to carefully choose the 
technologies for the link layer and the network layer. Many 
options exist for the link-layer technologies, such as IrDA, 
USB, FireWire, Ethernet, Bluetooth and WiFi. We chose 
WiFi/Ethernet for their ubiquity on almost all devices and 
then we can utilize the standard TCP/IP stacks. For the 
network layer, device discovery and association are still 
challenging obstacles today. Since we want to focus on 
migration across personal devices, we decided to base our 

 

 Figure 2. The Deep Shot gallery allows a user to quickly 
launch an application with a previously captured work 
state. A user can flip left or right on the touch screen to 

browse the gallery. 



 

framework on an instant messaging (IM) architecture, 
which was previously used in cross-device infrastructures 
such as PIE [16]. Thus, we can build on top of standard 
TCP/IP and avoid the problems of dynamic IP addresses, 
private IP addresses behind Network Address Translation 
(NAT) gateways, and firewalls that block connections from 
the outside. However, this architecture requires an 
authentication step before using our system. Fortunately, 
authentication only needs to be performed once for each 
device and does not add any cost for using Deep Shot 
thereafter. 

We chose Extensible Messaging and Presence Protocol 
(XMPP), also known as Jabber, for our IM protocol. One 
reason is that XMPP supports logging in with the same user 
account from multiple different devices. A user account 
with a device has a unique identifier of the form 
“user@server/device.” This allows users to set up all of 
their devices with the same user name. Since XMPP can list 
all of a user’s presences across devices, users do not have to 
manually add their devices into their contact list. Also, the 
size of a XMPP message is not limited, which means we 
can send relatively large data, e.g., a JPEG photo, through a 
typical message packet without hacking the protocol. 

System Components 
Deep Shot’s architecture is shown in Figure 3. The pink 
components are required for deep posting, whereas the 
yellow ones are required for deep shooting. There are five 
roles in our system: a shooter, a poster, a dispatcher, 
launchers and applications (apps). The shooter and the 
poster only run on a capturing device, e.g., a mobile phone 
equipped with a camera. The dispatcher runs on a target 
device, which accepts a deep shooting or posting request 
from a capturing device. The launchers run on both sides of 

the system. On the capturing device, the launcher launches 
mobile applications to recover a work state captured by 
deep shooting, whereas on the target device it launches 
desktop applications to present a work state that is posted 
by deep posting. 

Protocol Design 
Here we describe the protocols between each pair of system 
components. To simplify the design of our protocols, the 
messages exchanged among all components are structured 
and encoded in the JavaScript Object Notation (JSON) key-
value pairs. Besides, all binary data, e.g. images, are 
encoded in Base64 so we can include them in standard 
XMPP messages. 

Deep Shooting: Shooter-Dispatcher Protocol 
Once a user uses the shooter to take a picture of the region 
of interest on a computer monitor, an XMPP message with 
the picture and a subject deepshot.req indicating a deep 
shooting request is sent to each available device. 

When the dispatchers running on the target devices receive 
the request message, they immediately take a screenshot of 
the entire screen of their devices. Each dispatcher then 
matches the picture it receives against the screenshot. The 
matching algorithms locate the region that the user was 
looking at through the camera. Then the dispatcher sends a 
new message with the x-y coordinates of the corners of the 
region and the central point of the region to the front-most 
application overlapping the center point, through a 
WebSocket connection. 

After the application has handled the message and returned 
a response, the dispatcher inserts the application name, and 
the thumbnail of the matched region on the screenshot. 
Both are useful for browsing the deep shooting history on 
the capturing device. Finally, the dispatcher sends the 
response to the shooter via the XMPP server. 

Deep Shooting: Application-Dispatcher Protocol 
The dispatcher is designed as a daemon that always runs in 
the background on all personal devices. The dispatcher has 
the user’s credentials, so it is always connected to the 
XMPP server. Therefore, any device can obtain the 
availability of any other device from the XMPP server. 

