
Adapting Software Fault Isolation to Contemporary CPU Architectures
David Sehr Robert Muth Cliff Biffle Victor Khimenko Egor Pasko

Karl Schimpf Bennet Yee Brad Chen

{sehr,robertm,cbiffle,khim,pasko,kschimpf,bsy,bradchen}@google.com

Abstract
Software Fault Isolation (SFI) is an effective approach
to sandboxing binary code of questionable provenance,
an interesting use case for native plugins in a Web
browser. We present software fault isolation schemes for
ARM and x86-64 that provide control-flow and memory
integrity with average performance overhead of under
5% on ARM and 7% on x86-64. We believe these are the
best known SFI implementations for these architectures,
with significantly lower overhead than previous systems
for similar architectures. Our experience suggests that
these SFI implementations benefit from instruction-level
parallelism, and have particularly small impact for work-
loads that are data memory-bound, both properties that
tend to reduce the impact of our SFI systems for future
CPU implementations.

1 Introduction
As an application platform, the modern web browser has
some noteworthy strengths in such areas as portability
and access to Internet resources. It also has a number
of significant handicaps. One such handicap is compu-
tational performance. Previous work [30] demonstrated
how software fault isolation (SFI) can be used in a sys-
tem to address this gap for Intel 80386-compatible sys-
tems, with a modest performance penalty and without
compromising the safety users expect from Web-based
applications. A major limitation of that work was its
specificity to the x86, and in particular its reliance on x86
segmented memory for constraining memory references.
This paper describes and evaluates analogous designs for
two more recent instruction set implementations, ARM
and 64-bit x86, with pure software-fault isolation (SFI)
assuming the role of segmented memory.

The main contributions of this paper are as follows:
• A design for ARM SFI that provides control flow

and store sandboxing with less than 5% average
overhead,

• A design for x86-64 SFI that provides control flow
and store sandboxing with less than 7% average
overhead, and

• A quantitative analysis of these two approaches on
modern CPU implementations.

We will demonstrate that the overhead of fault isolation
using these techniques is very low, helping to make SFI
a viable approach for isolating performance critical, un-
trusted code in a web application.

1.1 Background
This work extends Google Native Client [30].1 Our
original system provides efficient sandboxing of x86-32
browser plugins through a combination of SFI and mem-
ory segmentation. We assume an execution model where
untrusted (hence sandboxed) code is multi-threaded, and
where a trusted runtime supporting OS portability and se-
curity features shares a process with the untrusted plugin
module.

The original NaCl x86-32 system relies on a set of
rules for code generation that we briefly summarize here:
• The code section is read-only and statically linked.

• The code section is conceptually divided into fixed
sized bundles of 32 bytes.

• All valid instructions are reachable by a disassem-
bly starting at a bundle beginning.

• All indirect control flow instructions are re-
placed by a multiple-instruction sequence (pseudo-
instruction) that ensures target address alignment to
a bundle boundary.

• No instructions or pseudo-instructions in the binary
crosses a bundle boundary.

All rules are checked by a verifier before a program is
executed. This verifier together with the runtime system
comprise NaCls trusted code base (TCB).

For complete details on the x86-32 system please refer
to our earlier paper [30]. That work reported an average
overhead of about 5% for control flow sandboxing, with
the bulk of the overhead being due to alignment consid-
erations. The system benefits from segmented memory
to avoid additional sandboxing overhead.

Initially we were skeptical about SFI as a replace-
ment for hardware memory segments. This was based
in part on running code from previous research [19], in-
dicating about 25% overhead for x86-32 control+store
SFI, which we considered excessive. As we continued

1We abbreviate Native Client as “NaCl” when used as an adjective.

our exploration of ARM SFI and sought to understand
ARM behavior relative to x86 behavior, we could not ad-
equately explain the observed performance gap between
ARM SFI at under 10% overhead with the overhead on
x86-32 in terms of instruction set differences. With fur-
ther study we understood that the prior implementations
for x86-32 may have suffered from suboptimal instruc-
tion selection and overly pessimistic alignment.

Reliable disassembly of x86 machine code figured
largely into the motivation of our previous sandbox de-
sign [30]. While the challenges for x86-64 are substan-
tially similar, it may be less clear why analogous rules
and validation are required for ARM, given the relative
simplicity of the ARM instruction encoding scheme, so
we review a few relevant considerations here. Modern
ARM implementations commonly support 16-bit Thumb
instruction encodings in addition to 32-bit ARM instruc-
tions, introducing the possibility of overlapping instruc-
tions. Also, ARM binaries commonly include a number
of features that must be considered or eliminated by our
sandbox implementation. For example, ARM binaries
commonly include read-only data embedded in the text
segment. Such data in executable memory regions must
be isolated to ensure it cannot be used to invoke system
call instructions or other instructions incompatible with
our sandboxing scheme.

Our architecture further requires the coexistence of
trusted and untrusted code and data in the same pro-
cess, for efficient interaction with the trusted runtime that
provides communications and portable interaction with
the native operating system and the web browser. As
such, indirect control flow and memory references must
be constrained to within the untrusted memory region,
achieved through sandboxing instructions.

