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Abstract

Most current speech recognition systems use hidden Markov mddielsi§) to deal with the temporal variability
of speech and Gaussian mixture models to determine how well each sesteloHMM fits a frame or a short window
of frames of coefficients that represents the acoustic input. An alteenaty to evaluate the fit is to use a feed-
forward neural network that takes several frames of coefficiemtgput and produces posterior probabilities over
HMM states as output. Deep neural networks with many hidden layersathatained using new methods have been
shown to outperform Gaussian mixture models on a variety of speeognition benchmarks, sometimes by a large
margin. This paper provides an overview of this progress and remieshe shared views of four research groups
who have had recent successes in using deep neural networksofestia modeling in speech recognition.

I. INTRODUCTION

New machine learning algorithms can lead to significant adea in automatic speech recognition. The biggest
single advance occured nearly four decades ago with thedinttion of the Expectation-Maximization (EM)
algorithm for training Hidden Markov Models (HMMs) (see [1PR] for informative historical reviews of the
introduction of HMMSs). With the EM algorithm, it became pdde to develop speech recognition systems for
real world tasks using the richness of Gaussian mixture sq@MM) [3] to represent the relationship between
HMM states and the acoustic input. In these systems the @canput is typically represented by concatenating
Mel Frequency Cepstral Coefficients (MFCCs) or Perceptuakadr Predictive coefficients (PLPs) [4] computed
from the raw waveform, and their first- and second-order talpdifferences [5]. This non-adaptive but highly-
engineered pre-processing of the waveform is designedstadi the large amount of information in waveforms that
is considered to be irrelevant for discrimination and toregp the remaining information in a form that facilitates
discrimination with GMM-HMMs.

GMMs have a number of advantages that make them suitable doleling the probability distributions over

vectors of input features that are associated with eack efaan HMM. With enough components, they can model
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probability distributions to any required level of accwyraand they are fairly easy to fit to data using the EM
algorithm. A huge amount of research has gone into ways dftcaining GMMs to increase their evaluation speed
and to optimize the trade-off between their flexibility argk tamount of training data available to avoid serious
overfitting [6].

The recognition accuracy of a GMM-HMM system can be furtmeprioved if it is discriminatively fine-tuned
after it has been generatively trained to maximize its podita of generating the observed data, especially if
the discriminative objective function used for training dksely related to the error rate on phones, words or
sentences[7]. The accuracy can also be improved by augmdjati concatenating) the input features (e.g., MFCCs)
with “tandem” or bottleneck features generated using Heugtworks [8], [9]. GMMs are so successful that it is
difficult for any new method to outperform them for acoustiodaling.

Despite all their advantages, GMMs have a serious shortaprithey are statistically inefficient for modeling
data that lie on or near a non-linear manifold in the dataep@or example, modeling the set of points that lie very
close to the surface of a sphere only requires a few parasnesimg an appropriate model class, but it requires a
very large number of diagonal Gaussians or a fairly large bemof full-covariance Gaussians. Speech is produced
by modulating a relatively small number of parameters of madyical system [10], [11] and this implies that its true
underlying structure is much lower-dimensional than is iedmately apparent in a window that contains hundreds
of coefficients. We believe, therefore, that other types oflet may work better than GMMs for acoustic modeling
if they can more effectively exploit information embeddedai large window of frames.

Artificial neural networks trained by backpropagating erderivatives have the potential to learn much better
models of data that lie on or near a non-linear manifold. bt favo decades ago, researchers achieved some success
using artificial neural networks with a single layer of namebr hidden units to predict HMM states from windows
of acoustic coefficients [9]. At that time, however, neitliee hardware nor the learning algorithms were adequate
for training neural networks with many hidden layers on éaggnounts of data and the performance benefits of
using neural networks with a single hidden layer were nofigahtly large to seriously challenge GMMs. As a
result, the main practical contribution of neural netwosdtshat time was to provide extra features in tandem or
bottleneck systems.

Over the last few years, advances in both machine learngngritims and computer hardware have led to more
efficient methods for training deep neural networks (DNNMs) tontain many layers of non-linear hidden units and
a very large output layer. The large output layer is requitedccommodate the large number of HMM states that
arise when each phone is modelled by a number of differeipthitne” HMMs that take into account the phones on
either side. Even when many of the states of these triphon®klire tied together, there can be thousands of tied
states. Using the new learning methods, several diffeesgarch groups have shown that DNNs can outperform
GMMs at acoustic modeling for speech recognition on a wargdtdatasets including large datasets with large
vocabularies.

This review paper aims to represent the shared views of i@segoups at the University of Toronto, Microsoft

Research (MSR), Google and IBM Research, who have all haghtesuccesses in using DNNs for acoustic
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modeling. The paper starts by describing the two-stagaiti@iprocedure that is used for fitting the DNNs. In the
first stage, layers of feature detectors are initializeds ayer at a time, by fitting a stack of generative models,
each of which has one layer of latent variables. These géwveeraodels are trained without using any information
about the HMM states that the acoustic model will need tortlisnate. In the second stage, each generative model
in the stack is used to initialize one layer of hidden unit&tiDNN and the whole network is then discriminatively
fine-tuned to predict the target HMM states. These targetohtained by using a baseline GMM-HMM system to
produce a forced alignment.

In this paper we review exploratory experiments on the TIM&abase [12], [13] that were used to demonstrate
the power of this two-stage training procedure for acousiixieling. The DNNs that worked well on TIMIT were
then applied to five different large vocabulary, continuspsech recognition tasks by three different research group
whose results we also summarize. The DNNs worked well onfahese tasks when compared with highly-tuned
GMM-HMM systems and on some of the tasks they outperformedsthte-of-the-art by a large margin. We also

describe some other uses of DNNs for acoustic modeling an s@riations on the training procedure.

Il. TRAINING DEEP NEURAL NETWORKS

A deep neural network (DNN) is a feed-forward, artificial redunetwork that has more than one layer of hidden
units between its inputs and its outputs. Each hidden gniypically uses the logistic functidnto map its total

input from the layer belowg;, to the scalar statgy; that it sends to the layer above.

. 1

whereb; is the bias of unitj, ¢ is an index over units in the layer below, ang; is a the weight on a connection
to unit 7 from unit< in the layer below. For multiclass classification, outpuit ynconverts its total inputg;, into
a class probabilityp;, by using the “softmax” non-linearity:
exp(z;
P S et @
wherek is an index over all classes.
DNN's can be discriminatively trained by backpropagatingrighatives of a cost function that measures the
discrepancy between the target outputs and the actual tsytpoduced for each training case[14]. When using the
softmax output function, the natural cost functiohis the cross-entropy between the target probabilifiend the

outputs of the softmaxy:

C=->Y djlogp;, ()
J

where the target probabilities, typically taking valuesoofe or zero, are the supervised information provided to

train the DNN classifier.

