
Deep Shot: A Framework for Migrating Tasks Across
Devices Using Mobile Phone Cameras

Tsung-Hsiang Chang *
MIT CSAIL

vgod@mit.edu

Yang Li
Google Research
yangli@acm.org

ABSTRACT
A user task often spans multiple heterogeneous devices,
e.g., working on a PC in the office and continuing the work
on a laptop or a mobile phone while commuting on a
shuttle. However, there is a lack of support for users to
easily migrate their tasks across devices. To address this
problem, we created Deep Shot, a framework for capturing
the user’s work state that is needed for a task (e.g., the
specific part of a webpage being viewed) and resuming it
on a different device. In particular, Deep Shot supports two
novel and intuitive interaction techniques, deep shooting
and deep posting, for pulling and pushing work states,
respectively, using a mobile phone camera. In addition,
Deep Shot provides a concise API for developers to
leverage its services and make their application states
migratable. We demonstrated that Deep Shot can be used to
support a range of everyday tasks migrating across devices.
An evaluation consisting of a series of experiments showed
that our framework and techniques are feasible.

Author Keywords
Multi-device environment, mobile interaction, camera,
computer vision, task migration.

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Inter-
faces: Input Devices and Strategies, Interaction Styles.

General Terms
Design, Human Factors

INTRODUCTION
The landscape of personal computing has shifted from one
computer per user to multiple heterogeneous devices per
user [7]. To carry out an everyday task, such as finding a
restaurant for dinner, a user often switches from one device
to another according to the situation. For example, a user
has looked up the directions to the restaurant on her PC at
home but then redoes the search on her phone for
navigation in her car. A recent study found that this and
other common tasks, such as email and web browsing, were

the source of the most frustration while switching between
different devices [12].

The lack of tool support for migrating tasks across devices
has also been pointed out by several previous studies. A
survey [18] conducted in 1997 showed that 62.9% of people
stated they transferred information for completing a task on
other devices “by hand”, i.e., reading a text string on a
display and typing it on another computer. A non-trivial
number of people transferred data through shared files,
FTP, or emails. Surprisingly, a more recent study in 2008
[7] showed that people were still using these old-fashioned
mechanisms plus emerging cloud services (e.g., Google
Docs) to transfer information across devices. Although
cloud services and ubiquitous access to the Internet seem to
be an antidote, the study found people were still frustrated
as they have to manually reconstruct their work state, e.g.,
opening and locating the part of a PDF article that was
viewed on the previous computer to continue reading.
Furthermore, moving between heterogeneous devices (e.g.,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05...$10.00.

Figure 1. A user takes a picture of the screen of her computer
and then sees the application with the current state on her

phone. Our system recognizes the application that the user is
looking through the camera, automatically migrates it onto

the mobile phone, and recovers its state.

* This work was conducted during an internship at Google Research.

a PC and a mobile phone) amplifies the task resumption
overhead due to various contextual and resource constraints
[2,3,12].

Prior work made substantial progress in providing more
integrated user experience for task migration across devices
(e.g., [8,15,16,19]). However, existing solutions are
insufficient in two ways. First, prior work primarily focused
on infrastructure for transferring data across devices, not
user interaction. Compared to moving data or application
windows around on a single computer by drag-and-drop,
there is no similarly easy method for cross-device
migration. Secondly, existing tools are mostly document-
centric with little support for recovering a work state [2,3].
Manually recovering a work state requires users to deal
with many details that can distract them from the task that
they want to resume.

To address these issues, we present Deep Shot, a
framework that supports task migration by allowing users to
transfer not only documents but also application states
across devices using a mobile phone camera. Deep Shot
provides two novel camera-based interaction techniques,
deep shooting and deep posting. These two techniques
allow seamless and intuitive migration of user tasks from
one device to another by one uniform operation: taking
pictures.

Deep shooting allows a user to capture and to persist the
deep information, i.e., the information behind the raw
pixels, such as application states, with a camera-like mobile
phone application in a single click (see Figure 1). The
captured work state can be resumed immediately on the
mobile phone, opened later, or migrated to another device
with deep posting, which pushes deep information to a
device with a camera as well.

To support deep shooting and deep posting, we created a
framework, Deep Shot, for application developers to easily
incorporate these techniques into their applications. It
includes two key ideas. First, Deep Shot uses robust
computer vision algorithms to identify what portion of the
screen the user is looking at through the camera. We
conducted two experiments to show the feasibility of this
technology. Second, Deep Shot requires the applications to
encode the deep information as Uniform Resource
Identifiers (URIs) so that a task can be resumed even using
different applications, such as viewing a Microsoft Outlook
contact’s information with a native Android application.

We make the following contributions in this paper:

• Deep shooting and posting: two novel techniques for
pulling and pushing a task (information or application
states) using a mobile phone camera.

• Deep Shot: a framework for developers to easily make
their application states migratable across devices.

In the rest of the paper, we first clarify our motivation using
a running example in which a user searches for a restaurant
and discuss how Deep Shot supports this task by allowing a

user to easily migrate the task across devices. Next, we
discuss the design of our framework, and implementation
details. We also show how developers can leverage our
framework to enable deep shooting and posting in their
applications. We then discuss the range of scenarios that
Deep Shot can address. Finally, we describe an evaluation
of our techniques and framework, and conclude with related
and future work.