We briefly considered using page protection as an al-
ternative to memory segments [26]. In such an ap-
proach, page-table protection would be used to prevent
the untrusted code from manipulating trusted data; SFI is
still required to enforce control-flow restrictions. Hence,
page-table protection can only avoid the overhead of data
SFI; the control-flow SFI overhead persists. Also, further
use of page protection adds an additional OS-based pro-
tection mechanism into the system, in conflict with our
requirement of portability across operating systems. This
OS interaction is complicated by the requirement for
multiple threads that transition independently between
untrusted (sandboxed) and trusted (not sandboxed) ex-
ecution. Due to the anticipated complexity and over-
head of this OS interaction and the small potential per-
formance benefit we opted against page-based protection
without attempting an implementation.

2 System Architecture
The high-level strategy for our ARM and x86-64 sand-
boxes builds on the original Native Client sandbox for
x86-32 [30], which we will call NaCl-ARM, NaCl-x86-
64, and NaCl-x86-32 respectively. The three approaches
are compared in Table 1. Both NaCl-ARM and NaCl-
x86-64 sandboxes use alignment masks on control flow
target addresses, similar to the prior NaCl-x86-32 sys-
tem. Unlike the prior system, our new designs mask
high-order address bits to limit control flow targets to a
logical zero-based virtual address range. For data ref-
erences, stores are sandboxed on both systems. Note
that reads of secret data are generally not an issue as the
address space barrier between the NaCl module and the
browser protects browser resources such as cookies.

In the absence of segment protection, our ARM and
x86-64 systems must sandbox store instructions to pre-
vent modification of trusted data, such as code addresses
on the trusted stack. Although the layout of the address
space differs between the two systems, both use a combi-
nation of masking and guard pages to keep stores within
the valid address range for untrusted data. To enable
faster memory accesses through the stack pointer, both
systems maintain the invariant that the stack pointer al-
ways holds a valid address, using guard pages at each
end to catch escapes due to both overflow/underflow and
displacement addressing.

Finally, to encourage source-code portability between
the systems, both the ARM and the x86-64 systems use
ILP32 (32-bit Int, Long, Pointer) primitive data types, as
does the previous x86-32 system. While this limits the
64-bit system to a 4GB address space, it can also improve
performance on x86-64 systems, as discussed in section
3.2.

At the level of instruction sequences and address space
layout, the ARM and x86-64 data sandboxing solutions
are very different. The ARM sandbox leverages instruc-
tion predication and some peculiar instructions that allow
for compact sandboxing sequences. In our x86-64 sys-
tem we leverage the very large address space to ensure
that most x86 addressing modes are allowed.

3 Implementation
3.1 ARM
The ARM takes many characteristics from RISC micro-
processor design. It is built around a load/store archi-
tecture, 32-bit instructions, 16 general purpose registers,
and a tendency to avoid multi-cycle instructions. It devi-
ates from the simplest RISC designs in several ways:
• condition codes that can be used to predicate most

instructions

• “Thumb-mode” 16-bit instruction extensions can
improve code density

Feature NaCl-x86-32 NaCl-ARM NaCl-x86-64
Addressable memory 1GB 1GB 4GB
Virtual base address Any 0 44GB
Data model ILP32 ILP32 ILP32
Reserved registers 0 of 8 0 of 15 1 of 16
Data address mask method None Explicit instruction Implicit in result width
Control address mask method Explicit instruction Explicit instruction Explicit instruction
Bundle size (bytes) 32 16 32
Data embedded in text segment Forbidden Permitted Forbidden
“Safe” addressing registers All sp rsp, rbp
Effect of out-of-sandbox store Trap No effect (typically) Wraps mod 4GB
Effect of out-of-sandbox jump Trap Wraps mod 1GB Wraps mod 4GB

Table 1: Feature Comparison of Native Client SFI schemes. NB: the current release of the Native Client system have changed since
the first report [30] was written, where the addressable memory size was 256MB. Other parameters are unchanged.

• relatively complex barrel shifter and addressing
modes

While the predication and shift capabilities directly ben-
efit our SFI implementation, we restrict programs to the
32-bit ARM instruction set, with no support for variable-
length Thumb and Thumb-2 encodings. While Thumb
encodings can incrementally reduce text size, most im-
portant on embedded and handheld devices, our work tar-
gets more powerful devices like notebooks, where mem-
ory footprint is less of an issue, and where the negative
performance impact of Thumb encodings is a concern.
We confirmed our choice to omit Thumb encodings with
a number of major ARM processor vendors.

Our sandbox restricts untrusted stores and control flow
to the lowest 1GB of the process virtual address space,
reserving the upper 3GB for our trusted runtime and the
operating system. As on x86-64, we do not prevent un-
trusted code from reading outside its sandbox. Isolating
faults in ARM code thus requires:
• Ensuring that untrusted code cannot execute any

forbidden instructions (e.g. undefined encodings,
raw system calls).

• Ensuring that untrusted code cannot store to mem-
ory locations above 1GB.

• Ensuring that untrusted code cannot jump to mem-
ory locations above 1GB (e.g. into the service run-
time implementation).

We achieve these goals by adapting to ARM the ap-
proach described by Wahbe et al. [28]. We make three
significant changes, which we summarize here before re-
viewing the full design in the rest of this section. First,
we reserve no registers for holding sandboxed addresses,
instead requiring that they be computed or checked in
a single instruction. Second, we ensure the integrity of
multi-instruction sandboxing pseudo-instructions with a
variation of the approach used by our earlier x86-32 sys-

tem [30], adapted to further prevent execution of embed-
ded data. Finally, we leverage the ARM’s fully predi-
cated instruction set to introduce an alternative data ad-
dress sandboxing sequence. This alternative sequence
replaces a data dependency with a control dependency,
preventing pipeline stalls and providing better overhead
on multiple-issue and out-of-order microarchitectures.