1The closely related hyberbolic tangent is also often usetlay function with a well-behaved derivative can be used.
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For large training sets, it is typically more efficient to qmute the derivatives on a small, random “mini-batch”
of training cases, rather than the whole training set, leefmdating the weights in proportion to the gradient. This
stochastic gradient descent method can be further imprbyeasing a “momentum” coefficienf) < « < 1, that
smooths the gradient computed for mini-batclthereby damping oscillations across ravines and speguiogyess

down ravines:
oC

Aww(t) = aAwij(t — ].) - EW

4

The update rule for biases can be derived by treating themeagtg on connections coming from units that always
have a state of.

To reduce overfitting, large weights can be penalized in @rign to their squared magnitude, or the learning
can simply be terminated at the point at which performanca beld-out validation set starts getting worse[9]. In
DNNs with full connectivity between adjacent layers, th#iah weights are given small random values to prevent
all of the hidden units in a layer from getting exactly the sagnadient.

DNN's with many hidden layers are hard to optimize. Gradigescent from a random starting point near the
origin is not the best way to find a good set of weights and sntke initial scales of the weights are carefully
chosen [15], the backpropagated gradients will have velffgrdnt magnitudes in different layers. In addition to
the optimization issues, DNNs may generalize poorly to ‘meititest data. DNNs with many hidden layers and
many units per layer are very flexible models with a very langenber of parameters. This makes them capable of
modeling very complex and highly non-linear relationshiyggween inputs and outputs. This ability is important
for high-quality acoustic modeling, but it also allows theéenmodel spurious regularities that are an accidental
property of the particular examples in the training set,clihcan lead to severe overfitting. Weight penalties or
early-stopping can reduce the overfitting but only by remgvnuch of the modeling power. Very large training sets
[16] can reduce overfitting whilst preserving modeling powait only by making training very computationally
expensive. What we need is a better method of using the infaman the training set to build multiple layers of

non-linear feature detectors.

A. Generative pre-training

Instead of designing feature detectors to be good for digcdting between classes, we can start by designing
them to be good at modeling the structure in the input date. idlba is to learn one layer of feature detectors at
a time with the states of the feature detectors in one lay@ngaes the data for training the next layer. After this
generative “pre-training”, the multiple layers of featudetectors can be used as a much better starting point for
a discriminative “fine-tuning” phase during which backpaigation through the DNN slightly adjusts the weights
found in pre-training [17]. Some of the high-level featumeated by the generative pre-training will be of little
use for discrimination, but others will be far more usefudnihithe raw inputs. The generative pre-training finds a
region of the weight-space that allows the discriminatine-fiuning to make rapid progress, and it also significantly

reduces overfitting [18].
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A single layer of feature detectors can be learned by fittimg@erative model with one layer of latent variables
to the input data. There are two broad classes of generatbaeinio choose from. Alirected model generates
data by first choosing the states of the latent variables fagonior distribution and then choosing the states of the
observable variables from their conditional distribusagiven the latent states. Examples of directed models with
one layer of latent variables are factor analysis, in whighlatent variables are drawn from an isotropic Gaussian,
and GMMs, in which they are drawn from a discrete distributidn undirectedmodel has a very different way of
generating data. Instead of using one set of parameterditeede prior distribution over the latent variables and a
separate set of parameters to define the conditional difitiiis of the observable variables given the values of the
latent variables, an undirected model uses a single setrafrers,W, to define the joint probability of a vector
of values of the observable variablas, and a vector of values of the latent variablhs,via an energy function,

E:
(v, h: W) = %efE(mh;W)’ g ZhlefE(vﬂh’;W)’ )
where Z is called the “partition function”.

If many different latent variables interact non-lineardygenerate each data vector, it is difficult to infer the state
of the latent variables from the observed data in a directedainbecause of a phenomenon known as “explaining
away” [19]. In undirected models, however, inference isygasvided the latent variables do not have edges linking
them. Such a restricted class of undirected models is idedhferwise pre-training because each layer will have
an easy inference procedure.

We start by describing an approximate learning algorithmaaestricted Boltzmann machine (RBM) which
consists of a layer of stochastic binary “visible” units tthapresent binary input data connected to a layer of
stochastic binary hidden units that learn to model signiticen-independencies between the visible units [20]. &her
are undirected connections between visible and hidders imit no visible-visible or hidden-hidden connections.
An RBM is a type of Markov Random Field (MRF) but differs fronost MRF’s in several ways: It has a bipartite
connectivity graph; it does not usually share weights betwdifferent units; and a subset of the variables are

unobserved, even during training.

B. An efficient learning procedure for RBMs

A joint configuration, ¢, h) of the visible and hidden units of an RBM has an energy giwen b

E(v,h) = — Z a;v; — Z bjhj — Zvihjwij (6)

i€visible j€hidden 0,7
wherev;, h; are the binary states of visible unitand hidden unitj, a;,b; are their biases and;; is the weight
between them. The network assigns a probability to evergiplespair of a visible and a hidden vector via this
energy function as in Eqn. (5) and the probability that thémoek assigns to a visible vectos;, is given by

summing over all possible hidden vectors:

p(v) = D e FOm )

April 27, 2012 DRAFT



The derivative of the log probability of a training set withspect to a weight is surprisingly simple:
N —a .. :<vihj>data - <vihj>model (8)

whereN is the size of the training set and the angle brackets aretosgeinote expectations under the distribution
specified by the subscript that follows. The simple denr#ain Eqn.(8) leads to a very simple learning rule for

performing stochastic steepest ascent in the log probabifithe training data:
Awij = e(<vihj>data — <Vilj>modet) 9)

wheree is a learning rate.
The absence of direct connections between hidden units iIREM makes it is very easy to get an unbiased
sample of<v;h;>qq:,. Given a randomly selected training case the binary stateh;, of each hidden unitj, is

set to1 with probability
p(hj =11 v) = logistic(b; + Zviwij) (10)

andwv;h; is then an unbiased sample. The absence of direct conngdiimween visible units in an RBM makes
it very easy to get an unbiased sample of the state of a visifile given a hidden vector
p(v; =1 | h) = logistic(a; + Z hjw;j;). (11)
J
Getting an unbiased sample efv;h; >n04c1, hOwever, is much more difficult. It can be done by starting at

any random state of the visible units and performing altémgaGibbs sampling for a very long time. Alternating
Gibbs sampling consists of updating all of the hidden umitparallel using Eqn.(10) followed by updating all of
the visible units in parallel using Eqn.(11).

A much faster learning procedure called “contrastive @jeece” (CD) was proposed in [20]. This starts by
setting the states of the visible units to a training vectbien the binary states of the hidden units are all computed
in parallel using Egn.(10). Once binary states have beeserhior the hidden units, a “reconstruction” is produced
by setting eachy; to 1 with a probability given by Eqn.(11). Finally, the statestb& hidden units are updated

again. The change in a weight is then given by
Aw;j; = €(<vih;>data — <Vilj>recon) (12)

A simplified version of the same learning rule that uses theestof individual units instead of pairwise products
is used for the biases.

Contrastive divergence works well even though it is onlydedy approximating the gradient of the log probability
of the training data [20]. RBMs learn better generative ni@denore steps of alternating Gibbs sampling are used
before collecting the statistics for the second term in #aring rule, but for the purposes of pre-training feature
detectors, more alternations are generally of little vadunel all the results reviewed here were obtained using
CD; which does a single full step of alternating Gibbs sampliftgrathe initial update of the hidden units. To

suppress noise in the learning, the real-valued probigsiliather than binary samples are generally used for the
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reconstructions and the subsequent states of the hidden i it is important to use sampled binary values for the
first computation of the hidden states because the samptiisg racts as a very effective regularizer that prevents

overfitting [21].