MOTIVATION
Here we discuss why it is important to address task
migration across devices. Let us assume a user, Bob, is
searching for a restaurant for dinner on Yelp at home. Bob
has read several reviews of a restaurant on his desktop
computer. He decides to try one restaurant and clicks on the
map on the review page to read the driving directions.
Everything is going smoothly until he needs to leave home
and move the directions to his mobile phone for navigation
in his car. How can Bob open the same region of the map
on his phone?

Bob could manually type the restaurant’s address or name
and search on the phone. Or he could click “Link” on
Google Maps to get a bookmarkable URL of the current
region, and email that URL to himself so that he can look
for the email and open the URL in it on his phone later.
These approaches generally require the user to perform two
steps: 1) inspecting the internal state of the application, e.g.,
the URL, and 2) copying it by hand or via a temporary
medium, e.g., a file or an email, from one device to another.

The inspecting step varies widely depending on the
applications. In a web page or web application, the Uniform
Resource Locator (URL) on the address bar often represents
the application state that a user intends to transfer.
However, in many web applications using Ajax, the URL
no longer represents the current state of the application. A
user is often required to perform extra steps to retrieve the
real “bookmarkable” URL, such as what Bob would do in
Google Maps. However, many Ajax and desktop
applications do not have a URL that represents what the
user is viewing and working on. Tools have been developed
to overcome this problem by recording the commands
needed to return a page [10]. However, a desktop
application’s state is generally inaccessible by end users.

The copying step requires a user to either manually re-enter
the information on another device, e.g., when transferring a
small piece of information such as a short URL or the name
of a landmark, or understand and deal with low-level
operations such as how to save information in files and use
file transferring software.

Anecdotally, people often take a picture of a particular
region of interest (ROI) on the monitor using a camera,
which is generally available on modern mobile phones.
This method utilizes the camera as a physical tool to
directly inspect and copy the information at the same time.
In Bob’s scenario, he could capture the portion of the map
he needs in one simple step, i.e., taking a picture. This

method is simple, independent of the application the user is
using, and avoids many of the hassles of manual inspection
and copying. However, it is limited in that information
being transferred is encoded in raw pixels and will not
allow a user to perform further interaction, e.g., panning or
zooming a map.

DEEP SHOOTING & POSTING
Inspired by the picture-shooting metaphor above, we
designed and implemented deep shooting and posting, two
novel techniques that are as simple to perform as taking a
picture, but copy deep information behind the raw pixels of
the captured region, that is, the application state.

With deep shooting (see Figure 1), Bob can copy a specific
region of the map displayed on his computer’s screen to his
mobile phone by simply taking a picture of it with the
phone’s camera. The same region is then shown on the
phone automatically. More importantly, the captured map
remains interactive on the mobile phone. In other words,
Bob can pan the map to see the area that is not originally
captured by the camera, or zoom in to see more details of
the streets.

Based on the picture captured with deep shooting, our
system automatically identifies the captured area on the
screen and the front-most application containing that area.
Our system then pulls information from the application and
sends it to the mobile phone that took the picture. The
information is encoded as a URI, which has been accepted
as a standard way to launch applications on contemporary
mobile operating systems such as Apple iOS and Android.
Therefore, the user can view or manipulate the extracted
information on the mobile phone with native applications.

As a complement to deep shooting, deep posting allows a
user to push information from a mobile phone to another
device. Let us assume Bob has opened the restaurant review
page on his mobile phone to write a review, but soon
decides he would rather continue this task on his desktop
computer, where it is easier to type. To do so, Bob aims the
mobile phone camera at the computer screen with the
review page still shown on the phone. Once deep posting is
activated (e.g., via a hot-button on the phone), the review
page becomes semi-transparent so that the user can see
through it and know which part of the screen he is targeting
at. Based on the screen region as seen through the camera,
once Bob confirms, deep posting identifies the intended
computer screen and automatically opens the same review
page on it.

Deep posting employs the same mechanism as deep
shooting in identifying the target computer screen and the
specific region on the screen that the user sees through the
camera. However, unlike the deep shooting, deep posting
does not need to identify which application the user is
looking at, since the application for handling the
information being posted may not be running.

The deep shooting application running on the mobile phone
maintains the history of deep shots that a user has taken.
Similar to browsing photos in a photo gallery application, a
user can browse all of his deep shots (see Figure 2). Each
shot in this gallery shows the title and the thumbnail of the
captured application. With the gallery, a user can directly
launch a desired application with its captured state on the
phone. The gallery provides a simple interface for users to
manage their tasks and switch between them.

Currently, the Deep Shot framework is designed for
migrating tasks across personal devices. Thus, before using
deep shooting or posting, a user needs to log into a remote
server with the user’s credential on each personal device,
and the credentials can be stored in the devices thereafter.
Therefore, this authentication step only needs to be
performed once for each device. We will discuss the
possibilities of eliminating the authentication process in the
Future Work section.