3.1.1 Code Layout and Validation
On ARM, as on x86-32, untrusted program text is sepa-
rated into fixed-length bundles, currently 16 bytes each,
or four machine instructions. All indirect control flow
must target the beginning of a bundle, enforced at run-
time with address masks detailed below. Unlike on the
x86-32, we do not need bundles to prevent overlapping
instructions, which are impossible in ARM’s 32-bit in-
struction encoding. They are necessary to prevent indi-
rect control flow from targeting the interior of pseudo-
instruction and bundle-aligned “trampoline” sequences.
The bundle structure also allows us to support data em-
bedded in the text segment, with data bundles starting
with an invalid instruction (currently bkpt 0x7777)
to prevent execution as code.

The validator uses a fall-through disassembly of the
text to identify valid instructions, noting the interior of
pseudo-instructions and data bundles are not valid con-
trol flow targets. When it encounters a direct branch,
it further confirms that the branch target is a valid in-
struction. For indirect control flow, many ARM opcodes
can cause a branch by writing r15, the program counter.
We forbid most of these instructions2 and consider only
explicit branch-to-address-in-register forms such as bx
r0 and their conditional equivalents. This restriction is
consistent with recent guidance from ARM for compiler

2We do permit the instruction bic r15, rN, MASKAlthough it
allows a single-instruction sandboxed control transfer, it can have poor
branch prediction performance.

writers. Any such branch must be immediately preceded
by an instruction that masks the destination register. The
mask must clear the most significant two bits, restricting
branches to the low 1GB, and the four least significant
bits, restricting targets to bundle boundaries. In 32-bit
ARM, the Bit Clear (bic) instruction can clear up to
eight bits rotated to any even bit position. For example,
this pseudo-instruction implements a sandboxed branch
through r0 in eight bytes total, versus the four bytes re-
quired for an unsandboxed branch:

bic r0, r0, #0xc000000f
bx r0

As we do not trust the contents of memory, the com-
mon ARM return idiom pop {pc} cannot be used. In-
stead, the return address must be popped into a register
and masked:

pop { lr }
bic lr, lr, #0xc000000f
bx lr

Branching through LR (the link register) is still recog-
nized by the hardware as a return, so we benefit from
hardware return stack prediction. Note that these se-
quences introduce a data dependency between the bx
branch instruction and its adjacent masking instruction.
This pattern (generating an address via the ALU and im-
mediately jumping to it) is sufficiently common in ARM
code that the modern ARM implementations [3] can dis-
patch the sequence without stalling.

For stores, we check that the address is confined to the
low 1GB, with no alignment requirement. Rather than
destructively masking the address, as we do for control
flow, we use a tst instruction to verify that the most
significant bit is clear together with a predicated store:3

tst r0, #0xc0000000
streq r1, [r0, #12]

Like bic, tst uses an eight-bit immediate rotated
to any even position, so the encoding of the mask is
efficient. Using tst rather than bic here avoids a
data dependency between the guard instruction and the
store, eliminating a two-cycle address-generation stall
on Cortex-A8 that would otherwise triple the cost of
the added instruction. This illustrates the usefulness of
the ARM architecture’s fully predicated instruction set.
Some predicated SFI stores can also be synthesized in
this manner, using sequences such as tsteq/streq.
For cases where the compiler has selected a predicated
store that cannot be synthesized with tst, we revert
to a bic-based sandbox, with the consequent address-
generation stall.

3The eq condition checks the Z flag, which tst will set if the se-
lected bit is clear.

We allow only base-plus-displacement addressing
with immediate displacement. Addressing modes that
combine multiple registers to compute an effective ad-
dress are forbidden for now. Within this limitation, we
allow all types of stores, including the Store-Multiple
instruction and DMA-style stores through coprocessors,
provided the address is checked or masked. We allow the
ARM architecture’s full range of pre- and post-increment
and decrement modes. Note that since we mask only the
base address and ARM immediate displacements can be
up to ±4095 bytes, stores can access a small band of
memory outside the 1GB data region. We use guard
pages at each end of the data region to trap such ac-
cesses.4

3.1.2 Stores to the Stack
To allow optimized stores through the stack pointer, we
require that the stack pointer register (SP) always con-
tain a valid data address. To enforce this requirement,
we initialize SP with a valid address before activating
the untrusted program, with further requirements for the
two kinds of instructions that modify SP. Instructions that
update SP as a side-effect of a memory reference (for ex-
ample pop) are guaranteed to generate a fault if the mod-
ified SP is invalid, because of our guard regions at either
end of data space. Instructions that update SP directly
are sandboxed with a subsequent masking instruction, as
in:

mov SP, r1
bic SP, SP, #c0000000

This approach could someday be extended to other reg-
isters. For example, C-like languages might benefit from
a frame pointer handled in much the same way as the SP,
as we do for x86-64, while Java and C++ might addition-
ally benefit from efficient stores through this. In these
cases, we would also permit moves between any two
such data-addressing registers without requiring mask-
ing.

3.1.3 Reference Compiler
We have modified LLVM 2.6 [13] to implement our
ARM SFI design. We chose LLVM because it appeared
to allow an easier implementation of our SFI design, and
to explore its use in future cross-platform work. In prac-
tice we have also found it to produce faster ARM code
than GCC, although the details are outside the scope of
this paper. The SFI changes were restricted to the ARM
target implementation within the llc binary, and re-
quired approximately 2100 lines of code and table mod-
ifications. For the results presented in this paper we used

4The guard pages “below” the data region are actually at the top of
the address space, where the OS resides, and are not accessible from
user mode.

the compiler to generate standard Linux executables with
access to the full instruction set. This allows us to isolate
the behavior of our SFI design from that of our trusted
runtime.

