
Achieving Rapid Response Times in

Large Online Services

Jeff Dean
Google Fellow

jeff@google.com

Monday, March 26, 2012

mailto:jeff@google.com
mailto:jeff@google.com


Faster Is Better

Monday, March 26, 2012



Faster Is Better

Monday, March 26, 2012



Large Fanout Services

Frontend	 Web	 Server

query

Cache	 servers

Ad	 System

News

Super	 root

Images

Web

Blogs
Video

Books

Local

Monday, March 26, 2012



• Overall latency ≥ latency of slowest component
–small blips on individual machines cause delays
–touching more machines increases likelihood of delays

• Server with 1 ms avg. but 1 sec 99%ile latency
–touch 1 of these: 1% of requests take ≥1 sec
–touch 100 of these: 63% of requests take ≥1 sec

Why Does Fanout Make Things Harder?

Monday, March 26, 2012



• Careful engineering all components of system

• Possible at small scale
–dedicated resources
–complete control over whole system
–careful understanding of all background activities
–less likely to have hardware fail in bizarre ways

• System changes are difficult
–software or hardware changes affect delicate balance

One Approach: Squash All Variability

Not tenable at large scale: need to share resources

Monday, March 26, 2012



• Huge benefit: greatly increased utilization

• ... but hard to predict effects increase variability
–network congestion
–background activities
–bursts of foreground activity
–not just your jobs, but everyone else’s jobs, too

• Exacerbated by large fanout systems

Shared Environment

Monday, March 26, 2012



Shared Environment

Linux

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

scheduling
system

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

scheduling
system

various other
system services

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

scheduling
system

various other
system services

Bigtable
tablet server

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

scheduling
system

various other
system services

Bigtable
tablet server

cpu intensive
job

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

scheduling
system

various other
system services

Bigtable
tablet server

random
MapReduce #1

cpu intensive
job

Monday, March 26, 2012



Shared Environment

Linux

file system
chunkserver

scheduling
system

various other
system services

Bigtable
tablet server

random
MapReduce #1

cpu intensive
job

random
app

random
app #2

Monday, March 26, 2012



• Differentiated service classes
–prioritized request queues in servers
–prioritized network traffic

• Reduce head-of-line blocking
–break large requests into sequence of small requests

• Manage expensive background activities
–e.g. log compaction in distributed storage systems
–rate limit activity
–defer expensive activity until load is lower

Basic Latency Reduction Techniques

Monday, March 26, 2012



• Large systems often have background daemons
–various monitoring and system maintenance tasks

• Initial intuition: randomize when each machine 
performs these tasks
–actually a very bad idea for high fanout services

• at any given moment, at least one or a few machines are slow

• Better to actually synchronize the disruptions
–run every five minutes “on the dot”
–one synchronized blip better than unsynchronized

Synchronized Disruption

Monday, March 26, 2012



• Tolerating faults:
– rely on extra resources

• RAIDed disks, ECC memory, dist. system components, etc.

– make a reliable whole out of unreliable parts

• Tolerating variability:
– use these same extra resources
– make a predictable whole out of unpredictable parts

• Times scales are very different:
– variability: 1000s of disruptions/sec, scale of milliseconds
– faults: 10s of failures per day, scale of tens of seconds

Tolerating Faults vs. Tolerating Variability

Monday, March 26, 2012



• Cross request adaptation
–examine recent behavior
–take action to improve latency of future requests
–typically relate to balancing load across set of servers
–time scale: 10s of seconds to minutes

• Within request adaptation
–cope with slow subsystems in context of higher level 

request
–time scale: right now, while user is waiting

Latency Tolerating Techniques

Monday, March 26, 2012



• Partition large datasets/computations
– more than 1 partition per machine (often 10-100/machine)
– e.g. BigTable, query serving systems, GFS, ...

Fine-Grained Dynamic Partitioning

1 3

17

2 12 78 4
... ... ... ...

9

Machine 1 Machine 2 Machine 3 Machine N

Master

Monday, March 26, 2012



• Can shed load in few percent increments
–prioritize shifting load when imbalance is more severe

Load Balancing

1 3

17

2 12 78 4
... ... ... ...