THE DEEP SHOT FRAMEWORK
To support deep shooting and posting, we designed the
underlying Deep Shot framework with two goals in mind.
First, from the user’s perspective, deep shooting and
posting should be as easy to use as taking a picture with an
ordinary camera. Therefore, the user should not have to do
any network configuration beforehand nor pair any devices
to use Deep Shot. Second, from the developer’s
perspective, the Deep Shot framework should be easy to
integrate with her applications. Developers should not need
to worry about the communication between devices nor
understand how to detect what portion of screen the user is
looking at through the camera.

To achieve these goals, we have to carefully choose the
technologies for the link layer and the network layer. Many
options exist for the link-layer technologies, such as IrDA,
USB, FireWire, Ethernet, Bluetooth and WiFi. We chose
WiFi/Ethernet for their ubiquity on almost all devices and
then we can utilize the standard TCP/IP stacks. For the
network layer, device discovery and association are still
challenging obstacles today. Since we want to focus on
migration across personal devices, we decided to base our

 Figure 2. The Deep Shot gallery allows a user to quickly
launch an application with a previously captured work
state. A user can flip left or right on the touch screen to

browse the gallery.

framework on an instant messaging (IM) architecture,
which was previously used in cross-device infrastructures
such as PIE [16]. Thus, we can build on top of standard
TCP/IP and avoid the problems of dynamic IP addresses,
private IP addresses behind Network Address Translation
(NAT) gateways, and firewalls that block connections from
the outside. However, this architecture requires an
authentication step before using our system. Fortunately,
authentication only needs to be performed once for each
device and does not add any cost for using Deep Shot
thereafter.

We chose Extensible Messaging and Presence Protocol
(XMPP), also known as Jabber, for our IM protocol. One
reason is that XMPP supports logging in with the same user
account from multiple different devices. A user account
with a device has a unique identifier of the form
“user@server/device.” This allows users to set up all of
their devices with the same user name. Since XMPP can list
all of a user’s presences across devices, users do not have to
manually add their devices into their contact list. Also, the
size of a XMPP message is not limited, which means we
can send relatively large data, e.g., a JPEG photo, through a
typical message packet without hacking the protocol.

System Components
Deep Shot’s architecture is shown in Figure 3. The pink
components are required for deep posting, whereas the
yellow ones are required for deep shooting. There are five
roles in our system: a shooter, a poster, a dispatcher,
launchers and applications (apps). The shooter and the
poster only run on a capturing device, e.g., a mobile phone
equipped with a camera. The dispatcher runs on a target
device, which accepts a deep shooting or posting request
from a capturing device. The launchers run on both sides of

the system. On the capturing device, the launcher launches
mobile applications to recover a work state captured by
deep shooting, whereas on the target device it launches
desktop applications to present a work state that is posted
by deep posting.

Protocol Design
Here we describe the protocols between each pair of system
components. To simplify the design of our protocols, the
messages exchanged among all components are structured
and encoded in the JavaScript Object Notation (JSON) key-
value pairs. Besides, all binary data, e.g. images, are
encoded in Base64 so we can include them in standard
XMPP messages.

Deep Shooting: Shooter-Dispatcher Protocol
Once a user uses the shooter to take a picture of the region
of interest on a computer monitor, an XMPP message with
the picture and a subject deepshot.req indicating a deep
shooting request is sent to each available device.

When the dispatchers running on the target devices receive
the request message, they immediately take a screenshot of
the entire screen of their devices. Each dispatcher then
matches the picture it receives against the screenshot. The
matching algorithms locate the region that the user was
looking at through the camera. Then the dispatcher sends a
new message with the x-y coordinates of the corners of the
region and the central point of the region to the front-most
application overlapping the center point, through a
WebSocket connection.

After the application has handled the message and returned
a response, the dispatcher inserts the application name, and
the thumbnail of the matched region on the screenshot.
Both are useful for browsing the deep shooting history on
the capturing device. Finally, the dispatcher sends the
response to the shooter via the XMPP server.

Deep Shooting: Application-Dispatcher Protocol
The dispatcher is designed as a daemon that always runs in
the background on all personal devices. The dispatcher has
the user’s credentials, so it is always connected to the
XMPP server. Therefore, any device can obtain the
availability of any other device from the XMPP server.

The dispatcher communicates with each application using a
dedicated WebSocket connection. WebSocket is a new
protocol that supports full-duplex and bi-directional
communication over a TCP socket. We choose WebSocket
for two reasons. First, it is being standardized by the IETF
and W3C, and modern browsers already support
WebSocket. Thus, we can easily implement a browser
extension as a second-level dispatcher for web applications.
Second, since the traditional TCP socket is the most
pervasive inter-process communication (IPC) mechanism,
and WebSocket is a simple extension of TCP sockets,
traditional desktop applications can support it easily.

Each time an application that supports Deep Shot is
launched, it registers itself with the dispatcher through a

Figure 3. The system architecture of Deep Shot. Solid lines
represent direct messages between components, whereas dotted

lines represents the launching signal sent from the launcher.