3.2 x86-64
While the mechanisms of our x86-64 implementation
are mostly analogous to those of our ARM implemen-
tation, the details are very different. As with ARM, a
valid data address range is surrounded by guard regions,
and modifications to the stack pointer (rsp) and base
pointer (rbp) are masked or guarded to ensure they al-
ways contain a valid address. Our ARM approach relies
on being able to ensure that the lowest 1GB of address
space does not contain trusted code or data. Unfortu-
nately this is not possible to ensure on some 64-bit Win-
dows versions, which rules out simply using an address
mask as ARM does. Instead, our x86-64 system takes
advantage of more sophisticated addressing modes and
use a small set of “controlled” registers as the base for
most effective address computations. The system uses
the very large address space, with a 4GB range for valid
addresses surrounded by large (multiples of 4GB) un-
mapped/protected regions. In this way many common
x86 addressing modes can be used with little or no sand-
boxing.

Before we describe the details of our design, we pro-
vide some relevant background on AMD’s 64-bit exten-
sions to x86. Apart from the obvious 64-bit address
space and register width, there are a number of perfor-
mance relevant changes to the instruction set. The x86
has an established practice of using related names to
identify overlapping registers of different lengths; for ex-
ample ax refers to the lower 16-bits of the 32-bit eax. In
x86-64, general purpose registers are extended to 64-bits,
with an r replacing the e to identify the 64 vs. 32-bit reg-
isters, as in rax. x86-64 also introduces eight new gen-
eral purpose registers, as a performance enhancement,
named r8 - r15. To allow legacy instructions to use
these additional registers, x86-64 defines a set of new
prefix bytes to use for register selection. A relatively
small number of legacy instructions were dropped from
the x86-64 revision, but they tend to be rarely used in
practice.

With these details in mind, the following code genera-
tion rules are specific to our x86-64 sandbox:
• The module address space is an aligned 4GB region,

flanked above and below by protected/unmapped re-
gions of 10×4GB, to compensate for scaling (c.f.
below)

• A designated register “RZP” (currently r15) is ini-
tialized to the 4GB-aligned base address of un-
trusted memory and is read-only from untrusted
code.

• All rip update instructions must use RZP.

To ensure that rsp and rbp contain a valid data address
we use a few additional constraints:
• rbp can be modified via a copy from rsp with no

masking required.

• rsp can be modified via a copy from rbp with no
masking required.

• Other modifications to rsp and rbp must be done
with a pseudo-instruction that post-masks the ad-
dress, ensuring that it contains a valid data address.

For example, a valid rsp update sequence looks like
this:

%esp = %eax
lea (%RZP, %rsp, 1), %rsp

In this sequence the assignment5 to esp guarantees that
the top 32-bits of rsp are cleared, and the subsequent
add sets those bits to the valid base. Of course such se-
quences must always be executed in their entirety. Given
these rules, many common store instructions can be used
with little or no sandboxing required. Push, pop and
near call do not require checking because the up-
dated value of rsp is checked by the subsequent mem-
ory reference. The safety of a store that uses rsp or rbp
with a simple 32-bit displacement:

mov disp32(%rsp), %eax

follows from the validity invariant on rsp and the guard
ranges that absorb the displacement, with no masking re-
quired. The most general addressing expression for an
allowed store combines a valid base register (rsp, rbp
or RZP) with a 32-bit displacement, a 32-bit index, and
a scaling factor of 1, 2, 4, or 8. The effective address is
computed as:

basereg + indexreg * scale + disp32

For example, in this pseudo-instruction:

add $0x00abcdef, %ecx
mov %eax, disp32(%RZP, %rcx, scale)

the upper 32 bits of rcx are cleared by the arithmetic
operation on ecx. Note that any operation on ecx
will clear the top 32 bits of rcx. This required mask-
ing operation can often be combined other useful oper-
ations. Note that this general form allows generation of
addresses in a range of approximately 100GB, with the

5We have used the = operation to indicate assignment to the register
on the left hand side. There are several instructions, such as lea or
movzx that can be used to perform this assignment. Other instructions
are written using ATT syntax.

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

gz
ip vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip

2

tw
ol

f

Figure 1: SPEC2000 SFI Performance Overhead for the ARM
Cortex-A9.

valid 4GB range near the middle. By reserving and un-
mapping addresses outside the 4GB range we can ensure
that any dereference of an address outside the valid range
will lead to a fault. Clearly this scheme relies heavily on
the very large 64-bit address space.

Finally, note that updates to the instruction pointer
must align the address to 0 mod 32 and initialize the
top 32-bits of address from RZP as in this example us-
ing rdx:

%edx = ...
and 0xffffffe0, %edx
lea (%RZP, %rdx, 1), %rdx
jmp *%rdx

Our x86-64 SFI implementation is based on GCC
4.4.3, requiring a patch of about 2000 lines to the com-
piler, linker and assembler source. At a high level,
the changes include supporting the new call/return se-
quences, making pointers and longs 32 bits, allocating
r15 for use as RZB, and constraining address generation
to meet the above rules.