C. Modeling real-valued data

Real-valued data, such as MFCCs, are more naturally modsidishear variables with Gaussian noise and the

RBM energy function can be modified to accommodate suchhlasagiving a Gaussian-Bernoulli RBM (GRBM):

Vi — @ 2 (%
E(V,h) = Z (27) — Z bjhj — Z ;hjwij (13)

i€vis jehid i.j
whereo; is the standard deviation of the Gaussian noise for visibiewu

The two conditional distributions required for GDearning are:

p(h;|v) = logistic (bj +y ”iwij> (14)
—~ 0;

p(’U2|h) :N a¢+O'iZhjwij, U? (15)
J

where N (i1, 0%) is a Gaussian. Learning the standard deviations of a GRBMaisl@matic for reasons described
in [21], so for pre-training using CD the data are normalized so that each coefficient has zero @ unit
variance, the standard deviations are set when computing(v|h), and no noise is added to the reconstructions.

This avoids the issue of deciding the right noise level.

D. Stacking RBMs to make a deep belief network

After training an RBM on the data, the inferred states of ti@dén units can be used as data for training
another RBM that learns to model the significant dependsrio@ween the hidden units of the first RBM. This
can be repeated as many times as desired to produce mang tH#yaon-linear feature detectors that represent
progressively more complex statistical structure in thead@he RBMs in a stack can be combined in a surprising
way to produce a single, multi-layer generative model daleleep belief net (DBN) [22]. Even though each RBM
is an undirected model, the DBAformed by the whole stack is a hybrid generative model whopetwo layers
are undirected (they are the final RBM in the stack) but whoseet layers have top-down, directed connections
(see figure 1).

To understand how RBMs are composed into a DBN it is helpfuleterite Eqn.(7) and to make explicit the

dependence oWWV:
p(viW) = p(h; W)p(v|h; W), (16)
h

°Not to be confused with a Dynamic Bayesian Net which is a typelicécted model of temporal data that unfortunately has the same

acronym.
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Fig. 1. The sequence of operations used to create a DBN wige thidden layers and to convert it to a pre-trained DBN-D¥iNst a
GRBM is trained to model a window of frames of real-valued atiousoefficients. Then the states of the binary hidden urfithe GRBM
are used as data for training an RBM. This is repeated to erastmany hidden layers as desired. Then the stack of RBMs ierted
to a single generative model, a DBN, by replacing the undigatonnections of the lower level RBMs by top-down, directednections.
Finally, a pre-trained DBN-DNN is created by adding a “sofghautput layer that contains one unit for each possibleestfteach HMM.
The DBN-DNN is then discriminatively trained to predict thé/Ml state corresponding to the central frame of the input wimdio a forced
alignment.

where p(h; W) is defined as in Eqn.(7) but with the roles of the visible andden units reversed. Now it is

clear that the model can be improved by holdjp(y|h; W) fixed after training the RBM, but replacing the prior
over hidden vectorg(h; W) by a better priorj.e. a prior that is closer to the aggregated posterior over mdde
vectors that can be sampled by first picking a training casketlagn inferring a hidden vector using Eqn.(14). This

aggregated posterior is exactly what the next RBM in theksiadrained to model.

As shown in [22], there is a series of variational bounds enaky probability of the training data, and furthermore,
each time a new RBM is added to the stack, the variational damthe new and deeper DBN is better than the
previous variational bound, provided the new RBM is inidatl and learned in the right way. While the existence
of a bound that keeps improving is mathematically reasguitndoes not answer the practical issue, addressed in
this review paper, of whether the learned feature detee@siseful for discrimination on a task that is unknown
while training the DBN. Nor does it guarantee that anythimpiioves when we use efficient short-cuts such as
CD; training of the RBMs.
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One very nice property of a DBN that distinguishes it fromeastimultilayer, directed, non-linear generative
models, is that it is possible to infer the states of the laydridden units in a single forward pass. This inference,
which is used in deriving the variational bound, is not elacbrrect but it is fairly accurate. So after learning a
DBN by training a stack of RBMs, we can jettison the whole @tobstic framework and simply use the generative
weights in the reverse direction as a way of initializingth# feature detecting layers of a deterministic feed-fodwa

DNN. We then just add a final softmax layer and train the wholNDdiscriminatively.

E. Interfacing a DNN with an HMM

After it has been discriminatively fine-tuned, a DNN outputprobabiliies of the form
p(HM M state| AcousticInput). But to compute a Viterbi alignment or to run the forwardfmard algorithm
within the HMM framework we require the likelihoog AcousticInput|H M M state). The posterior probabilities
that the DNN outputs can be converted into the scaled likelihby dividing them by the frequencies of the
HMM-states in the forced alignment that is used for finetignine DNN [9]. All of the likelihoods produced in
this way are scaled by the same unknown factop@icousticInput), but this has no effect on the alignment.
Although this conversion appears to have little effect omsaecognition tasks, it can be important for tasks

where training labels are highly unbalanced (e.g., with ynfaames of silences).

I[Il. PHONETIC CLASSIFICATION AND RECOGNITION ONTIMIT

The TIMIT dataset provides a simple and convenient way ofirtgsnew approaches to speech recognition.
The training set is small enough to make it feasible to try yneariations of a new method and many existing
techniques have already been benchmarked on the core test Bds easy to see if a new approach is promising
by comparing it with existing techniques that have been émgnted by their proponents [23]. Experience has
shown that performance improvements on TIMIT do not necégdaanslate into performance improvements on
large vocabulary tasks with less controlled recording @k and much more training data. Nevertheless, TIMIT
provides a good starting point for developing a new apprpaspecially one that requires a challenging amount of
computation.

Mohamedet. al. [12] showed that a DBN-DNN acoustic model outperformed tlestlpublished recognition
results on TIMIT at about the same time as Sainetthal. [23] achieved a similar improvement on TIMIT by
applying state-of-the-art techniques developed for largeabulary recognition. Subsequent work combined the
two approaches by using state-of-the-art, discriminbtit&ined (DT) speaker-dependent features as input to the
DBN-DNN [24], but this produced little further improvememrobably because the hidden layers of the DBN-DNN
were already doing quite a good job of progressively elimiimaspeaker differences [25].

