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Abstract

Deep neural networks (DNNs) have recently become the state
of the art technology in speech recognition systems. In this pa-
per we propose a new approach to constructing large high qual-
ity unsupervised sets to train DNN models for large vocabulary
speech recognition. The core of our technique consists of two
steps. We first redecode speech logged by our production rec-
ognizer with a very accurate (and hence too slow for real-time
usage) set of speech models to improve the quality of ground
truth transcripts used for training alignments. Using confidence
scores, transcript length and transcript flattening heuristics de-
signed to cull salient utterances from three decades of speech
per language, we then carefully select training data sets consist-
ing of up to 15K hours of speech to be used to train acoustic
models without any reliance on manual transcription. We show
that this approach yields models with approximately 18K con-
text dependent states that achieve 10% relative improvement in
large vocabulary dictation and voice-search systems for Brazil-
ian Portuguese, French, Italian and Russian languages.

Index Terms: large unsupervised training sets, data selection,
deep neural networks, acoustic modeling

1. Introduction

Automatic speech recognition (ASR) systems have become a
popular human-computer interaction modality and have been
deployed as an input method in many successful commercial
products [1]. The quality of available ASR systems has seen
significant improvement over the last decade for various small
and large vocabulary recognition problems [2]. In particular,
one of the main driving forces behind the most recent improve-
ments are deep neural networks (DNN), which have become the
state of the art technology for acoustic modeling [2].

It has been observed [3] that the performance of DNN mod-
els improves with the number of context-dependent states and
hidden layers used. The high dimensionality of the model, how-
ever, requires large volumes of high quality data to be used for
training. Traditionally, acoustic models are constructed from
supervised data manually transcribed by humans. Unfortu-
nately, manual transcription of large data sets is expensive and
scales poorly for systems that support a large number of lan-
guages, such as Google speech products. Rather than rely-
ing on small supervised training sets, one can instead exploit
the large amount of audio data that is processed by systems
like Voice Search, together with semi-supervised techniques to
construct large training sets with automatically derived tran-
scripts [4, 5, 6,7, 8].

In this paper we describe Google’s approach to construct-
ing speech corpora and models in a fully unsupervised man-
ner. Our process is based on redecoding a massive amount of
anonymized audio logs from Google’s speech products using
a high accuracy, non real-time system, followed by a series of

heuristics aiming at discarding incorrectly recognized speech
recordings. Such an automated procedure enables the collec-
tion of training sets an order of magnitude larger than what we
can typically obtain by human transcription. Moreover, our use
of a large-scale distributed computation platform enables train-
ing sets to be produced in a matter of days, as compared to the
months required to produce manually transcribed training sets
with sufficient quality. Automatic generation of training sets
also enables us to easily track the continuous changes in the fleet
of mobile and desktop devices that use Google Voice Search and
Voice Input systems. For example, during 2013 more than 1.5
million new Android devices were activated per day, and new
models with different hardware and microphones arrive on the
market daily.

We present recognition results on the Voice Search and
Voice Input tasks for Brazilian Portuguese, French, Italian and
Russian languages, based on training corpora automatically
generated using the proposed approach.

The paper is organized as follows. In Section 2 we describe
our methodology for selecting the training corpus from logs of
our production recognizer. Section 3 describes our training sys-
tem setup. Finally, in Section 4 we report on the accuracy of the
new production system obtained by our method.

2. Methodology

High-quality acoustic models rely on the availability of large
and reliably transcribed training sets that match the underlying
distribution of speech in different acoustic environments. It is
also imperative that the training data represent the demographic
variety of the potential speakers well. Such audio data sets can
be constructed from the logs of a deployed ASR system.

In this section we describe our big data driven approach
for selecting a training corpus from these logs. We first de-
scribe the baseline method, which corresponds to our previous
approach to building Google’s production systems, followed by
the proposed method currently used to build training sets and
train acoustic models for our production recognizer.