The dispatcher communicates with each application using a 
dedicated WebSocket connection. WebSocket is a new 
protocol that supports full-duplex and bi-directional 
communication over a TCP socket. We choose WebSocket 
for two reasons. First, it is being standardized by the IETF 
and W3C, and modern browsers already support 
WebSocket. Thus, we can easily implement a browser 
extension as a second-level dispatcher for web applications. 
Second, since the traditional TCP socket is the most 
pervasive inter-process communication (IPC) mechanism, 
and WebSocket is a simple extension of TCP sockets, 
traditional desktop applications can support it easily. 

Each time an application that supports Deep Shot is 
launched, it registers itself with the dispatcher through a 

Figure 3. The system architecture of Deep Shot. Solid lines 
represent direct messages between components, whereas dotted 

lines represents the launching signal sent from the launcher. 



WebSocket connection on a TCP port. A registration 
process starts after the standard WebSocket handshaking. 
The application sends out a registration message with its 
name. If the dispatcher accepts the registration, it returns an 
OK message, or else it returns a decline message indicating 
the reason and closes the connection. To support deep 
posting, an application sends the command “accept 
URI_SCHEME”, which indicates what types of URI 
schemes it accepts. For example, an email client can 
register the “mailto:” scheme, and a web browser can 
register the “http:” and “https:” schemes. Once the 
registration is completed, this WebSocket connection 
should be kept persistent until the application is closed so 
the dispatcher can proactively notify the application when a 
request is coming. 

Once an application has dealt with the dispatcher’s request, 
it replies with a message consisting of at least a URI that 
encodes the state of the application or the information to 
expose. If needed, the application can attach offline 
resources or files in the response message. Each attached 
file is stored in a JSON structure with the file name and the 
content of the file. 

Deep Shooting: Dispatcher-Launcher Protocol 
After the dispatcher receives a reply message from the 
application, it routes that message with a subject 
“deepshot.resp” back to the capturing device that sent out 
the request. 

On the capturing device, a launcher waits for the 
“deepshot.resp” messages. Once a response message 
arrives, the launcher decodes the message and writes all 
attachments to the storage on the device. Finally, it opens 
an appropriate application that handles the URI replied 
from the target device to recover the work state and resume 
the task flow. 

Deep Posting Protocol 
The deep posting protocol is based on the same foundation 
we used in deep shooting, including JSON structures and 
XMPP communication. The key role in our system for deep 
posting is the poster that runs on a capturing device. The 
poster accepts requests from the applications that support 
our Deep Shot framework. The posting requests should 
consist of at least a URI representing the internal state of 
the application. 

Once the poster receives a posting request from an 
application, it opens the camera and overlaps the screenshot 
of the application on the viewfinder so that a user can see 
the target device and the information to post at the same 
time. After the user has confirmed the target device through 
the viewfinder, the poster creates a “deeppost.req” message 
with the picture taken by the camera and the request from 
the application. Finally, this message is sent to all available 
devices, in the same way as deep shooting. 

After the dispatchers running on the user’s other devices 
receive the “deeppost.req” message, each of them runs the 

same vision algorithm used for deep shooting to match the 
picture taken by the user against its screenshot. If a 
dispatcher finds a match, it routes the request to the 
launcher. 

As we mentioned before, applications register the types of 
URI schemes they support. The deep posting launcher 
requires this information to launch an appropriate 
application for the given URI in the request. Each 
application may register multiple URI schemes. If a URI 
scheme can be accepted by multiple applications, the 
launcher either opens a dialog so the user can choose an 
application or just launches a previously specified default 
application. 

Screen Matching Algorithms 
Once a device receives a Deep Shot request, it takes a 
screenshot of the entire monitor. It then extracts visual 
features from the screenshot and the picture taken by the 
camera, using a computer vision algorithm, Speeded-Up 
Robust Features (SURF) [4]. SURF is robust against 
scaling and rotation, and faster and more robust than Scale-
Invariant Feature Transform (SIFT), another popular 
feature extraction algorithm. 