WebSocket connection on a TCP port. A registration
process starts after the standard WebSocket handshaking.
The application sends out a registration message with its
name. If the dispatcher accepts the registration, it returns an
OK message, or else it returns a decline message indicating
the reason and closes the connection. To support deep
posting, an application sends the command “accept
URI_SCHEME”, which indicates what types of URI
schemes it accepts. For example, an email client can
register the “mailto:” scheme, and a web browser can
register the “http:” and “https:” schemes. Once the
registration is completed, this WebSocket connection
should be kept persistent until the application is closed so
the dispatcher can proactively notify the application when a
request is coming.

Once an application has dealt with the dispatcher’s request,
it replies with a message consisting of at least a URI that
encodes the state of the application or the information to
expose. If needed, the application can attach offline
resources or files in the response message. Each attached
file is stored in a JSON structure with the file name and the
content of the file.

Deep Shooting: Dispatcher-Launcher Protocol
After the dispatcher receives a reply message from the
application, it routes that message with a subject
“deepshot.resp” back to the capturing device that sent out
the request.

On the capturing device, a launcher waits for the
“deepshot.resp” messages. Once a response message
arrives, the launcher decodes the message and writes all
attachments to the storage on the device. Finally, it opens
an appropriate application that handles the URI replied
from the target device to recover the work state and resume
the task flow.

Deep Posting Protocol
The deep posting protocol is based on the same foundation
we used in deep shooting, including JSON structures and
XMPP communication. The key role in our system for deep
posting is the poster that runs on a capturing device. The
poster accepts requests from the applications that support
our Deep Shot framework. The posting requests should
consist of at least a URI representing the internal state of
the application.

Once the poster receives a posting request from an
application, it opens the camera and overlaps the screenshot
of the application on the viewfinder so that a user can see
the target device and the information to post at the same
time. After the user has confirmed the target device through
the viewfinder, the poster creates a “deeppost.req” message
with the picture taken by the camera and the request from
the application. Finally, this message is sent to all available
devices, in the same way as deep shooting.

After the dispatchers running on the user’s other devices
receive the “deeppost.req” message, each of them runs the

same vision algorithm used for deep shooting to match the
picture taken by the user against its screenshot. If a
dispatcher finds a match, it routes the request to the
launcher.

As we mentioned before, applications register the types of
URI schemes they support. The deep posting launcher
requires this information to launch an appropriate
application for the given URI in the request. Each
application may register multiple URI schemes. If a URI
scheme can be accepted by multiple applications, the
launcher either opens a dialog so the user can choose an
application or just launches a previously specified default
application.

Screen Matching Algorithms
Once a device receives a Deep Shot request, it takes a
screenshot of the entire monitor. It then extracts visual
features from the screenshot and the picture taken by the
camera, using a computer vision algorithm, Speeded-Up
Robust Features (SURF) [4]. SURF is robust against
scaling and rotation, and faster and more robust than Scale-
Invariant Feature Transform (SIFT), another popular
feature extraction algorithm.

We use SURF to detect the key points, which are
represented by feature vectors, on the screenshot and on the
picture respectively (see Figure 4). We then compute the
cosine similarity between each pair of key points and find
the nearest neighbor for each point. Finally, with the paired
key points, a homography (the perspective transformation
between two planes) can be calculated to find the projective
plane on the screen image. Thus, the region of the screen
that the user sees through the camera can be located.

Content and State Encoding
A migration process of an application consists of
transferring not only its content but also its states. With our
framework, developers can store arbitrary offline content,
e.g., files, as an attachment in a Deep Shot request and
encode the application states into a URI. A URI is the key
element to resuming a work state in Deep Shot. A URI can
be application independent. For instance,
“content://contacts/15” opens a contact manager to show
the person with the id 15; “geo:latitude,longitude” shows
the given location in a map application; and
“document://chi2011.pdf/3” represents the third page of the
file “chi2011.pdf”. Furthermore, developers can append the
zoom level, the scrolling position, and all necessary
information of this document to the URI as needed. We do
not limit the length of a URI so arbitrary states of an
application can be encoded.

Recently, some application frameworks such as Three20
(http://three20.info) have started to support URL-based
navigation in traditional applications. Mobile operating
systems such as Android and iOS also support launching
applications with standard URIs (e.g., http:, tel: and geo:).
Deep Shot allows applications to create their own URIs,

although it is advisable to be compatible with public
standards.

Bootstrapping with a Default Responder
To handle the work state of various applications, the Deep
Shot framework, needs to be integrated into those
applications by their developers. To deploy such a
framework, we need to address how to bootstrap its usage
when application developers have not yet adopted the
framework. Therefore, we implemented a default responder
in the dispatcher to handle the case in which the target
application does not support Deep Shot.

If the application that the user is taking a photo of is not
registered with the dispatcher, the default responder replies
the screenshot of the entire screen to the capturing device as
well as the coordinates of the matched region. Therefore,
users can acquire a clear version of the screen, i.e., without
any noise and distortion caused by the physical camera.
They can also zoom in to see more detail and pan to other
parts of the screen that were not in the original picture. In
addition, as the dispatcher takes the screenshot, it also
detects clickable URLs and information of interest such as
phone numbers or addresses, using the operating system’s
accessibility API. These metadata are also transferred along
with the screenshot, so the user can tap on a URL or a
phone number on the screenshot to launch a browser or dial
the number directly.