2.1. Baseline method

The data selection procedure of the baseline method is repre-
sented in Fig. 1. In this approach we directly rely on the tran-
scripts generated by our production system that operates under
runtime constraints dictated by real-time user experience con-
siderations. Our average utterance duration is 3.3 seconds, and
we start by randomly selecting SOM utterances from our log
stream. We filter this set by removing utterances with tran-
scripts shorter than a threshold which is usually 10 characters,
but is adjusted on a per-language basis to account for e.g., Asian
language character sets. This filtering is based on our empiri-
cal observation that confidence scores are less reliable in these
cases. After that, we keep the 2M top utterances by confidence.
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Figure 1: Main components of the baseline method
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Figure 2: Main components of the proposed method

We then build a DNN acoustic model of medium size -
around 6K to 8K context-dependent states, depending on the
language (see section 3 for a detailed description of the model).
Our DNN models are composed of up to 8 layers of 2560 nodes
each. They are trained with our distributed parallelized DNN
training toolkit [9].

Our language models (LM) are Katz-smoothed 5-gram
models with 1M word vocabulary and 15M n-grams built us-
ing the infrastructure described in [10]. Our LMs are trained
on corpora composed of different sources, such as books, web
documents, search queries and automatically transcribed speech
logs.

2.2. Proposed method

Fig. 2 shows the components of the proposed method. We start
by extracting 300M utterances, or more than 30 years of speech
data, randomly selected from the logs, and redecode them with
an offline recognizer. We improve transcription quality in this
recognizer in two ways. First we relax many of the decoder pa-
rameters such as beam width and number of active arcs during
search to reduce expected word error rate at the cost of increas-
ing runtime. Secondly we use a larger language model. We
replace the usual production 15M n-gram model by a 100M n-
gram language model. In our experiments we have explored
even larger sized n-gram language models (up to 1B n-grams)
but haven’t observed any significant improvements over the
100M n-gram model.

This redecoding pass results in a new corpus of transcripts
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Figure 3: WER vs utterance level confidence bin for Brazilian
Portuguese.

with a substantial reduction in expected word error rate. In Ta-
ble 1 we show the WER reductions of the redecoding system
over the baseline production system, when evaluated on human-
transcribed test sets. The redecoding system on average per-
forms approximately 9% better relative to the production sys-
tem. The additional computational overhead incurred to pro-
duce higher-quality transcripts for our training corpora is mit-
igated by our use of Google’s massive compute engine infras-
tructure. By using 8,000 machines we reprocess three decades
of speech in approximately 24 hours.

Language | WER’ | WER” | Rel. gain | xRT”/xRT’
Russian 27.5 26.0 5.5% 4.6
French 16.2 14.4 11.6% 2.1
Italian 13.6 12.4 8.8% 3.8
Brazilian 1) 3 1 937 | 105% 4.1
Portuguese
Table 1:  Performance comparison of the production

(WER’, xRT’) and redecoding systems (WER"”, xRT")

Our next step is to select 20M utterances within this 300M
set, a ten-fold increase in training set size over the baseline ap-
proach. In this selection we try to guarantee correct transcrip-
tions while preserving the acoustic and linguistic diversity of
the data. To guarantee good quality in the transcriptions we rely
on utterance level confidence metrics derived from lattice poste-
rior word probabilities [11]. Experimentally we have found that
utterance confidence measures correlate extremely well with
word error rate. In Figure 3 we show word error rate distributed
by confidence score quantiles on a 25 hour Brazilian Portuguese
voice search test set. Typically utterances in the 90th percent-
age confidence bin exhibit word error rates below 10%. In our
studies we have found this to be close to the performance of
human transcribers.

However, selecting training corpora by confidence score
alone may bias the data selection towards frequent and easy to
recognize queries. We observed that this can lead to a dispro-
portionately large fraction of the training set having the same
transcription. Very popular queries such as ’facebook’, *mi-
crosoft’, *google’, or "youtube’ can dominate the resulting train-
ing set resulting in a negative feedback loop.