We use SURF to detect the key points, which are 
represented by feature vectors, on the screenshot and on the 
picture respectively (see Figure 4). We then compute the 
cosine similarity between each pair of key points and find 
the nearest neighbor for each point. Finally, with the paired 
key points, a homography (the perspective transformation 
between two planes) can be calculated to find the projective 
plane on the screen image. Thus, the region of the screen 
that the user sees through the camera can be located. 

Content and State Encoding 
A migration process of an application consists of 
transferring not only its content but also its states. With our 
framework, developers can store arbitrary offline content, 
e.g., files, as an attachment in a Deep Shot request and 
encode the application states into a URI. A URI is the key 
element to resuming a work state in Deep Shot. A URI can 
be application independent. For instance, 
“content://contacts/15” opens a contact manager to show 
the person with the id 15; “geo:latitude,longitude” shows 
the given location in a map application; and 
“document://chi2011.pdf/3” represents the third page of the 
file “chi2011.pdf”. Furthermore, developers can append the 
zoom level, the scrolling position, and all necessary 
information of this document to the URI as needed. We do 
not limit the length of a URI so arbitrary states of an 
application can be encoded. 

Recently, some application frameworks such as Three20 
(http://three20.info) have started to support URL-based 
navigation in traditional applications. Mobile operating 
systems such as Android and iOS also support launching 
applications with standard URIs (e.g., http:, tel: and geo:). 
Deep Shot allows applications to create their own URIs, 



 

although it is advisable to be compatible with public 
standards. 

Bootstrapping with a Default Responder 
To handle the work state of various applications, the Deep 
Shot framework, needs to be integrated into those 
applications by their developers. To deploy such a 
framework, we need to address how to bootstrap its usage 
when application developers have not yet adopted the 
framework. Therefore, we implemented a default responder 
in the dispatcher to handle the case in which the target 
application does not support Deep Shot.  

If the application that the user is taking a photo of is not 
registered with the dispatcher, the default responder replies 
the screenshot of the entire screen to the capturing device as 
well as the coordinates of the matched region. Therefore, 
users can acquire a clear version of the screen, i.e., without 
any noise and distortion caused by the physical camera. 
They can also zoom in to see more detail and pan to other 
parts of the screen that were not in the original picture. In 
addition, as the dispatcher takes the screenshot, it also 
detects clickable URLs and information of interest such as 
phone numbers or addresses, using the operating system’s 
accessibility API. These metadata are also transferred along 
with the screenshot, so the user can tap on a URL or a 
phone number on the screenshot to launch a browser or dial 
the number directly. 

Supporting Web and Desktop Applications 
Deep Shot is a general framework that supports traditional 
desktop applications as well as web applications. We 

discuss how Deep Shot supports these two kinds of 
applications in this section. 

Most modern web applications are written in JavaScript and 
run inside a web browser, while their data are stored on 
remote servers. To further bootstrap the Deep Shot 
framework and support this kind of application, we created 
a web dispatcher, implemented as a Google Chrome 
browser extension, which has three important features.  

First, the web dispatcher acts as a second-level dispatcher. 
It routes messages from the first-level dispatcher to the 
appropriate web page and sends reply messages back (see 
Figure 3).  

Second, the web dispatcher is a default responder for all 
web applications that do not support Deep Shot. If the web 
dispatcher gets a request asking for data from a site that 
does not register itself with Deep Shot (discussed in a later 
section), it will only return the URL to that site as a default 
response. The URL on the address bar often maps to the 
state of the current web application. However, some Ajax 
applications do not have this property or hides their real 
URL on purpose. Fortunately, the last feature of our 
dispatcher addresses this problem. 

Last, the web dispatcher can inject a script into a web 
application that allows Deep Shot to extract the 
application’s state, without the application knowing about 
Deep Shot. This is possible because, as a browser 
extension, the web dispatcher is capable of injecting any 
content into any web page from the browser. 

In addition to web applications, desktop applications could 
be more difficult to migrate since their developers need to 
make additional effort to encode the application states into 
a URI. Fortunately, most mobile versions of a desktop 
application are simplified and only provide the key features 
on the mobile devices. This means the developers do not 
need to encode the complete state of their applications, but 
can focus on a small set of key states. For example, the key 
states of a word processor may only consist of the cursor 
position, the zoom level, and the scrolling position of the 
document. The other states, such as the view mode and the 
toolbar’s style, could be unimportant because the mobile 
word processor does not have these adjustable features. 