Supporting Web and Desktop Applications
Deep Shot is a general framework that supports traditional
desktop applications as well as web applications. We

discuss how Deep Shot supports these two kinds of
applications in this section.

Most modern web applications are written in JavaScript and
run inside a web browser, while their data are stored on
remote servers. To further bootstrap the Deep Shot
framework and support this kind of application, we created
a web dispatcher, implemented as a Google Chrome
browser extension, which has three important features.

First, the web dispatcher acts as a second-level dispatcher.
It routes messages from the first-level dispatcher to the
appropriate web page and sends reply messages back (see
Figure 3).

Second, the web dispatcher is a default responder for all
web applications that do not support Deep Shot. If the web
dispatcher gets a request asking for data from a site that
does not register itself with Deep Shot (discussed in a later
section), it will only return the URL to that site as a default
response. The URL on the address bar often maps to the
state of the current web application. However, some Ajax
applications do not have this property or hides their real
URL on purpose. Fortunately, the last feature of our
dispatcher addresses this problem.

Last, the web dispatcher can inject a script into a web
application that allows Deep Shot to extract the
application’s state, without the application knowing about
Deep Shot. This is possible because, as a browser
extension, the web dispatcher is capable of injecting any
content into any web page from the browser.

In addition to web applications, desktop applications could
be more difficult to migrate since their developers need to
make additional effort to encode the application states into
a URI. Fortunately, most mobile versions of a desktop
application are simplified and only provide the key features
on the mobile devices. This means the developers do not
need to encode the complete state of their applications, but
can focus on a small set of key states. For example, the key
states of a word processor may only consist of the cursor
position, the zoom level, and the scrolling position of the
document. The other states, such as the view mode and the
toolbar’s style, could be unimportant because the mobile
word processor does not have these adjustable features.

IMPLEMENTATION
We implemented Deep Shot to support both deep shooting
and posting. On the mobile side, we chose the Android
platform and implemented the system in Java on a Google
Nexus One phone. On the other side, we implemented the
dispatcher and the launcher in Python on a laptop computer.
We also set up a XMPP server using Jabber on a Linux
machine. Besides disabling the message size limit in
Jabber’s default configuration, we did not modify Jabber.

DEVELOPING DEEP SHOT EXTENSIONS
To minimize the effort for developers to incorporate Deep
Shot into their applications, we created a Java library that

Figure 4. The screen matching algorithms match the
picture (at the top) against the screenshot (at the bottom)

and find a projective plane (the orange convex) on it.

implements the dispatcher-application protocol and hides
the WebSocket connection inside the library.

The library has a DeepShot class that has one public
method, void addListener(Listener listener, String
app_name, String[] accepted_uris), for applications to
register themselves to listen to Deep Shot requests. The
Listener interface has only one method,
DeepShot.Response onShot(DeepShot.Request req),
where the Response contains a URI and optional file
attachments, and the Request contains the four corner
points and the center point of the ROI. Deep posting also
has a similar API, void post(DeepPost.Request req) in
a class DeepPost, where DeepPost.Request contains a URI
and optional file attachments.

For web developers, we also provides a JavaScript function,
DeepShot.addListener(listener), from a browser
extension, so web developers can simply hook their web
applications into Deep Shot. For example, Google Maps
does not show the URL of the current region of the map in
the address bar. To extract the real URL of the current map,
we inject the following script:
if(window.DeepShot){
 DeepShot.addListener(function(request){
 return {“uri”: document.getElementById(“link”).href};
 });
}

With this script, even if Google Maps does not support
Deep Shot, users can still use deep shooting to open any
computer map on their phone.

SCENARIOS
In this section, we illustrate four typical scenarios that can
be accomplished by deep shooting and posting.

Scenario 1: Taking information to go (PC to mobile
phone)
This is the classic scenario that motivated us to develop
deep shooting. People usually work on desktop computers
or laptops at work or home. Before moving to another
place, they may look up the information related to that
place on their computers. However, as the information may
be hard to remember, they often write down the information
on a piece of paper or look up the same information again
on their mobile phones. In this scenario, people can take the
information with them using deep shooting. For example,
people could carry a part of a map or the address of the next
meeting place so that they do not need to look it up again.
People could even capture a YouTube video being played
and later resume watching the video from where they left
off on a mobile phone.

Scenario 2: Viewing or saving mobile phone content on
PCs (mobile phone to PC)
People generate various kinds of lightweight information on
mobile phones, such as photos, contacts, or unfinished
readings. For lightweight tasks, such as transferring a photo
in a phone to a PC so that more people can see it, using
existing software tools for syncing up mobile phones with
PCs is cumbersome (e.g., a user might need to plug in the

cable and find the right folder). With deep posting, users
can simply aim their camera at the target computer monitor
with the photo still shown on the mobile phone. The photo
will be automatically transferred and opened on the target
monitor. Deep posting also allows an application to post
information at a specific position and size, as seen through
the camera, on the target screen, e.g., a Post It application,
which cannot be achieved by Bluetooth-based sync tools.