The DBN-DNNs that worked best on the TIMIT data formed thertstg point for subsequent experiments

on much more challenging, large vocabulary tasks that weoecbmputationally intensive to allow extensive

SUnfortunately, a DNN that is pre-trained generatively asBDs often still called a DBN in the literature. For clarityeveall it a DBN-DNN.
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TABLE |
Comparisons among the reported speaker-independent fibhoreognition accuracy results on TIMIT core test set wi82 sentences

Method | PER |
CD-HMM [26] 27.3%
Augmented conditional Random Fields [26] 26.6%
Randomly initialized recurrent Neural Nets [27] 26.1%
Bayesian Triphone GMM-HMM [28] 25.6%
Monophone HTMs [29] 24.8%
Heterogeneous Classifiers [30] 24.4%

Monophone randomly initialized DNNs (6 layers)[13] 23.4%

Monophone DBN-DNNs (6 layers) [13] 22.4%
Monophone DBN-DNNs with MMI training [31] 22.1%
Triphone GMM-HMMs discriminatively trained w/ BMMI [32]| 21.7%
Monophone DBN-DNNs on fbank (8 layers) [13] 20.7%

Monophone mcRBM-DBN-DNNs on fbank (5 layers) [33] | 20.5%

Monophone convolutional DNNs on fbank (3 layers) [34] | 20.0%

exploration of variations in the architecture of the neuretwork, the representation of the acoustic input or the
training procedure.

For simplicity, all hidden layers always had the same siz#,dven with this constraint it was impossible to
train all possible combinations of number of hidden laydrs?, 3, 4, 5, 6, 7, 8], number of units per layer [512,
1024, 2048, 3072] and number of frames of acoustic data in the input layerlfl7,15, 17, 27, 37]. Fortunately,
the performance of the networks on the TIMIT core test set fa@ty insensitive to the precise details of the
architecture and the results in [13] suggest that any coatioim of the numbers in boldface probably has an error
rate within about2% of the very best combination. This robustness is crucialni@thods such as DBN-DNNs
that have a lot of tuneable meta-parameters. Our consiitefihg is that multiple hidden layers always worked
better than one hidden layer and, with multiple hidden lgypre-training always improved the results on both the
development and test sets in the TIMIT task. Details of tlaerlimg rates, stopping criteria, momentum, L2 weight
penalties and mini-batch size for both the pre-training fine-tuning are given in [13].

Table | compares DBN-DNNs with a variety of other methods ba TIMIT core test set. For each type of
DBN-DNN the architecture that performed best on the develat set is reported. All methods use MFCCs as
inputs except for the three marked “fbank” that use log Melks filter-bank outputs.

A. Pre-processing the waveform for deep neural networks

State-of-the-art ASR systems do not use filter-bank coeffisi as the input representation because they are
strongly correlated so modeling them well requires eithirdovariance Gaussians or a huge number of diagonal
Gaussians. MFCCs offer a more suitable alternative as ithdividual components are roughly independent so they

are much easier to model using a mixture of diagonal covegi@aussians. DBN-DNNs do not require uncorrelated
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data and, on the TIMIT database, the work reported in [13{v&ubthat the best performing DBN-DNNSs trained
with filter-bank features had a phone error rate 1.7% lowantthe best performing DBN-DNNSs trained with
MFCCs (see Table ).

B. Fine-tuning DBN-DNNSs to optimize mutual information

In the experiments using TIMIT discussed above, the DNNsewigre-tuned to optimize the per frame cross-
entropy between the target HMM state and the predictions. ffénsition parameters and language model scores
were obtained from an HMM-like approach and were trainecjrhdently of the DNN weights. However, it has
long been known that sequence classification criteria, hvaie@ more directly correlated with the overall word or
phone error rate, can be very helpful in improving recognitaccuracy [7], [35] and the benefit of using such
sequence classification criteria with shallow neural netwdas already been shown by [36], [37], [38]. In the more
recent work reported in [31], one popular type of sequenassification criterion, maximum mutual information
or MMI, proposed as early as 1986 [7], was successfully agplb learn DBN-DNN weights for the TIMIT phone
recognition task. MMI optimizes the conditional probatyilp(l,.7|vi.7) of the whole sequence of labels,r, with
length T, given the whole visible feature utteranger, or equivalently the hidden feature sequehgg- extracted
by the DNN:
ewp(Zt 1 Yig @i (=1, 1) + Zt 1 Zd 1 )\lt;dhtd)

Z(hy.T)

where the transition feature;;({;—,[;) takes on a value of one if_, = ¢ andl, = j, and otherwise takes on

p(lirlver) = p(lirlhir) = a7)

a value of zero, where;; is the parameter associated with this transition feathbyg,is the d-th dimension of
the hidden unit value at theth frame at the final layer of the DNN, and whefeis the number of units in the
final hidden layer. Note the objective function of Eqgn.(1&rided from mutual information [35] is the same as
the conditional likelihood associated with a specializegdr-chain conditional random field. Here, it is the top
most layer of the DNN below the softmax layer, not the raw shemoefficients of MFCC or PLP, that provides
“features” to the conditional random field.

To optimize the log conditional probability(I}.|vT.) of the n-th utterance, we take the gradient over the

activation parameters,,, transition parametersg;;, and the lower-layer weights of the DNM;;;, according to

T

l n n
Ologp(lfrlviiy) _ > 617 = k) = p(Iy = klvT.p))hiy (18)
ONkd — '
dlog p(Ir.p[v7 d
dlogp(liplvtir) _ =Y 100y =i, 07 = 5) = pUfy = 6,1 = jlvfp)] (19)
9ij —
dlo o d X
% Z /\ltd Zp l? = k"U1 T /\kd] X htd( ?d)l‘?z (20)
) t=1 k=1

Note that the gradien?%;‘”m above can be viewed as back-propagating the e¥flir = k) — p(I =

kvl ), vs.0(1f = k) — p(Iy = k|v}) in the frame-based training algorithm.
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In implementing the above learning algorithm for a DBN-DNiKe DNN weights can first be fine-tuned to
optimize the per frame cross entropy. The transition patarsecan be initialized from the combination of the
HMM transition matrices and the “phone language” model sspand can be further optimized by tuning the
transition features while fixing the DNN weights before tlénf optimization. Using the joint optimization with
careful scheduling, we observe that the sequential MMhingi can outperform the frame-level training by about

5% relative within the same system in the same laboratory.

C. Convolutional DNNs for phone classification and recagnit

All the previously cited work reported phonecognition results on the TIMIT database. In recognition
experiments, the input is the acoustic input for the wholerahce while the output is the spoken phonetic sequence.
A decoding process using a phone language model is used dogedhis output sequence. Phonefizssification
is a different task where the acoustic input has already bs®led with the correct boundaries between different
phonetic units and the goal is to classify these phones tiondd on the given boundaries. In [39] convolutional
DBN-DNNs were introduced and successfully applied to wasiaudio tasks including phone classification on the
TIMIT database. In this model, the RBM was made convolutidnatime by sharing weights between hidden
units that detect the same feature at different times. A pwoling operation was then performed which takes the
maximal activation over a pool of adjacent hidden units stzre the same weights but apply them at different
times. This yields some temporal invariance.

Although convolutional models along the temporal dimensighieved good classification results [39], applying
them to phone recognition is not straightforward. This iséhese temporal variations in speech can be partially
handled by the dynamic programing procedure in the HMM camepb and those aspects of temporal variation that
cannot be adequately handled by the HMM can be addressederplieitly and effectively by hidden trajectory
models [40].