To alleviate this problem we have experimented with a
number of techniques. For example in [12] an additional con-
straint is introduced to minimize the cross entropy between the



CD state distribution of the selected training corpora and a man-
ually transcribed testing set. In the present work we opt for a
simpler approach that enforces data diversity and is much more
straightforward to implement. We limit the number of utter-
ances in the corpus with the same transcription to 20, an empir-
ically determined threshold, an approach we refer to as “tran-
scription flattening”. This simple idea enforces a more uniform
triphone coverage and a larger vocabulary, while also ensuring
that frequent tokens are not over represented.

We also apply additional constraints on the data selection,
such as removing utterances with short transcripts as described
in Section 2.1. Finally, we retain the top 20M utterances with
the highest confidence scores.

3. Training system description

We first derive a context dependent (CD) state inventory using
decision tree state clustering as is standard for training Gaussian
mixture models [13]. To build this tree we use the entire 20M
utterances corpus available for training, since we want to cover
as many triphone contexts as possible.

Our acoustic models can contain around 18K CD clustered
states, with slight variation by language. While we have ob-
served lower word error rates with even bigger inventories [14],
the resulting increase in CPU load is incompatible with real time
production systems. Experimentally we find that an inventory
of this size is a good compromise.

For each language we train a feed-forward fully-connected
neural network [15]. The input layer takes as input 26 consec-
utive audio frames represented each by a 40-dimensional vec-
tor composed of log mel filterbank energies. These 26 audio
frames consist of 20 neighboring frames in the past, 5 neigh-
boring frames in the future, and the current frame. We use 8
hidden layers of 2560 nodes each, and an approximately 18K-
dimensional softmax output layer. All hidden layer nodes use a
rectified linear function [16]. Output layer nodes on the other
hand use a softmax non linearity and provide an estimate of the
posterior probability of each CD state.

For training we use mini batch asynchronous stochastic gra-
dient descent implemented in a distributed framework [9]. We
use a cross entropy criterion as the objective function. The ini-
tial learning rate is set to 0.001 and is decreased by a factor of
10 every 5 billion frames.

4. Experimental Results

In what follows, we will first present the results of two con-
trolled experiments assessing the impact of two crucial factors
in our final quality gains: improved transcript quality and in-
creased training corpus size. We then report on the total impact
of combining all the improvements over the baseline setup as
described in Section 2.2.

We first explore the impact of reference transcription qual-
ity on the final system. We selected SM highest-confidence ut-
terances following the procedure described in Section 2.2. We
then trained two systems, one using the improved transcripts
generated by our new approach, and the other using the original
production quality transcripts. Therefore the only difference be-
tween these two systems is in the quality of the auto generated
transcripts that are aligned against the feature stream to provide
training data for the DNN (Table 1 documents the expected tran-
script quality improvement).

Please note that the absolute quality numbers for a given
language differ between the various experiments presented.

Since the experiments were not conducted at the same time, this
variation is explained by quality improvements made in the time
elapsed between experiments being conducted. However, each
experiment was performed in a consistent manner, with all as-
pects of the system being the same except for the improvement
being studied.

Table 2 illustrates our results on two different languages:
French and Russian. We used a 25 hour test set for each lan-
guage. The DNNs for each of the systems were trained under
similar condition as described in Section 3. We can observe that
the use of an improved auto generated reference transcript leads
to reductions in the word error rate of the system.

Language Produc.tion ImproYed Rel. gain
transcripts | transcripts
Russian 27.3 26.6 3%
French 15.4 15.1 2%

Table 2: Effect of the quality of reference transcript on WER

Next we evaluate the impact of the size of the training data
set on recognition performance. We selected 3 training sets for
three of our production languages. For each language the train-
ing sets contained 5, 10, and 20 million utterances, all of which
were selected by taking the highest-confidence utterances after
redecoding and applying the heuristics described in Section 2.2.
We then proceeded to train DNN acoustic models under similar
conditions for all data sets and languages.