Scenario 3: Using mobile phones as a bridge between
PCs (PC to PC via a mobile phone)
USB flash drives are widely used to share files among
computers. People are used to saving the information they
want to share as files onto a USB drive, and then taking the
drive to another computer. In this kind of scenario, deep
shooting can be used to extract information from an
application (e.g., running on an office PC) and
automatically transfer it to a mobile device. The user can
then take this mobile device to a home PC and post the
extracted information or work states onto it with deep
posting.

Scenario 4: Sharing content between mobile phones
(mobile phone to mobile phone)
Although it is still rare to share information between
multiple personal mobile devices, it is common to share
information between mobile phones owned by different
people. Researchers have developed techniques to address
this need. For example, bumping is a synchronous gesture
to connect two mobile devices [9]. Although the current
Deep Shot framework does not support communication
between multiple users’ devices, deep shooting and posting
can be used to locate the devices as well as the region of
information to share across multiple users. For example, a
user could take a picture of a contact displayed on another
person’s mobile phone with deep shooting, and then the full
contact information would be automatically transferred to
our phone. This scenario potentially requires a different
authentication mechanism though.

USABILITY ANALYSIS AND TECHNICAL EVALUATION
We analyze and evaluate this work from three perspectives.
From a user’s perspective, we analyze the interaction model
and the usability of deep shooting and posting. From a
developer’s perspective, we analyze the usability and the
utility of the API that we provide for developers. Lastly,
from a technical perspective, we evaluate the performance
of our framework and the feasibility of using a camera to
locate a region on a monitor.

Interaction Model and Usability Analysis
Traditional GUI applications on PCs provides an action
such as “send this to …” in their menus to let users send
local files to remote devices. However, we argue this model
is less intuitive than the deep shooting and posting. For the
same task of migrating applications across devices, in the
traditional model, a user would need to select the source
application, the data of interest, and the target device from a
list of names or identifiers in multiple steps with a GUI,
which can distract the user from the task. In contrast, deep

shooting and deep posting adopts an old technique—taking
pictures using a camera—to simultaneously identify the
source device, the data to transfer, and the target device, all
in one action of taking pictures of computer screens, which
is just as easy as doing so of the real world. This is
consistent with the informal feedback we collected from
users.

Since there is no extra step beyond taking pictures, the
learnability and the memorability of our techniques are as
good as using ordinary cameras on mobile phones. The
efficiency of our techniques is related to two factors. One is
the steps performed by the user, and the other is the
performance of our system in terms of speed and accuracy.
To do a deep shooting or a deep posting, a user needs to
perform three steps: launching our application on a phone,
locating the target window on a device through the
viewfinder, and pressing the shutter. These steps are exactly
the same as taking a picture using a camera application on a
phone. Therefore, our techniques are as fast as taking a
picture from a user’s perspective. The other factor, the
speed and accuracy of our system, will be discussed later
from the technical perspective. Finally, because the steps a
user needs to perform are minimized, the type of error that
may occur is taking a wrong region on the screen. However,
the user can simply discard an incorrect capture and redo
the procedure. In addition to user errors, our system may
have errors while matching pictures against screenshots.
We will examine this kind of error with a controlled
experiment in the following sections.

Usability of Our Framework
As a framework, we provide a simple but powerful API that
consists of two functions for developers. One is for an
application to register itself with our system, and the other
is to respond when a capture event occurs. We argue that
these two functions are easy to use for developers who are
experienced in event-driven programming.

A potential difficulty with incorporating Deep Shot into an
application is to identify what components and information
are located in the given region of interest. Fortunately,
modern operating systems already include this
functionality, known as hit testing, in their accessibility

APIs. Developers may use these APIs to determine which
component is hit given any point on the screen.

Technical Evaluation
Finally, we evaluate our system from a technical
perspective. We set up two experiments to explore whether
using a camera to locate a region on a monitor is feasible in
terms of speed and accuracy. The first experiment was to
test the speed of our system, and the second one was to test
the accuracy of our image-matching algorithm.

Experiment 1: Speed Performance
We used a laptop, a 15-inch MacBook Pro with a high-
resolution 1680×1050 monitor as the target device, and a
Nexus One running Android 2.2 as the capturing device that
takes 512x384 pictures. The capturing device was held by
the experimenter at a distance of 20 to 40 cm and a pitch
angle of ±20° so that about ⅓ of the screen could be seen
through the viewfinder.

We tested four target applications: photos (from Google
Street View), short textual information (from Yelp.com),
long textual article with a few images (from CNN.com),
and maps (from Google Maps). For each application three
photos were taken using deep shooting under the setting
described above.

The average time of the whole procedure across 12 trials (3
pictures for 4 applications) was 7.7 seconds (SD 0.3
seconds). By examining the average time of each step, we
found the network transmission occupied about 50% of the
total time, while the rest processing time was spent on the
target device (34%) and the capturing device (16%). The
transmission caused a significant portion of the latency
because our current implementation attaches raw images
captured by the camera in the messages and these messages
were routed via an external server. As a result, we can
significantly reduce the latency of our system by improving
the transmission efficiency, e.g., using only visual features
instead of the entire image and not using a third-party
server. We will discuss the possibilities in the Future Work
section.

