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• Overall latency ≥ latency of slowest component
–small blips on individual machines cause delays
–touching more machines increases likelihood of delays

• Server with 1 ms avg. but 1 sec 99%ile latency
–touch 1 of these: 1% of requests take ≥1 sec
–touch 100 of these: 63% of requests take ≥1 sec

Why Does Fanout Make Things Harder?
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• Careful engineering all components of system

• Possible at small scale
–dedicated resources
–complete control over whole system
–careful understanding of all background activities
–less likely to have hardware fail in bizarre ways

• System changes are difficult
–software or hardware changes affect delicate balance

One Approach: Squash All Variability

Not tenable at large scale: need to share resources
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• Huge benefit: greatly increased utilization

• ... but hard to predict effects increase variability
–network congestion
–background activities
–bursts of foreground activity
–not just your jobs, but everyone else’s jobs, too

• Exacerbated by large fanout systems

Shared Environment
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• Differentiated service classes
–prioritized request queues in servers
–prioritized network traffic

• Reduce head-of-line blocking
–break large requests into sequence of small requests

• Manage expensive background activities
–e.g. log compaction in distributed storage systems
–rate limit activity
–defer expensive activity until load is lower

Basic Latency Reduction Techniques
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• Large systems often have background daemons
–various monitoring and system maintenance tasks

• Initial intuition: randomize when each machine 
performs these tasks
–actually a very bad idea for high fanout services

• at any given moment, at least one or a few machines are slow

• Better to actually synchronize the disruptions
–run every five minutes “on the dot”
–one synchronized blip better than unsynchronized

Synchronized Disruption
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• Tolerating faults:
– rely on extra resources

• RAIDed disks, ECC memory, dist. system components, etc.

– make a reliable whole out of unreliable parts

• Tolerating variability:
– use these same extra resources
– make a predictable whole out of unpredictable parts

• Times scales are very different:
– variability: 1000s of disruptions/sec, scale of milliseconds
– faults: 10s of failures per day, scale of tens of seconds

Tolerating Faults vs. Tolerating Variability
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• Cross request adaptation
–examine recent behavior
–take action to improve latency of future requests
–typically relate to balancing load across set of servers
–time scale: 10s of seconds to minutes

• Within request adaptation
–cope with slow subsystems in context of higher level 

request
–time scale: right now, while user is waiting

Latency Tolerating Techniques
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• Partition large datasets/computations
– more than 1 partition per machine (often 10-100/machine)
– e.g. BigTable, query serving systems, GFS, ...

Fine-Grained Dynamic Partitioning
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• Can shed load in few percent increments
–prioritize shifting load when imbalance is more severe

Load Balancing
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• Many machines each recover one or a few partition
–e.g. BigTable tablets, GFS chunks, query serving shards

Speeds Failure Recovery
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• Find heavily used items and make more replicas
–can be static or dynamic

• Example: Query serving system
–static: more replicas of important docs
–dynamic: more replicas of Chinese documents as 

Chinese query load increases

Selective Replication

... ... ... ...
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• Servers sometimes become slow to respond
–could be data dependent, but...
–often due to interference effects

• e.g. CPU or network spike for other jobs running on shared server

• Non-intuitive: remove capacity under load to 
improve latency (?!)

• Initiate corrective action
–e.g. make copies of partitions on other servers
–continue sending shadow stream of requests to server

• keep measuring latency
• return to service when latency back down for long enough

Latency-Induced Probation
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• Take action within single high-level request

• Goals:
–reduce overall latency
–don’t increase resource use too much
–keep serving systems safe

Handling Within-Request Variability
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Canary Requests (2)
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• In-memory BigTable lookups
–data replicated in two in-memory tables
–issue requests for 1000 keys spread across 100 tablets
–measure elapsed time until data for last key arrives

Backup Requests Effects
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Avg Std Dev 95%ile 99%ile 99.9%ile

No backups 33 ms 1524 ms 24 ms 52 ms 994 ms
Backup after 10 ms 14 ms 4 ms 20 ms 23 ms 50 ms
Backup after 50 ms 16 ms 12 ms 57 ms 63 ms 68 ms
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• In-memory BigTable lookups
–data replicated in two in-memory tables
–issue requests for 1000 keys spread across 100 tablets
–measure elapsed time until data for last key arrives

Backup Requests Effects

Avg Std Dev 95%ile 99%ile 99.9%ile

No backups 33 ms 1524 ms 24 ms 52 ms 994 ms
Backup after 10 ms 14 ms 4 ms 20 ms 23 ms 50 ms
Backup after 50 ms 16 ms 12 ms 57 ms 63 ms 68 ms

• Modest increase in request load:
– 10 ms delay: <5% extra requests; 50 ms delay: <1%
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• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation
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• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms
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• Read operations in distributed file system client
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– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile
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• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Backups cause about ~1% extra disk reads
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• Read operations in distributed file system client
– send request to first replica
– wait 2 ms, and send to second replica
– servers cancel request on other replica when starting read

• Time for bigtable monitoring ops that touch disk

Backup Requests w/ Cross-Server Cancellation

Cluster state Policy 50%ile 90%ile 99%ile 99.9%ile

Mostly idle No backups 19 ms 38 ms 67 ms 98 ms
Backup after 2 ms 16 ms 28 ms 38 ms 51 ms

+Terasort No backups 24 ms 56 ms 108 ms 159 ms
Backup after 2 ms 19 ms 35 ms 67 ms 108 ms

Backups w/big sort job gives same read latencies as no backups w/ idle cluster!
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• Many variants possible:

• Send to third replica after longer delay
–sending to two gives almost all the benefit, however.

• Keep requests in other queues, but reduce priority

• Can handle Reed-Solomon reconstruction similarly

Backup Request Variants
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• Many systems can tolerate inexact results
–information retrieval systems

• search 99.9% of docs in 200ms better than 100% in 1000ms

–complex web pages with many sub-components
• e.g. okay to skip spelling correction service if it is slow

• Design to proactively abandon slow subsystems
–set cutoffs dynamically based on recent measurements

• can tradeoff completeness vs. responsiveness

– important to mark such results as tainted in caches

Tainted Partial Results
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• Some good:
–lower latency networks make things like backup request 

cancellations work better

• Some not so good:
–plethora of CPU and device sleep modes save power, 

but add latency variability
–higher number of “wimpy” cores => higher fanout => 

more variability

• Software techniques can reduce variability despite 
increasing variability in underlying hardware

Hardware Trends
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• Tolerating variability
– important for large-scale online services
– large fanout magnifies importance
– makes services more responsive
– saves significant computing resources

• Collection of techniques
–general good engineering practices

• prioritized server queues, careful management of background activities

–cross-request adaptation
• load balancing, micro-partitioning

–within-request adaptation
• backup requests, backup requests w/ cancellation, tainted results

Conclusions
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• Joint work with Luiz Barroso and many others at 
Google

• Questions?

Thanks
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