Table 3 shows our results. Note that a SM-utterance train-
ing run was only available for Russian, as a full exploration
of the parameter space for the other languages was not feasi-
ble due to time constraints. In general the improvements are
small but consistent. Comparing results as the training set size
grows, we observe average WER reductions of 0.6% absolute
across the three languages. While this might seem small, the
WER reductions are statistically significant in the context of
our typical 25 hour test sets. In addition, given the scale of
Google’s voice search traffic, our experience has been that even
such small WER reductions translate into significant increases
in user satisfaction metrics such as click through rates, lower
retries, and lower rejections, among others.

To further compare the quality disparity between the 5SM
and 20M systems we conducted a human mediated side by side
comparison. In this type of test, audio from anonymized recent
production logs is reprocessed with the two systems. Those
utterances where the transcripts are different are sent to human
raters which decide which system produced the better transcript.
This type of evaluation pays more attention to the harder to rec-
ognize queries and is a good indicator of the underlying quality
of the system on real traffic. The side by side test essentially
measures whether the difference in performance of two systems
is statistically significant.

In this experiment, human raters assign to each transcript
1 a coarse correctness metric s; € [0,1]: 0 means a nonsense
transcript, while 1 corresponds to exact recognition result. If
n is the total number of utterances sent to raters, we compute
hi = 5§20> — 555) fori =1,...,n, where 855) and sEQO) denote
the correctness scores assigned to an utterance ¢ recognized by
SM-trained and 20M-trained systems respectively. The side by
side test is aimed at rejecting the null hypothesis: that the mean
of the difference of the correctness scores between the two sys-
tems is 0. To test the null hypothesis, sample mean and bias-
corrected variance are first computed based on the correctness



scores provided by the raters, and the null hypothesis is rejected
if the calculated p-value is below the chosen significance level
.

In our side by side experiment we sent 500 utterances to
human raters and used a standard value of o = 0.05. Our test
reported a p-value of less than 2%, which conclusively demon-
strates that the model trained on the 20M set is preferred by the
human raters.

Language M 10M 20M
training set | training set | training set
Russian 27.0 26.8 26.2%
Brazilian - 18.2 18.0%
Portuguese
French - 15.4 14.9 %

Table 3: Effect of unsupervised training set size for various lan-
guages: WER for systems trained on 5SM, 10M and 20M cor-
pora

Finally, Table 4 compares the baseline data selection ap-
proach with our proposed method. We show results across four
languages. In all cases word error rate reductions of up to 14%
relative have been obtained using this fully automated and un-
supervised procedure. This process allows us to easily update
acoustic models in a matter of days. Since the demograph-
ics and device channel characteristics of the users of Google’s
speech products are constantly changing, it is important to re-
fresh our acoustic models with as little human intervention and
as often as possible. An automated freshness pipeline also helps
ensure that any algorithmic improvements can be propagated
promptly to all language systems. Currently we retrain our
acoustic models across more than 50 languages on a monthly
schedule using the approach described in this paper.

Language WE.R WER Relative gain
baseline | proposed
Russian 27.5 25.1 8.7%
French 16.2 14.6 10.4%
Italian 13.6 12.1 11%
Brazilian - ) 5 20.9 14%
Portuguese

Table 4: Performance comparison of the baseline approach (2M
training set, production transcripts) and the proposed approach
(20M training set, redecoded transcripts)

5. Conclusions

In this paper we presented a fully unsupervised approach to
acoustic model data selection. The techniques described take
advantage of the large amount of traffic of Google’s speech
recognition products. This allows us to select corpora of around
20 million utterances with close to human transcriber quality in
a matter of hours. We also introduce a procedure to improve
the transcription quality further by using a slower and more ac-
curate offline speech recognition system. The combination of
these two approaches yields significant reductions in word error
rate. Human mediated side by side comparisons of our old and
the proposed approaches consistently show the value of the new
method.
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