Figure 5. The setup of the reliability experiment.

Figure 6. The results of the reliability experiment. The
total number of trials for each setting is 20.

Experiment 2: Reliability
In this experiment, we wanted to test the accuracy of our
image-matching algorithm under typical conditions for
taking a picture of a screen as well as extreme conditions
that are not so common. Our experimental setup is shown in
Figure 5. We used a 15-inch MacBook Pro laptop so that
we could easily adjust and measure the pitch angle of the
screen. We tested four pitch angles for the screen with
respect to the phone: −20°, 0°, 20°, and 40°. The laptop
shows a full-screen browser (Google Chrome) with a web
page of the most popular local restaurant on Yelp, which is
a typical webpage consisting of text and images. An
Android phone, Google Nexus One, was tied to an L-square
ruler that is perpendicular to the floor. The height of the
camera, which was measured from the surface of the laptop
keyboard to the center of the camera lens, was fixed at 19
cm while the pitch angle was 0° or 20°, and 14.5 cm while
the pitch angle was −20° or 40°. These height settings
allowed the camera to focus around the same target on the
screen, namely the name of the restaurant. We set the phone
in front of the screen with a distance of 5 to 50 cm, as
measured from the screen shaft to the camera lens. Finally,
for each pitch angle, we took five pictures for every 5 cm
between 5 cm and 50 cm, which resulted in a total of 200
pictures. This experiment was conducted in an office with
ceiling fluorescent lights.

We used the algorithm mentioned before to match each
picture against the screen displayed on the laptop. If the
center of the matched region overlapped the expected
region on the screen, it was considered as a successful
match.

The results of this experiment are summarized in Figure 6.
The chart shows the number of successful matches for each
adjusted distance to the screen, instead of the distance
measured to the screen shaft. Because the screen was tilted,
we adjust the distance to the shaft by adding h tan θ, where
h is the height of the phone and θ is the pitch angle. With
this adjustment, we only show the results between 15 cm
and 40 cm where all the settings have valid measurements.

The experiment showed that the matching algorithm was
highly robust with a 97% success rate, when the camera
was parallel to the monitor and the distance between them
ranged between 10 and 40 cm. This range is sufficient to
cover everything from a small region, such as a restaurant’s
name, to the entire screen (see Figure 7). Even when the
camera was tilted, taking pictures in the range of 20–30 cm
was still robust (96.7% success). The accuracy significantly
decreased when the camera is too close to (< 10 cm) or too
far (> 40 cm) from the screen, but these conditions are
uncommon as users can seek the appropriate size of the
target through the camera. The results of this experiment
showed that using a camera with our algorithm was robust
enough to locate a region on a monitor.

RELATED WORK
Several research projects have addressed the issues of
migrating information across devices. Remote Clip [15] is a

simple way to share information via a synchronized
clipboard across multiple personal computers. However,
this technique is only feasible for copying textual or
selectable objects. Pick-and-drop [18] is a direct-
manipulation technique to pick up an object on a computer
and drop it on another. Hyperdragging [17] is a technique
like drag-and-drop that transfers information across
devices. However, these two techniques require special,
uncommon devices (pen devices and augmented tabletops)
so they cannot be easily deployed to the real world. Some
tools [6,21] allow users to control applications remotely. In
contrast, Deep Shot allows users to interact with the same
content via native applications running on a local device,
which eliminates the need to have a constant network
connection.

Associating physical tags or bar codes to digital files is also
a way to migrate information. Want et al. [22] describes
using RFID tags to link physical objects to network
services. Android phone users can install an application by
scanning a QR code. The downside of these techniques is
that they require special tags or codes that can only be read
by machines. On the other hand, techniques such as [5,13,
14] based on only visual features have been proposed.
Compared to these previous techniques, we used similar
feature matching algorithms. However, these techniques
only focused on file transfer or document manipulation for
certain applications. In contrast, Deep Shot provides an
extensible framework that enables an arbitrary application
to migrate not only its content but also its runtime states
across devices using a mobile phone camera.

PIE [16] is a general infrastructure for developers to create
multi-personal-device services, which focuses on low-level
mechanisms for sending information, commands, or events
across devices. Device ensembles [19] also provided a
viewpoint on how multiple devices communicate from the
low-level link layer to the high-level application layer. In
contrast with these projects, our framework provides a

Figure 7. The regions the camera sees with a distance 5 to
50 cm away from the screen while the monitor is parallel

to the phone.

high-level and unified way for developers to extend their
applications and for users to invoke the migration using a
mobile camera.

Recently, researchers have proposed Activity-Based
Computing (ABC) [2,3], which considers a user activity as
the basic computational unit. From the broad perspective of
ABC [12], an activity can span across different users,
devices, applications, and situations. Deep Shot deals with
three major challenges in ABC: activity suspend and
resume, activity roaming, and activity adaption, but we only
focus on a subset of activities: single user, single
application, and multiple devices.