IMPLEMENTATION 
We implemented Deep Shot to support both deep shooting 
and posting. On the mobile side, we chose the Android 
platform and implemented the system in Java on a Google 
Nexus One phone. On the other side, we implemented the 
dispatcher and the launcher in Python on a laptop computer. 
We also set up a XMPP server using Jabber on a Linux 
machine. Besides disabling the message size limit in 
Jabber’s default configuration, we did not modify Jabber. 

DEVELOPING DEEP SHOT EXTENSIONS 
To minimize the effort for developers to incorporate Deep 
Shot into their applications, we created a Java library that 

Figure 4. The screen matching algorithms match the 
picture (at the top) against the screenshot (at the bottom) 

and find a projective plane (the orange convex) on it. 



implements the dispatcher-application protocol and hides 
the WebSocket connection inside the library.  

The library has a DeepShot class that has one public 
method, void addListener(Listener listener, String 
app_name, String[] accepted_uris), for applications to 
register themselves to listen to Deep Shot requests. The 
Listener interface has only one method, 
DeepShot.Response onShot(DeepShot.Request req), 
where the Response contains a URI and optional file 
attachments, and the Request contains the four corner 
points and the center point of the ROI. Deep posting also 
has a similar API, void post(DeepPost.Request req) in 
a class DeepPost, where DeepPost.Request contains a URI 
and optional file attachments. 

For web developers, we also provides a JavaScript function, 
DeepShot.addListener(listener), from a browser 
extension, so web developers can simply hook their web 
applications into Deep Shot. For example, Google Maps 
does not show the URL of the current region of the map in 
the address bar. To extract the real URL of the current map, 
we inject the following script: 
if(window.DeepShot){ 
  DeepShot.addListener(function(request){ 
   return {“uri”: document.getElementById(“link”).href}; 
  }); 
} 

With this script, even if Google Maps does not support 
Deep Shot, users can still use deep shooting to open any 
computer map on their phone. 

SCENARIOS 
In this section, we illustrate four typical scenarios that can 
be accomplished by deep shooting and posting.  

Scenario 1: Taking information to go (PC to mobile 
phone) 
This is the classic scenario that motivated us to develop 
deep shooting. People usually work on desktop computers 
or laptops at work or home. Before moving to another 
place, they may look up the information related to that 
place on their computers. However, as the information may 
be hard to remember, they often write down the information 
on a piece of paper or look up the same information again 
on their mobile phones. In this scenario, people can take the 
information with them using deep shooting. For example, 
people could carry a part of a map or the address of the next 
meeting place so that they do not need to look it up again. 
People could even capture a YouTube video being played 
and later resume watching the video from where they left 
off on a mobile phone. 

Scenario 2: Viewing or saving mobile phone content on 
PCs (mobile phone to PC) 
People generate various kinds of lightweight information on 
mobile phones, such as photos, contacts, or unfinished 
readings. For lightweight tasks, such as transferring a photo 
in a phone to a PC so that more people can see it, using 
existing software tools for syncing up mobile phones with 
PCs is cumbersome (e.g., a user might need to plug in the 

cable and find the right folder). With deep posting, users 
can simply aim their camera at the target computer monitor 
with the photo still shown on the mobile phone. The photo 
will be automatically transferred and opened on the target 
monitor. Deep posting also allows an application to post 
information at a specific position and size, as seen through 
the camera, on the target screen, e.g., a Post It application, 
which cannot be achieved by Bluetooth-based sync tools. 

Scenario 3: Using mobile phones as a bridge between 
PCs (PC to PC via a mobile phone) 
USB flash drives are widely used to share files among 
computers. People are used to saving the information they 
want to share as files onto a USB drive, and then taking the 
drive to another computer. In this kind of scenario, deep 
shooting can be used to extract information from an 
application (e.g., running on an office PC) and 
automatically transfer it to a mobile device. The user can 
then take this mobile device to a home PC and post the 
extracted information or work states onto it with deep 
posting. 