The work reported in [34] applied local convolutional fikewith max-pooling to therequencyrather than
time dimension of the spectrogram. Sharing-weights and poadwvey frequency was motivated by the shifts in
formant frequencies caused by speaker variations. It gesvsome speaker invariance while also offering noise
robustness due to the band-limited nature of the filters] {84y used weight-sharing and max-pooling across
nearby frequencies because, unlike features that occuffatetit positions in images, acoustic features occuring

at very different frequencies are very different.

D. A summary of the differences between DNNs and GMMs

Here we summarize the main differences between the DNNs didsaused in the TIMIT experiments described
so far in this paper. First, one major element of the DBN-DNXiN RBM which serves as the building block for
pre-training, is an instance of “product of experts” [20],dontrast to mixture models that are a “sum of experts”.

4. Mixture models with a large number of components use thaiameters inefficiently because each parameter

4Product models have only very recently been explored in $ppeacessing; e.g., [41].
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only applies to a very small fraction of the data whereas gmulameter of a product model is constrained by a
large fraction of the data. Second, while both DNNs and GMk&sreonlinear models, the nature of the nonlinearity
is very different. Third, DNNs are good at exploiting mulépframes of input coefficients whereas GMMs that
use diagonal covariance matrices benefit much less fromipteuftames because they require decorrelated inputs.
Finally, DNNs are learned using stochastic gradient ddsednile GMMs are learned using the EM algorithm or

its extensions [35] which makes GMM learning much easieraxalelize on a cluster machine.

IV. CoOMPARING DBN-DNNs wiTH GMMS FORLARGE-VOCABULARY SPEECHRECOGNITION

The success of DBN-DNNs on TIMIT tasks starting in 2009 nadted more ambitious experiments with much
larger vocabularies and more varied speaking styles. gnsihition, we review experiments by three different speech
groups on five different benchmark tasks for large vocaudpeech recognition. To make DBN-DNNs work really
well on large vocabulary tasks it is important to replace thenophone HMMs used for TIMIT (and also for
early neural network/HMM hybrid systems) with triphone HMMhat have many thousands of tied states [42].
Predicting these context-dependent states providesadeagvantages over monophone targets. They supply more
bits of information per frame in the labels. They also makedssible to use a more powerful triphone HMM
decoder and to exploit the sensible classes discoveredebgetision tree clustering that is used to tie the states of
different triphone HMMSs. Using context-dependent HMM efatit is possible to outperform state-of-the-art BMMI
trained GMM-HMM systems with a two-hidden-layer neuralwmetk without using any pre-training [43], though

using more hidden layers and pre-training works even better

A. Bing-Voice-Search speech recognition task

The first successful use of acoustic models based on DBN-DiHNg large vocabulary task used data collected
from the Bing mobile voice search application (BMVS). Thektiaised 24 hours of training data with a high degree
of acoustic variability caused by noise, music, side-shpeaccents, sloppy pronunciation, hesitation, repetition
interruptions, and mobile phone differences. The res@ponted in [42] demonstrated that the best DNN-HMM
acoustic model trained with context-dependent statesrgsttaachieved a sentence accuracy of 69.6% on the test
set, compared with 63.8% for a strong, MPE trained GMM-HMMddae.

The DBN-DNN used in the experiments was based on one of the-DBINs that worked well for the TIMIT
task. It used five pre-trained layers of hidden units with48,0nits per layer and was trained to classify the central
frame of an 11 frame acoustic context window using 761 ptessibntext-dependent states as targets. In addition
to demonstrating that a DBN-DNN could provide gains on adargcabulary task, several other important issues
were explicitly investigated in [42]. It was found that ugitied triphone context-dependent state targets was ¢rucia
and clearly superior to using monophone state targets, edam the latter were derived from the same forced
alignment with the same baseline. It was also confirmed Healower the error rate of the system used during forced
alignment to generate frame level training labels for theraknet, the lower the error rate of the final neural-net

based system. This effect was consistent across all thanadigts they tried, including monophone alignments,
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alignments from maximum likelihood trained GMM-HMM systejrand alignments from discriminatively trained
GMM-HMM systems.

Further work after that of [42] extended the DNN-HMM acoastiodel from 24 hours of training data to 48
hours, and explored the respective roles of pre-trainimpfiue-tuning the DBN-DNN [44]. As expected, pre-training
is helpful in training the DBN-DNN because it initializesetibBN-DNN weights to a point in the weight-space
from which fine-tuning is highly effective. However, a modgr increase of the amount of unlabeled pre-training
data has an insignificant effect on the final recognition lte69.6% to 69.8%), as long as the original training set
is fairly large. By contrast, the same amount of additiomdleled fine-tuning training data significantly improves
the performance of the DNN-HMMs (accuracy from 69.6% to 74).7

B. Switchboard speech recognition task

The DNN-HMM training recipe developed for the Bing voice sd#adata was applied unaltered to the Switchboard
speech recognition task [43] to confirm the suitability of ®MM acoustic models for large vocabulary tasks.
Before this work, DNN-HMM acoustic models had only beenrteai with up to 48 hours of data [44] and hundreds
of tied triphone states as targets, whereas this work used 380 hours of training data and thousands of tied
triphone states as targets. Furthermore, Switchboard ishlicly available speech-to-text transcription benchimar
task that allows much more rigorous comparisons among iggés.

The baseline GMM-HMM system on the Switchboard task waségiusing the standard 309-hour Switchboard-|
training set. 13-dimensional PLP features with windowedmeariance normalization were concatenated with up
to third-order derivatives and reduced to 39 dimensions By A a form of linear discriminant analysis (LDA).
The speaker-independent crossword triphones used the aoraft-to-right 3-state topology and shared 9304 tied
states.

The baseline GMM-HMM system had a mixture of 40 Gaussians(ied) HMM state that were first trained
generatively to optimize a maximum likelihood (ML) criten and then refined discriminatively to optimize a
boosted maximum-mutual-information (BMMI) criterion. Awen-hidden-layer DBN-DNN with 2048 units in each
layer and full connectivity between adjacent layers regdaihe GMM in the acoustic model. The trigram language
model, used for both systems, was trained on the trainingstrgpts of the 2000-hours of the Fisher corpus and
interpolated with a trigram model trained on written text.

The primary test set is the FSH portion of the 6.3-hour Sp#i@@3 NIST rich transcription set (RT03S). Table
Il extracted from the literature shows a summary of the cesults. Using a DNN reduced the word-error rate
(WER) from the 27.4% of the baseline GMM-HMM (trained with BMMo 18.5% — a 33% relative reduction.
The DNN-HMM system trained on 309 hours performs as well aslining several speaker-adaptive, multi-pass
systems which use Vocal Tract Length Normalization (VTLMdanearly seven times as much acoustic training
data (the 2000h Fisher corpus) (18.6%, last row).