4 Evaluation
In this section we evaluate the performance of our ARM
and x86-64 SFI schemes by comparing against the rel-
evant non-SFI baselines, using C and benchmarks from
SPEC2000 INT CPU [12]. Our main analysis is based on
out-of-order CPUs, with additional measurements for in-
order systems at the end of this section. The out-of-order
systems we used for our experiments were:
• For x86-64, a 2.4GHz Intel Core 2 Quad with 8GB

of RAM, running Ubuntu Linux 8.04, and

• For ARM, a 1GHz Cortex-A9 (Nvidia Tegra T20)
with 512MB of RAM, running Ubuntu Linux 9.10.

4.1 ARM
For ARM, we compared LLVM 2.6 [13] to the same
compiler modified to support our SFI scheme. Figure 1
summarizes the ARM results, with tabular data in Ta-
ble 2. Average overhead is about 5% on the out-of-order

x86-64 SFI vs. SFI vs. ARM
SFI -m32 -m64 SFI

164.gzip 16.0 0.82 16.0 0.53
175.vpr 1.60 -5.06 1.60 6.57
176.gcc 35.1 35.1 33.0 5.31
181.mcf 1.34 1.34 -42.6 -3.65
186.crafty 29.3 -8.17 29.3 6.61
197.parser -4.07 -4.07 -20.3 10.83
253.perlbmk 34.6 26.6 34.6 9.43
254.gap -4.46 -4.46 -5.09 7.01
255.vortex 43.0 26.0 43.0 4.71
256.bzip2 21.6 4.84 21.6 5.38
300.twolf 0.80 -3.08 0.80 4.94
geomean 14.7 5.24 6.9 5.17

Table 2: SPEC2000 SFI Performance Overhead (percent). The
first column compares x86-64 SFI overhead to the “oracle”
baseline compiler.

ARM ARM SFI %inc. %pad
164.gzip 73 90 24 13
175.vpr 225 271 20 13
176.gcc 1586 1931 22 14
181.mcf 84 103 23 12
186.crafty 320 384 20 12
197.parser 219 265 21 12
253.perlbmk 812 1009 24 14
254.gap 531 636 20 11
255.vortex 720 845 17 13
256.bzip2 74 92 24 13
300.twolf 289 343 19 11

Table 3: ARM SPEC2000 text segment size in kilobytes, with
% increase and % padding instructions.

Cortex-A9, and is fairly consistent across the bench-
marks. Increases in binary size (Table 3) are compara-
ble at around 20% (generally about 10% due to align-
ment padding and 10% due to added instructions, shown
in the rightmost columns of the table). We believe the
observed overhead comes primarily from the increase in
code path length. For mcf, this benchmark is known to
be data-cache intensive [17], a case in which the addi-
tional sandboxing instructions have minimal impact, and
can sometimes be hidden by out-of-order execution on
the Cortex-A9. We see the largest slowdowns for gap,
gzip, and perlbmk. We suspect these overheads are
a combination of increased path length and instruction
cache penalties, although we do not have access to ARM
hardware performance counter data to confirm this hy-
pothesis.

-5%
0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

gz
ip vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip

2

tw
ol

f

Figure 2: SPEC2000 SFI Performance Overhead for x86-64.
SFI performance is compared to the faster of -m32 and -m64
compilation.

4.2 x86-64
Our x86-64 comparisons are based on GCC 4.4.3. The
selection of a performance baseline is not straightfor-
ward. The available compilation modes for x86 are ei-
ther 32-bit (ILP32, -m32) or 64-bit (LP64, -m64). Each
represents a performance tradeoff, as demonstrated pre-
viously [15, 25]. In particular, the 32-bit compilation
model’s use of ILP32 base types means a smaller data
working set compared to standard 64-bit compilation in
GCC. On the other hand, use of the 64-bit instruction set
offers additional registers and a more efficient register-
based calling convention compared to standard 32-bit
compilation. Ideally we would compare our SFI com-
piler to a version of GCC that uses ILP32 and the 64-bit
instruction set, but without our SFI implementation. In
the absence of such a compiler, we consider a hypothet-
ical compiler that uses an oracle to automatically select
the faster of -m32 and -m64 compilation. Unless other-
wise noted all GCC compiles used the -O2 optimization
level.

Figure 2 and Table 2 provide x86-64 results, where
average SFI overhead is about 5% compared to -m32,
7% compared to -m64 and 15% compared to the ora-
cle compiler. Across the benchmarks, the distribution
is roughly bi-modal. For parser and gap, SFI per-
formance is better than either -m32 or -m64 binaries
(Table 4). These are also cases where -m64 execution
is slower than -m32, indicative of data-cache pressure,
leading us to believe that the beneficial impact additional
registers dominates SFI overhead. Three other bench-
marks (vpr, mcf and twolf) show SFI impact is less
than 2%. We believe these are memory-bound and do not
benefit significantly from the additional registers.

At the other end of the range, four benchmarks,
gcc, crafty, perlbmk and vortex show perfor-
mance overhead greater than 25%. All run as fast or
faster for -m64 than -m32, suggesting that data-cache
pressure does not dominate their performance. Gcc,
perlbmk and vortex have large text, and we sus-

-m32 -m64 SFI
164.gzip 122 106 123
175.vpr 87 81.3 82.6
176.gcc 47.3 48.0 63.9
181.mcf 59.5 105 60.3
186.crafty 60 42.6 55.1
197.parser 123 148 118
253.perlbmk 86.9 81.7 110
254.gap 60.5 60.9 57.8
255.vortex 99.2 87.4 125
256.bzip2 99.2 85.5 104
300.twolf 130 125 126

Table 4: SPEC2000 x86-64 execution times, in seconds.