9

Master

Monday, March 26, 2012



• Can shed load in few percent increments
–prioritize shifting load when imbalance is more severe

Load Balancing

1 3

17

2 12 78 4
... ... ... ...

9

Overloaded!

Master

Monday, March 26, 2012



• Can shed load in few percent increments
–prioritize shifting load when imbalance is more severe

Load Balancing

1 3

17

2 12 78 4
... ... ... ...

9

Overloaded!

Master

Monday, March 26, 2012



• Can shed load in few percent increments
–prioritize shifting load when imbalance is more severe

Load Balancing

1 3

17

2 12 78 4
... ... ... ...

9

Master

Monday, March 26, 2012



• Many machines each recover one or a few partition
–e.g. BigTable tablets, GFS chunks, query serving shards

Speeds Failure Recovery

1 3

17

2 12 78 4
... ... ... ...

9

Master

Monday, March 26, 2012



• Many machines each recover one or a few partition
–e.g. BigTable tablets, GFS chunks, query serving shards

Speeds Failure Recovery

2 12 78 4
... ... ...

9

Master

Monday, March 26, 2012



• Many machines each recover one or a few partition
–e.g. BigTable tablets, GFS chunks, query serving shards

Speeds Failure Recovery

2 12 78 4
... ... ...

9

1 3 17

Master

Monday, March 26, 2012



• Find heavily used items and make more replicas
–can be static or dynamic

• Example: Query serving system
–static: more replicas of important docs
–dynamic: more replicas of Chinese documents as 

Chinese query load increases

Selective Replication

... ... ... ...

Master

Monday, March 26, 2012



• Find heavily used items and make more replicas
–can be static or dynamic

• Example: Query serving system
–static: more replicas of important docs
–dynamic: more replicas of Chinese documents as 

Chinese query load increases

Selective Replication

... ... ... ...

Master

Monday, March 26, 2012



• Find heavily used items and make more replicas
–can be static or dynamic

• Example: Query serving system
–static: more replicas of important docs
–dynamic: more replicas of Chinese documents as 

Chinese query load increases

Selective Replication

... ... ... ...

Master

Monday, March 26, 2012



• Servers sometimes become slow to respond
–could be data dependent, but...
–often due to interference effects

• e.g. CPU or network spike for other jobs running on shared server

• Non-intuitive: remove capacity under load to 
improve latency (?!)

• Initiate corrective action
–e.g. make copies of partitions on other servers
–continue sending shadow stream of requests to server

• keep measuring latency
• return to service when latency back down for long enough

Latency-Induced Probation

Monday, March 26, 2012



• Take action within single high-level request

• Goals:
–reduce overall latency
–don’t increase resource use too much
–keep serving systems safe

Handling Within-Request Variability

Monday, March 26, 2012



Data Independent Failures

query

Monday, March 26, 2012



Data Independent Failures

query

Monday, March 26, 2012



Data Independent Failures

query

Monday, March 26, 2012



Canary Requests (2)

query

Monday, March 26, 2012



Canary Requests (2)

query

Monday, March 26, 2012



Canary Requests (2)

query

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 6

req 5 req 8

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 9

req 6

req 5 req 8

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 9

req 6

req 5 req 8

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

req 9

Replica 2 Replica 3

req 9

req 6

req 5 req 8

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

req 9

Replica 2 Replica 3

req 9

req 6

req 8

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 9

req 6

req 8

reply

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 9

req 6

req 8

reply

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 9

req 6

req 8

reply
“Cancel req 9”

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 9

req 6

req 8

reply

“Cancel req 9”

Monday, March 26, 2012



Backup Requests

req 3

Replica 1

Client

Replica 2 Replica 3

req 6

req 8

reply

Monday, March 26, 2012



• In-memory BigTable lookups
–data replicated in two in-memory tables
–issue requests for 1000 keys spread across 100 tablets
–measure elapsed time until data for last key arrives

Backup Requests Effects

Monday, March 26, 2012



• In-memory BigTable lookups
–data replicated in two in-memory tables
–issue requests for 1000 keys spread across 100 tablets
–measure elapsed time until data for last key arrives