CONCLUSION AND FUTURE WORK
We conclude by discussing the limitation of Deep Shot and
possible extensions for future work.

Multiple users: Our current system finds possible target
devices from a list of the user’s online devices. It is easy to
add other users’ devices into the user’s “friend list,” so that
they can be notified when a capture event happens.
However, this would add extra effort of managing the
device list. A possible solution is to replace the XMPP layer
with a local service discovery protocol, such as Apple
Bonjour, and broadcast the request to local devices.
Transmitting visual features instead of pictures: In the
current implementation, we send pictures directly in a
request, which raise privacy concerns since the devices that
receive the request can “see” the pictures, especially for a
multiple-user environment. Therefore, a possible solution is
to extract the visual features directly on the capturing
device and only send the feature vectors in a request. This
could dramatically speed up the performance and also
prevent malicious request sniffers. In addition, this could
enable real-time matching feedback on the target screen, so
users can be confident that the matching is successful and
also know which region of the screen will be captured.

Limitation on feature matching: Feature matching may
not work in some scenarios. For example, nothing can be
extracted and matched if a user intends to capture a blank
region. However, we can assume that no valuable
information exist in this area and simply show the photo she
took back to her. A more common problem is unfocused
photos, although this could be solved with the real-time
matching feedback we mentioned above.

This paper presented two novel interaction techniques, deep
shooting and deep posting, to migrate a task across devices
and a robust and extensible framework to support them
called Deep Shot. We demonstrated that Deep Shot is
reliable and feasible to support a range of everyday tasks
migrating across devices using one simple gesture.

ACKNOWLEDGEMENT
We thank the anonymous reviewers, Rob Miller, and James
Lin for their suggestions and feedback, and LaDawn
Jentzsch for narrating our demo video.

REFERENCES
1. Bandelloni, R. and Paternņ, F. Migratory User Interfaces Able

To Adapt To Various Interaction Platforms. International
journal of human-computer studies, 2004.

2. Bardram, JE. Activity-Based Computing: Support For
Mobility And Collaboration In Ubiquitous Computing.
Personal and Ubiquitous Computing, 2005.

3. Bardram, JE., Bunde-Pedersen, J., and Soegaard, M. Support
For Activity-Based Computing In A Personal Computing
Operating System. Proc. CHI '06.

4. Bay, H., Tuytelaars, T., and Van Gool, L. SURF: Speeded Up
Robust Features. Proc. CVIU, 2008.

5. Boring, S., Altendorfer, M., Broll, G., and et al. Shoot &
Copy: Phonecam-Based Information Transfer From Public
Displays Onto Mobile Phones. Proc. Mobility ’07.

6. Boring, S., Baur, D., Butz, A., and et al. Touch Projector:
Mobile Interaction through Video. Proc. CHI ‘10.

7. Dearman, D and Pierce, JS. “It's On My Other Computer!”:
Computing With Multiple Devices. Proc. CHI ’08.

8. Google Chrome to Phone.
http://code.google.com/p/chrometophone.

9. Hinckley, K. Synchronous Gestures For Multiple Persons And
Computers. Proc. UIST '03.

10. Hupp, D. and Miller, RC. Smart Bookmarks: Automatic
Retroactive Macro Recording On The Web. Proc. UIST ’07.

11. Karlson, A., Iqbal, S., Meyers, and Tang, J. Mobile Taskflow
in Context: A Screenshot Study of Smartphone Usage. Proc.
CHI '10.

12. Li, Y., and Landay, J. Activity-based prototyping of ubicomp
applications for long-lived, everyday human activities, Proc.
CHI’08.

13. Liao, C., Liu, Q., and et al. Pacer: Fine-grained Interactive
Paper via Camera-touch Hybrid Gestures on a Cell Phone.
Proc. CHI '10.

14. Liu, Q., McEvoy, P., and Lai, C.-J. Mobile camera supported
document redirection. Proc. MM ’06.

15. Miller, RC and Myers, BA. Synchronizing Clipboards Of
Multiple Computers. Proc. UIST ’99.

16. Pierce, J. and Nichols, J. An Infrastructure For Extending
Applications' User Experiences Across Multiple Personal
Devices. Proc. UIST '08.

17. Rekimoto, J. Pick-And-Drop: A Direct Manipulation
Technique For Multiple Computer Environments. Proc. UIST
’97.

18. Rekimoto, J and Saitoh, M. Augmented Surfaces: A Spatially
Continuous Work Space For Hybrid Computing
Environments. Proc. CHI ’99.

19. Schilit, B and Sengupta, U. Device Ensembles. Computer,
IEEE Computer Socity, 2004.

20. Tang, J., Lin, J., and et al. Recent Shortcuts: Using Recent
Interactions To Support Shared Activities. Proc. CHI '07.

21. Tan, DS., Meyers, B., and Czerwinski, M. WinCuts:
manipulating arbitrary window regions for more effective use
of screen space. Proc. CHI '04.

22. Want, R, Fishkin, K, and Gujar, A. Bridging Physical And
Virtual Worlds With Electronic Tags. Proc. CHI ’99.