Detailed experiments [43] on the Switchboard task confirthed the remarkable accuracy gains from the DNN-

HMM acoustic model are due to the direct modeling of tiedhepe states using the DBN-DNN, the effective
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TABLE I
Comparing five different DBN-DNN acoustic models with tworgf GMM-HMM baseline systems that are discriminativebirted (DT).
Speaker-independent (Sl) training on 309 hours of data anglespass decoding were used for all models except for thidGHMM system
shown on the last row which used speaker adaptive (SA) trginiith 2000 hours of data and multi-pass decoding includiggotheses
combination. In the table, “40 mix” means a mixture of 40 Gsiass per HMM state and “15.2 nz” means 15.2 million, nonezerights.
Word-error rates (WER) in % are shown for two separate tet, 4dub500-SWB and RT03S-FSH.

modeling #params| WER
technique [10°] |HubS'00-SWERTO3S-FSH
GMM, 40 mix DT 309h S| | 204 [ 236 | 274 |
NN 1 hidden-layex 4634 units 43.6 26.0 29.4

+ 2x5 neighboring frames 45.1 22.4 25.7
DBN-DNN 7 hidden layers 2048 units 45.1 17.1 19.6

+ updated state alignment 45.1 16.4 18.6

+ sparsification 15.2 nz|| 16.1 18.5
GMM 72 mix DT 2000h SA | 1024 171 18.6

exploitation of neighboring frames by the DBN-DNN, and titiesg modeling power of deeper networks, as was
discovered in the Bing voice search task [44], [42]. Préaing the DBN-DNN leads to the best results but it is
not critical: For this task, it provides an absolute WER rdituc of less than 1% and this gain is even smaller
when using five or more hidden layers. For under-resourceguiages that have smaller amounts of labeled data,
pre-training is likely to be far more helpful.

Further study [45] suggests that feature-engineeringnigales such as HLDA and VTLN, commonly used in
GMM-HMMs, are more helpful for shallow neural nets than faBE-DNNs, presumably because DBN-DNNs are

able tolearn appropriate features in their lower layers.

C. Google Voice Input speech recognition task

Google Voice Input transcribes voice search queries, shessages, emails and user actions from mobile devices.
This is a large vocabulary task that uses a language modigingeisfor a mixture of search queries and dictation.

Google’s full-blown model for this task, which was built froa very large corpus, uses a speaker-independent
GMM-HMM model composed of context dependent cross-worghtstne HMMs that have a left-to-right, three-
state topology. This model has a total of 7969 senone statbsiges as acoustic input PLP features that have been
transformed by LDA. Semi-Tied Covariances (STC) are usetienGMMs to model the LDA transformed features
and BMMI[46] was used to train the model discriminatively.

Jaitly et. al.[47] used this model to obtain approximately 5,870 hoursligihad training data for a DBN-DNN
acoustic model that predicts the 7,969 HMM state postefiars the acoustic input. The DBN-DNN was loosely
based on one of the DBN-DNNs used for the TIMIT task. It hadrfbidden layers with 2,560 fully connected
units per layer and a final “softmax” layer with 7,969 altdivia states. Its input was 11 contiguous frames of 40
log filter-bank outputs with no temporal derivatives. EacBNDDNN layer was pre-trained for one epoch as an

RBM and then the resulting DNN was discriminatively fine¢drfor one epoch. Weights with magnitudes below
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a threshold were then permanently set to zero before a fugilierter epoch of training. One third of the weights
in the final network were zero. In addition to the DBN-DNN tiaig, sequence level discriminative fine-tuning
of the neural network was performed using MMI, similar to timethod proposed in [37]. Model combination
was then used to combine results from the GMM-HMM system \figtn DNN-HMM hybrid, using the SCARF
framework [48]. Viterbi decoding was done using the Googtgteam [49] with modifications to compute the scaled
log likelihoods from the estimates of the posterior probtdés and the state priors. Unlike the other systems, it was
observed that for Voice Input it was essential to smooth gtenated priors for good performance. This smoothing
of the priors was performed by rescaling the log priors witmaltiplier that was chosen by using a grid search to
find a joint optimum of the language model weight, the worceitisn penalty and the smoothing factor.

On a test set of anonymized utterances from the live Voicetlsgstem, the DBN-DNN-based system achieved
a word error rate of 12.3% — a 23% relative reduction compaoethe best GMM-based system for this task.
MMI sequence discriminative training gave an error rate 22% and model combination with the GMM system
11.8%.

D. YouTube speech recognition task

In this task, the goal is to transcribe Youtube data. Unlik mobile voice input applications described above,
this application does not have a strong language model teticin the interpretation of the acoustic information
so good discrimination requires an accurate acoustic model

Google’s full-blown baseline, built with a much larger traig set, was used to create approximately 1400 hours
of aligned training data. This was used to create a new lmessjistem for which the input was 9 frames of MFCCs
that were transformed by LDA. Speaker Adaptive Training wagormed, and decision tree clustering was used to
obtain 17,552 triphone states. Semi-tied covariances weed in the GMMs to model the features. The acoustic
models were further improved with BMMI. During decodingafere space Maximum Likelihood Linear Regression
(fMLLR) and Maximum Likelihood Linear Regression (MLLR)ansforms were applied.

The acoustic data used for training the DBN-DNN acoustic ehadere the fMLLR transformed features. The
large number of HMM states added significantly to the compartal burden, since most of the computation is
done at the output layer. To reduce this burden, the DNN us&dfour hidden layers with 2000 units in the first
hidden layer and only 1000 in each of the layers above.

About ten epochs of training were performed on this datareesequence level training and model combination.
The DBN-DNN gave an absolute improvement of 4.7% over thelbees system’s WER of 52.3%. Sequence level
fine-tuning of the DBN-DNN further improved results by 0.5%danodel combination produced an additional gain

of 0.9%.

E. English-Broadcast-News speech recognition task

DNNSs have also been successfully applied to an English basdews task. Since a GMM-HMM baseline creates

the initial training labels for the DNN, it is important to V& a good baseline system. All GMM-HMM systems
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TABLE Il
A comparison of the Percentage Word Error Rates using DNNvishand GMM-HMM s on five different large vocabulary tasks.

task hours of DNN-HMM | GMM-HMM GMM-HMM
training data with same data| with more data

Switchboard (test set 1)) 309 18.5 27.4 18.6 (2000 hrs)

Switchboard (test set 2)] 309 16.1 23.6 17.1 (2000 hrs)

English Broadcast News 50 17.5 18.8

Bing Voice Search 24 30.4 36.2

(Sentence error rates)

Google Voice Input 5,870 12.3 16.0 (>>5,870hrs)

Youtube 1,400 47.6 52.3

created at IBM use the following recipe to produce a statthefart baseline system. First speaker-independent
(SI) features are created, followed by speaker-adaptiraiped (SAT) and discriminatively trained (DT) features.
Specifically, given initial PLP features, a set of S| featuage created using Linear Discriminative Analysis (LDA).
Further processing of LDA features is performed to creatd $atures using vocal tract length normalization
(VTLN) followed by feature space Maximum Likelihood LineRegression (fMLLR). Finally, feature and model-
space discriminative training is applied using the the Badd/aximum Mutual Information (BMMI) or Minimum
Phone Error (MPE) criterion.

Using alignments from a baseline system, [32] trained a BN acoustic model on 50 hours of data from the
1996 and 1997 English Broadcast News Speech Corpora [38]DBN-DNN was trained with the best-performing
LVCSR features, namely SAT + DT features. The DBN-DNN amttiire consisted of 6 hidden layers with 1,024
units per layer and a final softmax layer of 2,220 contextethelent states. The SAT+DT feature input into the first
layer used a context of 9 frames. Pre-training was perforfokalwing a recipe similar to [42].