Scenario 4: Sharing content between mobile phones 
(mobile phone to mobile phone) 
Although it is still rare to share information between 
multiple personal mobile devices, it is common to share 
information between mobile phones owned by different 
people. Researchers have developed techniques to address 
this need. For example, bumping is a synchronous gesture 
to connect two mobile devices [9]. Although the current 
Deep Shot framework does not support communication 
between multiple users’ devices, deep shooting and posting 
can be used to locate the devices as well as the region of 
information to share across multiple users. For example, a 
user could take a picture of a contact displayed on another 
person’s mobile phone with deep shooting, and then the full 
contact information would be automatically transferred to 
our phone. This scenario potentially requires a different 
authentication mechanism though. 

USABILITY ANALYSIS AND TECHNICAL EVALUATION 
We analyze and evaluate this work from three perspectives. 
From a user’s perspective, we analyze the interaction model 
and the usability of deep shooting and posting. From a 
developer’s perspective, we analyze the usability and the 
utility of the API that we provide for developers. Lastly, 
from a technical perspective, we evaluate the performance 
of our framework and the feasibility of using a camera to 
locate a region on a monitor. 

Interaction Model and Usability Analysis 
Traditional GUI applications on PCs provides an action 
such as “send this to …” in their menus to let users send 
local files to remote devices. However, we argue this model 
is less intuitive than the deep shooting and posting. For the 
same task of migrating applications across devices, in the 
traditional model, a user would need to select the source 
application, the data of interest, and the target device from a 
list of names or identifiers in multiple steps with a GUI, 
which can distract the user from the task. In contrast, deep 



 

shooting and deep posting adopts an old technique—taking 
pictures using a camera—to simultaneously identify the 
source device, the data to transfer, and the target device, all 
in one action of taking pictures of computer screens, which 
is just as easy as doing so of the real world. This is 
consistent with the informal feedback we collected from 
users. 

Since there is no extra step beyond taking pictures, the 
learnability and the memorability of our techniques are as 
good as using ordinary cameras on mobile phones. The 
efficiency of our techniques is related to two factors. One is 
the steps performed by the user, and the other is the 
performance of our system in terms of speed and accuracy. 
To do a deep shooting or a deep posting, a user needs to 
perform three steps: launching our application on a phone, 
locating the target window on a device through the 
viewfinder, and pressing the shutter. These steps are exactly 
the same as taking a picture using a camera application on a 
phone. Therefore, our techniques are as fast as taking a 
picture from a user’s perspective. The other factor, the 
speed and accuracy of our system, will be discussed later 
from the technical perspective. Finally, because the steps a 
user needs to perform are minimized, the type of error that 
may occur is taking a wrong region on the screen. However, 
the user can simply discard an incorrect capture and redo 
the procedure. In addition to user errors, our system may 
have errors while matching pictures against screenshots. 
We will examine this kind of error with a controlled 
experiment in the following sections. 

Usability of Our Framework 
As a framework, we provide a simple but powerful API that 
consists of two functions for developers. One is for an 
application to register itself with our system, and the other 
is to respond when a capture event occurs. We argue that 
these two functions are easy to use for developers who are 
experienced in event-driven programming. 

A potential difficulty with incorporating Deep Shot into an 
application is to identify what components and information 
are located in the given region of interest. Fortunately, 
modern operating systems already include this 
functionality, known as hit testing, in their accessibility 

APIs. Developers may use these APIs to determine which 
component is hit given any point on the screen. 

Technical Evaluation 
Finally, we evaluate our system from a technical 
perspective. We set up two experiments to explore whether 
using a camera to locate a region on a monitor is feasible in 
terms of speed and accuracy. The first experiment was to 
test the speed of our system, and the second one was to test 
the accuracy of our image-matching algorithm. 