-m32 -m64 SFI
164.gzip 82 85 155
175.vpr 239 244 350
176.gcc 1868 2057 3452
181.mcf 20 23 33
186.crafty 286 257 395
197.parser 243 265 510
253.perlbmk 746 835 1404
254.gap 955 1015 1641
255.vortex 643 620 993
256.bzip2 98 95 159
300.twolf 375 410 617

Table 5: SPEC2000 x86 text sizes, in kilobytes.

pect SFI code-size increase may be contributing to in-
struction cache pressure. From hardware performance
counter data, crafty shows a 26% increase in instruc-
tions retired and an increase in branch mispredicts from
2% to 8%, likely contributors to the observed SFI perfor-
mance overhead. We have also observed that perlbmk
and vortex are very sensitive to memcpy performance.
Our x86-64 experiments are using a relative simple im-
plementation of memcpy, to allow the same code to be
used with and without the SFI sandbox. In our continu-
ing work we are adapting a tuned memcpy implementa-
tion to work within our sandbox.

4.3 In-Order vs. Out-of-Order CPUs
We suspected that the overhead of our SFI scheme would
be hidden in part by CPU microarchitectures that bet-
ter exploit instruction-level parallelism. In particular,
we suspected we would be helped by the ability of out-
of-order CPUs to schedule around any bottlenecks that
SFI introduces. Fortunately, both architectures we tested
have multiple implementations, including recent prod-
ucts with in-order dispatch. To test our hypothesis, we
ran a subset of our benchmarks on in-order machines:

-10%

0%

10%

20%

30%

40%

50%

60%

gz
ip

m
cf

cr
af

ty

pa
rs

er

ga
p

bz
ip

2

A
dd

iti
on

al
 S

FI
 O

ve
rh

ea
d

Atom 330 v. Core 2
Cortex-A8 v. Cortex-A9

Figure 3: Additional SPEC2000 SFI overhead on in-order mi-
croarchitectures.

Core 2 Atom 330 A9 A8
164.gzip 16.0 25.1 4.4 2.6
181.mcf -42.6 -34.4 -0.2 -1.0
186.crafty 29.3 51.2 4.2 6.3
197.parser -20.3 -11.5 3.2 0.6
254.gap -5.09 42.3 3.4 7.7
256.bzip2 21.6 25.9 2.9 2.0
geomean 6.89 18.5 3.0 3.0

Table 6: Comparison of SPEC2000 overhead (percent) for in-
order vs. out-of-order microarchitecture.

• A 1.6GHz Intel Atom 330 with 2GB of RAM, run-
ning Ubuntu Linux 9.10.

• A 500MHz Cortex-A8 (Texas Instruments
OMAP3540) with 256MB of RAM, running
Ångström Linux.

The results are shown in Figure 3 and Table 6. For
our x86-64 SFI scheme, the incremental overhead can be
significantly higher on the Atom 330 compared to a Core
2 Duo. This suggests out-of-order execution can help
hide the overhead of SFI, although other factors may also
contribute, including much smaller caches on the Atom
part and the fact that GCC’s 64-bit code generation may
be biased towards the Core 2 microarchitecture. These
results should be considered preliminary, as there are a
number of optimizations for Atom that are not yet avail-
able in our compiler, including Atom-specific instruction
scheduling and better selection of no-ops. Generation of
efficient SFI code for in-order x86-64 systems is an area
of continuing work.

The story on ARM is different. While some bench-
marks (notably gap) have higher overhead, some (such
as parser) have equally reduced overhead. We were
surprised by this result, and suggest two factors to ac-
count for it. First, microarchitectural evaluation of the
Cortex-A8 [3] suggests that the instruction sequences
produced by our SFI can be issued without encountering

a hazard that would cause a pipeline stall. Second, we
suggest that the Cortex-A9, as the first widely-available
out-of-order ARM chip, might not match the maturity
and sophistication of the Core 2 Quad.

5 Discussion
Given our initial goal to impact execution time by less
than 10%, we believe these SFI designs are promising.
At this level of performance, most developers targeting
our system would do better to tune their own code rather
than worry about SFI overhead. At the same time, the
geometric mean commonly used to report SPEC results
does a poor job of capturing the system’s performance
characteristics; nobody should expect to get “average”
performance. As such we will continue our efforts to
reduce the impact of SFI for the cases with the largest
slowdowns.

Our work fulfills a prediction that the costs of SFI
would become lower over time [28]. While thoughtful
design has certainly helped minimize SFI performance
impact, our experiments also suggest how SFI has bene-
fited from trends in microarchitecture. Out-of-order ex-
ecution, multi-issue architectures, and the effective gap
between memory speed and CPU speed all contribute
to reduce the impact of the register-register instructions
used by our sandboxing schemes.

We were surprised by the low overhead of the ARM
sandbox, and that the x86-64 sandbox overhead should
be so much larger by comparison. Clever ARM in-
struction encodings definitely contributed. Our design
directly benefits from the ARM’s powerful bit-clear in-
struction and from predication on stores. It usually re-
quires one instruction per sandboxed ARM operation,
whereas the x86-64 sandbox frequently requires extra in-
structions for address calculations and adds a prefix byte
to many instructions. The regularity of the ARM instruc-
tion set and smaller bundles (16 vs. 32 bytes) also means
that less padding is required for the ARM, hence less
instruction cache pressure. The x86-64 design also in-
duces branch misprediction through our omission of the
ret instruction. By comparison the ARM design uses
the normal return idiom hence minimal impact on branch
prediction. We also note that the x86-64 systems are gen-
erally clocked at a much higher rate than the ARM sys-
tems, making the relative distance to memory a possible
factor. Unfortunately we do not have data to explore this
question thoroughly at this time.