Two phases of fine-tuning were performed. During the firstsphahe cross-entropy loss was used. For cross-
entropy training, after each iteration through the whokldning set, loss is measured on a held-out set and the
learning rate is annealed (i.e. reduced) by a factor of 2dflikld-out loss has grown or improves by less than
a threshold of 0.01% from the previous iteration. Once tlanimg rate has been annealed five times, the first
phase of fine-tuning stops. After weights are learned vigdentropy, these weights are used as a starting point
for a second phase of fine-tuning using a sequence criteB@hwWhich utilizes the MPE objective function, a
discriminative objective function similar to MMI [7] but wth takes into account phoneme error rate.

A strong SAT+DT GMM-HMM baseline system, which consisted2¢220 context-dependent states and 50,000
Gaussians, gave a WER of 18.8% on the EARS Dev-04f set, whéresdBNN-HMM system gave 17.5% [50].

F. Summary of the main results for DBN-DNN acoustic model&\WWBSR tasks

Table 1l summarizes the acoustic modeling results desdriabove. It shows that DNN-HMMs consistently
outperform GMM-HMMs that are trained on the same amount d¢é&,dsometimes by a large margin. For some
tasks, DNN-HMMs also outperform GMM-HMMSs that are trained much more data.
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G. Speeding up DNNs at recognition time

State pruning or Gaussian selection methods can be useck® @MM-HMM systems computationally efficient
at recognition time. A DNN, however, uses virtually all itarpmeters at every frame to compute state likelihoods,
making it potentially much slower than a GMM with a compaeabumber of parameters. Fortunately, the time that
a DNN-HMM system requires to recognize 1s of speech can hgcestifrom 1.6s to 210ms, without decreasing
recognition accuracy, by quantizing the weights down tot8 and using the very fast SIMD primitives for fixed-
point computation that are provided by a modern x86 CPU[A8@Ernatively, it can be reduced to 66ms by using
a GPU.

H. Alternative pre-training methods for DNNs

Pre-training DNNs as generative models led to better reitiogrresults on TIMIT and subsequently on a variety
of LVCSR tasks. Once it was shown that DBN-DNNs could learndjacoustic models, further research revealed
that they could be trained in many different ways. It is polgsto learn a DNN by starting with a shallow neural
net with a single hidden layer. Once this net has been traiisiminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output unitdstia@ whole network is again discriminatively trained.
This can be continued until the desired number of hiddenrtaye reached, after which full backpropagation
fine-tuning is applied.

This type of discriminative pre-training works well in ptee, approaching the accuracy achieved by generative
DBN pre-training and further improvement can be achievedtbpping the discriminative pre-training after a single
epoch instead of multiple epochs as reported in [45]. Disicrative pre-training has also been found effective
for the architectures called “deep convex network” [51] 4ddep stacking network” [52], where pre-training is
accomplished by convex optimization involving no generatinodels.

Purely discriminative training of the whole DNN from randanitial weights works much better than had been
thought, provided the scales of the initial weights are aegftilly, a large amount of labeled training data is avddab
and mini-batch sizes over training epochs are set appteprigt5], [53]. Nevertheless, generative pre-trainingj st
improves test performance, sometimes by a significant atnoun

Layer-by-layer generative pre-training was originallyndousing RBMs, but various types of autoencoder with
one hidden layer can also be used (see figure 2). On visios,tpskformance similar to RBMs can be achieved
by pre-training with “denoising” autoencoders [54] thaé aegularized by setting a subset of the inputs to zero
or “contractive” autoencoders [55] that are regularizedpleyalizing the gradient of the activities of the hidden
units with respect to the inputs. For speech recognitiompraved performance was achieved on both TIMIT and

Broadcast News tasks by pre-training with a type of autodecdthat tries to find sparse codes [56].

I. Alternative fine-tuning methods for DNNs

Very large GMM acoustic models are trained by making use efghrallelism available in compute clusters.

It is more difficult to use the parallelism of cluster systegfifectively when training DBN-DNNSs. At present, the
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output units

code units

input units

Fig. 2. An autoencoder is trained to minimize the discreparatyéen the input vector and its reconstruction of the inmatar on its output
units. If the code units and the output units are both lineat the discrepancy is the squared reconstruction errorutoeacoder finds the
same solution as Principal Components Analysis (up to a ootaif the components). If the output units and the code unéslagistic, an
autoencoder is quite similar to an RBM that is trained usingtrestive divergence, but it does not work as well for pegaing DNNs unless it
is strongly regularized in an appropriate way. If extra leiddayers are added before and/or after the code layer, aeraadder can compress
data much better than Principal Components Analysis[17].

most effective parallelization method is to parallelize thatrix operations using a GPU. This gives a speed-up of
between one and two orders of magnitude, but the fine-tunagegemains a serious bottleneck and more effective
ways of parallelizing training are needed. Some recentrgite are described in [52], [57].

Most DBN-DNN acoustic models are fine-tuned by applying Iséstic gradient descent with momentum to
small mini-batches of training cases. More sophisticatetimozation methods that can be used on larger mini-
batches include non-linear conjugate-gradient [17], LBHG8] and “Hessian Free” methods adapted to work for
deep neural networks [59]. However, the fine-tuning of DNNwstic models is typically stopped early to prevent

overfitting and it is not clear that the more sophisticatedhmes are worthwhile for such incomplete optimization.

V. OTHER WAYS OF USING DEEPNEURAL NETWORKS FORSPEECHRECOGNITION

The previous section reviewed experiments in which GMMsew@placed by DBN-DNN acoustic models to
give hybrid DNN-HMM systems in which the posterior probéhes over HMM states produced by the DBN-DNN

replace the GMM output model. In this section, we describe dther ways of using DNNs for speech recognition.

A. Using DBN-DNNs to provide input features for GMM-HMM syss

Here we describe a class of methods where neural networkasaek to provide the feature vectors that the
GMM in a GMM-HMM system is trained to model. The most commopi@ach to extracting these feature vectors
is to discriminatively train a randomly initialized neuna¢t with a narrow bottleneck middle layer and to use the
activations of the bottleneck hidden units as features.@=eummary of such methods, commonly known as the

tandem approach, see [60], [61].
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Recently, [62] investigated a less direct way of produciegtdire vectors for the GMM. First, a DNN with
six hidden layers of 1024 units each was trained to achiews gtassification accuracy for the 384 HMM states
represented in its softmax output layer. This DNN did notenavbottleneck layer and it was therefore able to
classify better than a DNN with a bottleneck. Then the 384t$ogomputed by the DNN as input to its softmax
layer were compressed down to 40 values using a 384-1284®&Gtoencoder. This method of producing feature
vectors is called AE-BN because the bottleneck is in the emdoder rather than in the DNN that is trained to
classify HMM states.