Experiment 1: Speed Performance 
We used a laptop, a 15-inch MacBook Pro with a high-
resolution 1680×1050 monitor as the target device, and a 
Nexus One running Android 2.2 as the capturing device that 
takes 512x384 pictures. The capturing device was held by 
the experimenter at a distance of 20 to 40 cm and a pitch 
angle of ±20° so that about ⅓ of the screen could be seen 
through the viewfinder. 

We tested four target applications: photos (from Google 
Street View), short textual information (from Yelp.com), 
long textual article with a few images (from CNN.com), 
and maps (from Google Maps). For each application three 
photos were taken using deep shooting under the setting 
described above.  

The average time of the whole procedure across 12 trials (3 
pictures for 4 applications) was 7.7 seconds (SD 0.3 
seconds). By examining the average time of each step, we 
found the network transmission occupied about 50% of the 
total time, while the rest processing time was spent on the 
target device (34%) and the capturing device (16%). The 
transmission caused a significant portion of the latency 
because our current implementation attaches raw images 
captured by the camera in the messages and these messages 
were routed via an external server. As a result, we can 
significantly reduce the latency of our system by improving 
the transmission efficiency, e.g., using only visual features 
instead of the entire image and not using a third-party 
server. We will discuss the possibilities in the Future Work 
section. 

Figure 5. The setup of the reliability experiment. 

Figure 6. The results of the reliability experiment. The 
total number of trials for each setting is 20. 



Experiment 2: Reliability  
In this experiment, we wanted to test the accuracy of our 
image-matching algorithm under typical conditions for 
taking a picture of a screen as well as extreme conditions 
that are not so common. Our experimental setup is shown in 
Figure 5. We used a 15-inch MacBook Pro laptop so that 
we could easily adjust and measure the pitch angle of the 
screen. We tested four pitch angles for the screen with 
respect to the phone: −20°, 0°, 20°, and 40°. The laptop 
shows a full-screen browser (Google Chrome) with a web 
page of the most popular local restaurant on Yelp, which is 
a typical webpage consisting of text and images. An 
Android phone, Google Nexus One, was tied to an L-square 
ruler that is perpendicular to the floor. The height of the 
camera, which was measured from the surface of the laptop 
keyboard to the center of the camera lens, was fixed at 19 
cm while the pitch angle was 0° or 20°, and 14.5 cm while 
the pitch angle was −20° or 40°. These height settings 
allowed the camera to focus around the same target on the 
screen, namely the name of the restaurant. We set the phone 
in front of the screen with a distance of 5 to 50 cm, as 
measured from the screen shaft to the camera lens. Finally, 
for each pitch angle, we took five pictures for every 5 cm 
between 5 cm and 50 cm, which resulted in a total of 200 
pictures. This experiment was conducted in an office with 
ceiling fluorescent lights. 

We used the algorithm mentioned before to match each 
picture against the screen displayed on the laptop. If the 
center of the matched region overlapped the expected 
region on the screen, it was considered as a successful 
match. 

The results of this experiment are summarized in Figure 6. 
The chart shows the number of successful matches for each 
adjusted distance to the screen, instead of the distance 
measured to the screen shaft. Because the screen was tilted, 
we adjust the distance to the shaft by adding h tan θ, where 
h is the height of the phone and θ is the pitch angle. With 
this adjustment, we only show the results between 15 cm 
and 40 cm where all the settings have valid measurements. 

The experiment showed that the matching algorithm was 
highly robust with a 97% success rate, when the camera 
was parallel to the monitor and the distance between them 
ranged between 10 and 40 cm. This range is sufficient to 
cover everything from a small region, such as a restaurant’s 
name, to the entire screen (see Figure 7). Even when the 
camera was tilted, taking pictures in the range of 20–30 cm 
was still robust (96.7% success). The accuracy significantly 
decreased when the camera is too close to (< 10 cm) or too 
far (> 40 cm) from the screen, but these conditions are 
uncommon as users can seek the appropriate size of the 
target through the camera. The results of this experiment 
showed that using a camera with our algorithm was robust 
enough to locate a region on a monitor. 

