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Text-to-speech as sequence-to-sequence mapping

• Automatic speech recognition (ASR)
Speech (continuous time series) → Text (discrete symbol sequence)

• Machine translation (MT)
Text (discrete symbol sequence) → Text (discrete symbol sequence)

• Text-to-speech synthesis (TTS)
Text (discrete symbol sequence) → Speech (continuous time series)
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Speech production process
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Typical flow of TTS system

Sentence segmentaiton
Word segmentation
Text normalization

Part-of-speech tagging
Pronunciation

Prosody prediction

Waveform generation

TEXT

Text analysis

SYNTHESIZED
SPEECH

Speech synthesisdiscrete ⇒ discrete

discrete ⇒ continuous

NLP

Speech

Frontend

Backend

This talk focuses on backend
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Statistical parametric speech synthesis (SPSS) [2]

Model
training

Text Text

Feature
extraction

Parameter
generation

Waveform
synthesisSpeech Synthesized

Speech

• Large data + automatic training
→ Automatic voice building

• Parametric representation of speech
→ Flexible to change its voice characteristics

Hidden Markov model (HMM) as its acoustic model
→ HMM-based speech synthesis system (HTS) [1]
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Characteristics of SPSS

• Advantages

− Flexibility to change voice characteristics
− Small footprint
− Robustness

• Drawback

− Quality

• Major factors for quality degradation [2]

− Vocoder
− Acoustic model → Deep learning
− Oversmoothing
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Deep learning [3]

• Machine learning methodology using multiple-layered models

• Motivated by brains, which organize ideas and concepts hierarchically

• Typically artificial neural network (NN) w/ 3 or more levels of
non-linear operations

Shallow Neural Network Deep Neural Network (DNN)
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Basic components in NN

Non-linear unit Network of units

j

i

hi = f(z i)

hj

xi... ...
z j =

∑

i

xiwij

Examples of activation functions

Logistic sigmoid: f(zj) =
1

1 + e−zj

Hyperbolic tangent: f(zj) = tanh (zj)

Rectified linear: f(zj) = max (zj , 0)
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Deep architecture

• Logistic regression → depth=1

• Kernel machines, decision trees → depth=2

• Ensemble learning (e.g., Boosting [4], tree intersection [5]) →
depth++

• N -layer neural network → depth=N + 1
In
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t v

ec
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r x

Input units

Hidden units

O
utput vector y

Output units...
...
...
...
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Difficulties to train DNN

• NN w/ many layers used to give worse performance than NN
w/ few layers

− Slow to train
− Vanishing gradients [6]
− Local minimum

• Since 2006, training DNN significantly improved

− GPU [7]
− More data
− Unsupervised pretraining (RBM [8], auto-encoder [9])
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Restricted Boltzmann Machine (RBM) [11]

h ={0,1}jh

v v  ={0,1}i

W

• Undirected graphical model

• No connection between visible & hidden units

p(v,h |W ) =
1

Z(W )
exp {−E(v,h;W )} wij : weight

E(v,h;W ) = −
∑

i

bivi −
∑

j

cjhj −
∑

i,j

viwijhj bi, cj : bias

• Parameters can be estimated by contrastive divergence learning [10]
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Deep Belief Network (DBN) [8]

• RBMs are stacked to form a DBN
• Layer-wise training of RBM is repeated over multiple layers

(pretraining)
• Joint optimization as DBN or supervised learning as DNN with

additional final layer (fine tuning)
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Representation learning
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Success of DNN in various machine learning tasks

Tasks

• Vision [12]

• Language

• Speech [13]

Word error rates (%)

Hours of HMM-GMM HMM-GMM
Task data HMM-DNN w/ same data w/ more data

Voice Input 5,870 12.3 N/A 16.0
YouTube 1,400 47.6 52.3 N/A

Products

• Personalized photo search [14, 15]

• Voice search [16, 17].
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Conventional HMM-GMM [1]

• Decision tree-clustered HMM with GMM state-output distributions

Acoustic
features y

Acoustic
features y

...

Linguistic
features x

yes no

yes no yes no
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Limitation of HMM-GMM approach (1)
Hard to integrate feature extraction & modeling

. . . . . .c1 c2 c3 c4 c5 cT. .

. . . . . .s1 s2 s3 s4 s5 sT. .