Bottleneck feature experiments were conducted on 50 hawils480 hours of data from the 1996 and 1997
English Broadcast News Speech collections and Englishdoest audio from TDT-4. The baseline GMM-HMM
acoustic model trained on 50 hours was the same acousticlrdederibed in Section IV-E. The acoustic model
trained on 430 hours had 6,000 states and 150,000 Gausaigais., the standard IBM LVCSR recipe described
in Section IV-E was used to create a set of speaker-adaptadindinatively trained features and models.

All DBN-DNNSs used SAT features as input. They were pre-edias DBNs and then discriminatively fine-tuned
to predict target values for 384 HMM states that were obtaibg clustering the context-dependent states in the
baseline GMM-HMM system. As in section IV-E, the DBN-DNN wasined using the cross-entropy criterion,
followed by the sequence criterion with the same annealimysdopping rules.

After the training of the first DBN-DNN terminated, the finadtsof weights was used for generating the 384
logits at the output layer. A second 384-128-40-384 DBN-DWNA&E then trained as an auto-encoder to reduce the
dimensionality of the output logits. The GMM-HMM system thesed the feature vectors produced by the AE-BN
was trained using feature and model space discriminatamifig. Both pre-training and the use of deeper networks
made the AE-BN features work better for recognition. Toljatompare the performance of the system that used
the AE-BN features with the baseline GMM-HMM system, thewstic model of the AE-BN features was trained
with the same number of states and Gaussians as the basgieens

Table IV shows the results of the AE-BN and baseline systembath 50 and 430 hours, for different steps in
the LVCSR recipe described in Section IV-E. On 50 hours, tBEeBN system offers a 1.3% absolute improvement
over the baseline GMM-HMM system which is the same improvenas the DBN-DNN, while on 430 hours the
AE-BN system provides 8.5% improvement over the baseline. The 17.5% WER is the besttresdate on the
Dev-04f task, using an acoustic model trained on 50 hoursatd.drinally, the complementarity of the AE-BN
and baseline methods is explored by performing model coatioim on both the 50 and 430 hour tasks. Table IV
shows that model-combination provides an additionalt absolute improvement over individual systems on the
50 hour task, and &.5% absolute improvement over the individual systems on the R8@ task, confirming the
complementarity of the AE-BN and baseline systems.

Instead of replacing the coefficients usually modeled by Gikeural networks can also be used to provide
additional features for the GMM to model [8], [9], [63]. DBBINNs have recently been shown to be very effective
in such tandem systems. On the Aurora2 test set, pre-tcpifécreased word error rates by more than one third

for speech with signal-to-noise levels of 20dB or more, tifothis effect almost disappeared for very high noise
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TABLE IV
WER in % on English Broadcast News

50 Hours 430 Hours
LVCSR Stage GMM-HMM Baseline | AE-BN GMM/HMM Baseline | AE-BN
FSA 24.8 20.6 20.2 17.6
+HBMMI 20.7 19.0 17.7 16.6
+BMMI 19.6 18.1 16.5 15.8
+MLLR 18.8 175 16.0 155
’ Model CombinationH 16.4 H 15.0

levels [64].

B. Using DNNs to estimate articulatory features for detmttbased speech recognition

A recent study [65] demonstrated the effectiveness of DBNND for detecting sub-phonetic speech attributes
(also known as phonological or articulatory features [66]}he widely used Wall Street Journal speech database
(5k-WSJ0). 13 MFCCs plus first and second temporal derivativere used as the short-time spectral representation
of the speech signal. The phone labels were derived fromdteed alignments generated using a GMM-HMM
system trained with maximum likelihood, and that HMM systhad 2818 tied-state, cross-word tri-phones, each
modeled by a mixture of 8 Gaussians. The attribute label® \yenerated by mapping phone labels to attributes,
simplifying the overlapping characteristics of the artitary features. The 22 attributes used in the recent work,
as reported in [65], are a subset of the articulatory featesglored in [66], [67].

DBN-DNNs achieved less than half the error rate of shallowrakenets with a single hidden layer. DNN
architectures with 5 to 7 hidden layers and up to 2048 hidddts yper layer were explored, producing greater
than 90% frame-level accuracy for all 21 attributes testethé full DNN system. On the same data, DBN-DNNs
also achieved a very high per frame phone classificationracgwf 86.6%. This level of accuracy for detecting
sub-phonetic fundamental speech units may allow a new Yaaiiflexible speech recognition and understanding

systems that make use of phonological features in the fudaien-based framework discussed in [65].

VI. SUMMARY AND FUTURE DIRECTIONS

When GMMs were first used for acoustic modeling they were ¢i@is generative models using the EM algorithm
and it was some time before researchers showed that signifieéns could be achieved by a subsequent stage of
discriminative training using an objective function motesely related to the ultimate goal of an ASR system[7],
[68]. When neural nets were first used they were trained dmatively and it was only recently that researchers
showed that significant gains could be achieved by addingitinlistage of generative pre-training that completely
ignores the ultimate goal of the system. The pre-trainingnieh more helpful in deep neural nets than in shallow
ones, especially when limited amounts of labeled trainiaig ére available. It reduces overfitting and it also reduces
the time required for discriminative fine-tuning with bacipagation which was one of the main impediments to

using DNNs when neural networks were first used in place of GMMthe 1990s. The successes achieved using
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pre-training led to a resurgence of interest in DNNs for aticumodeling. Retrospectively, it is now clear that
most of the gain comes from using deep neural networks too@xipformation in neighboring frames and from
modeling tied context-dependent states. Pre-trainingeigfll in reducing overfitting, and it does reduce the time
taken for fine-tuning, but similar reductions in traininghé can be achieved with less effort by careful choice of
the scales of the initial random weights in each layer.

The first method to be used for pre-training DNNs was to leastaak of RBMs, one per hidden layer of the
DNN. An RBM is an undirected generative model that uses Bitatient variables, but training it by maximum
likelihood is expensive so a much faster, approximate ntetadied contrastive divergence is used. This method has
strong similarities to training an autoencoder network ga-finear version of PCA) that converts each datapoint
into a code from which it is easy to approximately recondtthe datapoint. Subsequent research showed that
autoencoder networks with one layer of logistic hiddensuaiso work well for pre-training, especially if they are
regularized by adding noise to the inputs or by constrairiregycodes to be insensitive to small changes in the
input. RBMs do not require such regularization because tamd@ulli noise introduced by using stochastic binary
hidden units acts as a very strong regularizer.

We have described how three major speech research groupssetttsignificant improvements in a variety
of state-of-the-art ASR systems by replacing GMMs with DNIdad we believe that there is the potential for
considerable further improvement. There is no reason tieveethat we are currently using the optimal types of
hidden units or the optimal network architectures and itighly likely that both the pre-training and fine-tuning
algorithms can be modified to reduce the amount of overfittimg the amount of computation. We therefore expect
that the performance gap between acoustic models that uses@Nd ones that use GMMs will continue to increase
for some time.

Currently, the biggest disadvantage of DNNs compared wiMS is that it is much harder to make good use of
large cluster machines to train them on massive dataseis.igbffset by the fact that DNNs make more efficient
use of data so they do not require as much data to achieve itie parformance, but better ways of parallelizing

the fine-tuning of DNNSs is still a major issue.
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