RELATED WORK 
Several research projects have addressed the issues of 
migrating information across devices. Remote Clip [15] is a 

simple way to share information via a synchronized 
clipboard across multiple personal computers. However, 
this technique is only feasible for copying textual or 
selectable objects. Pick-and-drop [18] is a direct-
manipulation technique to pick up an object on a computer 
and drop it on another. Hyperdragging [17] is a technique 
like drag-and-drop that transfers information across 
devices. However, these two techniques require special, 
uncommon devices (pen devices and augmented tabletops) 
so they cannot be easily deployed to the real world. Some 
tools [6,21] allow users to control applications remotely. In 
contrast, Deep Shot allows users to interact with the same 
content via native applications running on a local device, 
which eliminates the need to have a constant network 
connection. 

Associating physical tags or bar codes to digital files is also 
a way to migrate information. Want et al. [22] describes 
using RFID tags to link physical objects to network 
services. Android phone users can install an application by 
scanning a QR code. The downside of these techniques is 
that they require special tags or codes that can only be read 
by machines. On the other hand, techniques such as [5,13, 
14] based on only visual features have been proposed. 
Compared to these previous techniques, we used similar 
feature matching algorithms. However, these techniques 
only focused on file transfer or document manipulation for 
certain applications. In contrast, Deep Shot provides an 
extensible framework that enables an arbitrary application 
to migrate not only its content but also its runtime states 
across devices using a mobile phone camera. 

PIE [16] is a general infrastructure for developers to create 
multi-personal-device services, which focuses on low-level 
mechanisms for sending information, commands, or events 
across devices. Device ensembles [19] also provided a 
viewpoint on how multiple devices communicate from the 
low-level link layer to the high-level application layer. In 
contrast with these projects, our framework provides a 

Figure 7. The regions the camera sees with a distance 5 to 
50 cm away from the screen while the monitor is parallel 

to the phone. 



 

high-level and unified way for developers to extend their 
applications and for users to invoke the migration using a 
mobile camera.  

Recently, researchers have proposed Activity-Based 
Computing (ABC) [2,3], which considers a user activity as 
the basic computational unit. From the broad perspective of 
ABC [12], an activity can span across different users, 
devices, applications, and situations. Deep Shot deals with 
three major challenges in ABC: activity suspend and 
resume, activity roaming, and activity adaption, but we only 
focus on a subset of activities: single user, single 
application, and multiple devices. 

CONCLUSION AND FUTURE WORK 
We conclude by discussing the limitation of Deep Shot and 
possible extensions for future work. 

Multiple users: Our current system finds possible target 
devices from a list of the user’s online devices. It is easy to 
add other users’ devices into the user’s “friend list,” so that 
they can be notified when a capture event happens. 
However, this would add extra effort of managing the 
device list. A possible solution is to replace the XMPP layer 
with a local service discovery protocol, such as Apple 
Bonjour, and broadcast the request to local devices.  
Transmitting visual features instead of pictures: In the 
current implementation, we send pictures directly in a 
request, which raise privacy concerns since the devices that 
receive the request can “see” the pictures, especially for a 
multiple-user environment. Therefore, a possible solution is 
to extract the visual features directly on the capturing 
device and only send the feature vectors in a request. This 
could dramatically speed up the performance and also 
prevent malicious request sniffers. In addition, this could 
enable real-time matching feedback on the target screen, so 
users can be confident that the matching is successful and 
also know which region of the screen will be captured. 

Limitation on feature matching: Feature matching may 
not work in some scenarios. For example, nothing can be 
extracted and matched if a user intends to capture a blank 
region. However, we can assume that no valuable 
information exist in this area and simply show the photo she 
took back to her. A more common problem is unfocused 
photos, although this could be solved with the real-time 
matching feedback we mentioned above.  

This paper presented two novel interaction techniques, deep 
shooting and deep posting, to migrate a task across devices 
and a robust and extensible framework to support them 
called Deep Shot. We demonstrated that Deep Shot is 
reliable and feasible to support a range of everyday tasks 
migrating across devices using one simple gesture. 
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