Backup Requests Effects

Avg Std Dev 95%ile 99%ile 99.9%ile

No backups 33 ms 1524 ms 24 ms 52 ms 994 ms
Backup after 10 ms 14 ms 4 ms 20 ms 23 ms 50 ms
Backup after 50 ms 16 ms 12 ms 57 ms 63 ms 68 ms

Monday, March 26, 2012



• In-memory BigTable lookups
–data replicated in two in-memory tables
–issue requests for 1000 keys spread across 100 tablets
–measure elapsed time until data for last key arrives

Backup Requests Effects

Avg Std Dev 95%ile 99%ile 99.9%ile

No backups 33 ms 1524 ms 24 ms 52 ms 994 ms
Backup after 10 ms 14 ms 4 ms 20 ms 23 ms 50 ms
Backup after 50 ms 16 ms 12 ms 57 ms 63 ms 68 ms

• Modest increase in request load:
– 10 ms delay: <5% extra requests; 50 ms delay: <1%

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 6

req 5

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 9

req 3

req 6

req 5

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 9

req 3

req 9
also: server 2

req 6

req 5

Each request identifies other server(s) to which request might be sent

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 6 req 9
also: server 1

req 5

Each request identifies other server(s) to which request might be sent

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 6 req 9
also: server 1

Each request identifies other server(s) to which request might be sent

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 6 req 9
also: server 1

“Server 2: Starting req 9”

Each request identifies other server(s) to which request might be sent

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 6 req 9
also: server 1

“Server 2: Starting req 9”

Each request identifies other server(s) to which request might be sent

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 6 req 9
also: server 1

“Server 2: Starting req 9”

Each request identifies other server(s) to which request might be sent

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 6 req 9
also: server 1

Each request identifies other server(s) to which request might be sent

reply

Monday, March 26, 2012



Backup Requests w/ Cross-Server Cancellation

Server 1

Client

Server 2

req 3

req 6 req 9
also: server 1

Each request identifies other server(s) to which request might be sent

reply

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 3 req 5

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9

req 3 req 5

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9

req 3

req 9
also: server 2

req 5

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 3

req 9
also: server 2

req 9
also: server 1

req 5

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

“Server 2: Starting req 9”
“Server 1: Starting req 9”

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

“Server 2: Starting req 9”
“Server 1: Starting req 9”

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

reply

Monday, March 26, 2012



Backup Requests: Bad Case

Server 1

Client

Server 2

req 9
also: server 2

req 9
also: server 1

reply

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

-43%

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

-38%

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Backups cause about ~1% extra disk reads

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Monday, March 26, 2012



• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Backups w/big sort job gives same read latencies as no backups w/ idle cluster!

Monday, March 26, 2012



• Many variants possible:

• Send to third replica after longer delay
–sending to two gives almost all the benefit, however.

• Keep requests in other queues, but reduce priority

• Can handle Reed-Solomon reconstruction similarly

Backup Request Variants

Monday, March 26, 2012



• Many systems can tolerate inexact results
–information retrieval systems

• search 99.9% of docs in 200ms better than 100% in 1000ms

–complex web pages with many sub-components
• e.g. okay to skip spelling correction service if it is slow

• Design to proactively abandon slow subsystems
–set cutoffs dynamically based on recent measurements

• can tradeoff completeness vs. responsiveness

– important to mark such results as tainted in caches

Tainted Partial Results

Monday, March 26, 2012



• Some good:
–lower latency networks make things like backup request 

cancellations work better

• Some not so good:
–plethora of CPU and device sleep modes save power, 

but add latency variability
–higher number of “wimpy” cores => higher fanout => 

more variability

• Software techniques can reduce variability despite 
increasing variability in underlying hardware

Hardware Trends

Monday, March 26, 2012



• Tolerating variability
– important for large-scale online services
– large fanout magnifies importance
– makes services more responsive
– saves significant computing resources

• Collection of techniques
–general good engineering practices

• prioritized server queues, careful management of background activities

–cross-request adaptation
• load balancing, micro-partitioning

–within-request adaptation
• backup requests, backup requests w/ cancellation, tainted results

Conclusions

Monday, March 26, 2012



• Joint work with Luiz Barroso and many others at 
Google

• Questions?

Thanks

Monday, March 26, 2012