We were initially troubled by the result that our system
improves performance for so many benchmarks com-
pared to the common -m32 compilation mode. This
clearly results from the ability of our system to leverage
features of the 64-bit instruction set. There is a sense in
which the comparison is unfair, as running a 32-bit bi-
nary on a 64-bit machine leaves a lot of resources idle.

Our results demonstrate in part the benefit of exploiting
those additional resources.

We were also surprised by the magnitude of the posi-
tive impact of ILP32 primitive types for a 64-bit binary.
For now our x86-64 design benefits from this as yet un-
exploited opportunity, although based on our experience
the community might do well to consider making ILP32
a standard option for x86-64 execution.

In our continuing work we are pursuing opportuni-
ties to reduce SFI overhead of our x86-64 system, which
we do not consider satisfactory. Our current alignment
implementation is conservative, and we have identified
a number of opportunities to reduce related padding.
We will be moving to GCC version 4.5 which has
instruction-scheduling improvements for in-order Atom
systems. In the fullness of time we look forward to devel-
oping an infrastructure for profile-guided optimization,
which should provide opportunities for both instruction
cache and branch optimizations.

6 Related Work
Our work draws directly on Native Client, a previous
system for sandboxing 32-bit x86 modules [30]. Our
scheme for optimizing stack references was informed
by an earlier system described by McCamant and Mor-
risett [18]. We were heavily influenced by the original
software fault isolation work by Wahbe, Lucco, Ander-
son and Graham [28].

Although there is a large body of published research
on software fault isolation, we are aware of no publica-
tions that specifically explore SFI for ARM or for the
64-bit extensions of the x86 instruction set. SFI for
SPARC may be the most thoroughly studied, being the
subject of the original SFI paper by Wahbe et al. [28]
and numerous subsequent studies by collaborators of
Wahbe and Lucco [2, 16, 11] and independent investi-
gators [4, 5, 8, 9, 10, 14, 22, 29]. As this work matured,
much of the community’s attention turned to a more vir-
tual machine-oriented approach to isolation, incorporat-
ing a trusted compiler or interpreter into the trusted core
of the system.

The ubiquity of the 32-bit x86 instruction set has cat-
alyzed development of a number of additional sandbox-
ing schemes. MiSFIT [23] contemplated use of software
fault isolation to constrain untrusted kernel modules [24].
Unlike our system, they relied on a trusted compiler
rather than a validator. SystemTAP and XFI [21, 7] fur-
ther contemplate x86 sandboxing schemes for kernel ex-
tension modules. McCamant and Morrisett [18, 19] stud-
ied x86 SFI towards the goals of system security and re-
ducing the performance impact of SFI.

Compared to our sandboxing schemes, CFI [1] pro-
vides finer-grained control flow integrity. Whereas our
systems only guarantee indirect control flow will target

an aligned address in the text segment, CFI can restrict
a specific control transfer to a fairly arbitrary subset of
known targets. While this more precise control is useful
in some scenarios, such as ensuring integrity of transla-
tions from higher-level languages, our use of alignment
constraints helps simplify our design and implementa-
tion. CFI also has somewhat higher average overhead
(15% on SPEC2000), not surprising since its instrumen-
tation sequences are longer than ours. XFI [7] adds
to CFI further integrity constraints such as on memory
and the stack, with additional overhead. More recently,
BGI [6] considers an innovative scheme for constrain-
ing the memory activity of device drivers, using a large
bitmap to track memory accessibility at very fine gran-
ularity. None of these projects considered the problem
of operating system portability, a key requirement of our
systems.

The Nooks system [26] enhances operating system
kernel reliability by isolating trusted kernel code from
untrusted device driver modules using a transparent OS
layer called the Nooks Isolation Manager (NIM). Like
Native Client, NIM uses memory protection to isolate
untrusted modules. As the NIM operates in the kernel,
x86 segments are not available. The NIM instead uses a
private page table for each extension module. To change
protection domains, the NIM updates the x86 page ta-
ble base address, an operation that has the side effect
of flushing the x86 Translation Lookaside Buffer (TLB).
In this way, NIM’s use of page tables suggests an alter-
native to segment protection as used by NaCl-x86-32.
While a performance analysis of these two approaches
would likely expose interesting differences, the compar-
ison is moot on the x86 as one mechanism is available
only within the kernel and the other only outside the ker-
nel. A critical distinction between Nooks and our sand-
boxing schemes is that Nooks is designed only to pro-
tect against unintentional bugs, not abuse. In contrast,
our sandboxing schemes must be resistant to attempted
deliberate abuse, mandating our mechanisms for reliable
x86 disassembly and control flow integrity. These mech-
anisms have no analog in Nooks.

Our system uses a static validator rather than a trusted
compiler, similar to validators described for other sys-
tems [7, 18, 19, 21], applying the concept of proof-
carrying code [20]. This has the benefit of greatly re-
ducing the size of the trusted computing base [27], and
obviates the need for cryptographic signatures from the
compiler. Apart from simplifying the security implemen-
tation, this has the further benefit of opening our system
to 3rd-party tool chains.

7 Conclusion
This paper has presented practical software fault isola-
tion systems for ARM and for 64-bit x86. We believe

these systems demonstrate that the performance over-
head of SFI on modern CPU implementations is small
enough to make it a practical option for general purpose
use when executing untrusted native code. Our experi-
ence indicates that SFI benefits from trends in microar-
chitecture, such as out-of-order and multi-issue CPU
cores, although further optimization may be required to
avoid penalties on some recent low power in-order cores.
We further found that for data-bound workloads, mem-
ory latency can hide the impact of SFI.

Source code for Google Native Client can be found at:
http://code.google.com/p/nativeclient/.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Lig-

atti. Control-flow integrity: Principles, implemen-
tations, and applications. In Proceedings of the
12th ACM Conference on Computer and Commu-
nications Security, November 2005.

[2] A. Adl-Tabatabai, G. Langdale, S. Lucco, and
R. Wahbe. Efficient and language-independent mo-
bile programs. SIGPLAN Not., 31(5):127–136,
1996.

[3] ARM Limited. Cortex A8 technical reference
manual. http://infocenter.arm.com/
help/index.jsp?topic=com.arm.doc.
ddi0344/index.html, 2006.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In 19th ACM Symposium
on Operating Systems Principles, pages 164–177,
2003.

[5] E. Bugnion, S. Devine, K. Govil, and M. Rosen-
blum. Disco: Running commodity operating sys-
tems on scalable multiprocessors. ACM Trans-
actions on Computer Systems, 15(4):412–447,
November 1997.

[6] M. Castro, M. Costa, J. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In
2009 Symposium on Operating System Principles,
pages 45–58, October 2009.

[7] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. Necula. XFI: Software guards for system ad-
dress spaces. In OSDI ’06: 7th Symposium on Op-
erating Systems Design And Implementation, pages
75–88, November 2006.

[8] B. Ford. VXA: A virtual architecture for durable
compressed archives. In USENIX File and Storage
Technologies, December 2005.

[9] B. Ford and R. Cox. Vx32: Lightweight user-level
sandboxing on the x86. In 2008 USENIX Annual
Technical Conference, June 2008.

[10] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. Addison-Wesley,
2000.

[11] S. Graham, S. Lucco, and R. Wahbe. Adaptable bi-
nary programs. In Proceedings of the 1995 USENIX
Technical Conference, 1995.

[12] J. L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. Computer,
33(7):28–35, 2000.

[13] C. Lattner. LLVM: An infrastructure for multi-
stage optimization. Masters Thesis, Computer Sci-
ence Department, University of Illinois, 2003.

[14] T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Prentice Hall, 1999.

[15] J. Liu and Y. Wu. Performance characterization
of the 64-bit x86 architecture from compiler opti-
mizations’ perspective. In Proceedings of the In-
ternational Conference on Compiler Construction,
CC’06, 2006.

[16] S. Lucco, O. Sharp, and R. Wahbe. Omniware: A
universal substrate for web programming. In Fourth
International World Wide Web Conference, 1995.

[17] C.-K. Luk, R. Muth, H. Patil, R. Weiss, P. G.
Lowney, and R. Cohn. Profile-guided post-
link stride prefetching. In Proceedings of the
ACM International Conference on Supercomput-
ing, ICS’02, 2002.

[18] S. McCamant and G. Morrisett. Efficient, veri-
fiable binary sandboxing for a CISC architecture.
Technical Report MIT-CSAIL-TR-2005-030, MIT
Computer Science and Artificial Intelligence Labo-
ratory, 2005.

[19] S. McCamant and G. Morrisett. Evaluating SFI for
a CISC architecture. In 15th USENIX Security Sym-
posium, August 2006.

[20] G. Necula. Proof carrying code. In Principles of
Programming Languages, 1997.

[21] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Kenis-
ton, and J. Chen. Locating system problems using
dynamic instrumentation. In 2005 Ottawa Linux
Symposium, pages 49–64, July 2005.

[22] J. Richter. CLR via C#, Second Edition. Microsoft
Press, 2006.

[23] C. Small. MiSFIT: A tool for constructing safe ex-
tensible C++ systems. In Proceedings of the Third
USENIX Conference on Object-Oriented Technolo-
gies, June 1997.

[24] C. Small and M. Seltzer. VINO: An integrated
platform for operating systems and database re-
search. Technical Report TR-30-94, Harvard Uni-
versity, Division of Engineering and Applied Sci-
ences, Cambridge, MA, 1994.

[25] Sun Microsystems. Compressed OOPs in
the HotSpot JVM. http://wikis.sun.
com/display/HotSpotInternals/
CompressedOops.

[26] M. Swift, M. Annamalai, B. Bershad, and H. Levy.
Recovering device drivers. In 6th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, December 2004.

[27] U. S. Department of Defense, Computer Security
Center. Trusted computer system evaluation crite-
ria, December 1985.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. ACM
SIGOPS Operating Systems Review, 27(5):203–
216, December 1993.

[29] C. Waldspurger. Memory resource management in
VMware ESX Server. In 5th Symposium on Oper-
ating Systems Design and Implementation, Decem-
ber 2002.

[30] B. Yee, D. Sehr, G. Dardyk, B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Ful-
lagar. Native client: A sandbox for portable, un-
trusted x86 native code. In Proceedings of the 2009
IEEE Symposium on Security and Privacy, 2009.