Cepstra

Spectra
⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ dimensinality

reduction

• Typically use lower dimensional approximation of speech spectrum as
acoustic feature (e.g., cepstrum, line spectral pairs)

• Hard to model spectrum directly by HMM-GMM due to high
dimensionality & strong correlation

→ Waveform-level model [18], mel-cepstral analysis-integrated model
[19], STAVOCO [20], MGE-LSD [21]
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Limitation of HMM-GMM approach (2)
Data fragmentation

yes noyes no

...

yes no

yes no yes no

Acoustic space

• Linguistic-to-acoustic mapping by decision trees

• Decision tree splits input space into sub-clusters

• Inefficient to represent complex dependencies between linguistic &
acoustic features

→ Boosting [4], tree intersection [5], product of experts [22]
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Motivation to use deep learning in speech synthesis

• Integrating feature extraction

− Can model high-dimensional, highly correlated features efficiently
− Layered architecture with non-linear operations offers feature

extraction to be integrated with acoustic modeling

• Distributed representation

− Can be exponentially more efficient than fragmented
representation

− Better representation ability with fewer parameters

• Layered hierarchical structure in speech production

− concept → linguistic → articulatory → waveform
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Deep learning-based approaches

Recent applications of deep learning to speech synthesis

• HMM-DBN (USTC/MSR [23, 24])

• DBN (CUHK [25])

• DNN (Google [26])

• DNN-GP (IBM [27])
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HMM-DBN [23, 24]

Acoustic
features y

Acoustic
features y

...

Linguistic
features x

yes no

yes no yes no

DBN i DBN j

• Decision tree-clustered HMM with DBN state-output distributions

• DBNs replaces GMMs
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DBN [25]

Acoustic
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• DBN represents joint distribution of linguistic & acoustic features

• DBN replaces decision trees and GMMs
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DNN [26]

Acoustic
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• DNN represents conditional distribution of acoustic features given
linguistic features

• DNN replaces decision trees and GMMs
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DNN-GP [27]

Gaussian

Process

Regression

Acoustic

features y
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• Uses last hidden layer output as input for Gaussian Process (GP)
regression

• Replaces last layer of DNN by GP regression
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Comparison

cep: mel-cepstrum, ap: band aperiodicities
x: linguistic features, y: acoustic features, c: cluster index
y | x: conditional distribution of y given x
(y, x): joint distribution between x and y

HMM HMM DNN
-GMM -DBN DBN DNN -GP

cep, ap, F0 spectra cep, ap, F0 cep, ap, F0 F0

parametric parametric parametric parametric non-parametric

y | c← c | x y | c← c | x (y,x) y | x y | h← h | x

HMM-GMM is more computationally efficients than others
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Framework
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Framework

Is this new? . . . no

• NN [28]

• RNN [29]

What’s the difference?

• More layers, data, computational resources

• Better learning algorithm

• Statistical parametric speech synthesis techniques
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Experimental setup

Database US English female speaker

Training / test data 33000 & 173 sentences

Sampling rate 16 kHz

Analysis window 25-ms width / 5-ms shift

Linguistic 11 categorical features
features 25 numeric features

Acoustic 0–39 mel-cepstrum
features logF0, 5-band aperiodicity, ∆,∆2

HMM 5-state, left-to-right HSMM [30],
topology MSD F0 [31], MDL [32]

DNN 1–5 layers, 256/512/1024/2048 units/layer
architecture sigmoid, continuous F0 [33]

Postprocessing Postfiltering in cepstrum domain [34]
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Preliminary experiments

• w/ vs w/o grouping questions (e.g., vowel, fricative)

− Grouping (OR operation) can be represented by NN
− w/o grouping questions worked more efficiently

• How to encode numeric features for inputs

− Decision tree clustering uses binary questions
− Neural network can have numerical values as inputs
− Feeding numerical values directly worked more efficiently

• Removing silences

− Decision tree splits silence & speech at the top of the tree
− Single neural network handles both of them
− Neural network tries to reduce error for silence
− Better to remove silence frames as preprocessing
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Example of speech parameter trajectories

w/o grouping questions, numeric contexts, silence frames removed
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Objective evaluations

• Objective measures

− Aperiodicity distortion (dB)
− Voiced/Unvoiced error rates (%)
− Mel-cepstral distortion (dB)
− RMSE in logF0

• Sizes of decision trees in HMM systems were tuned by scaling
(α) the penalty term in the MDL criterion

− α < 1: larger trees (more parameters)
− α = 1: standard setup
− α > 1: smaller trees (fewer parameters)
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Aperiodicity distortion
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V/UV errors
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Mel-cepstral distortion
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RMSE in logF0
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Subjective evaluations

Compared HMM-based systems with DNN-based ones with
similar # of parameters

• Paired comparison test

• 173 test sentences, 5 subjects per pair

• Up to 30 pairs per subject

• Crowd-sourced

HMM DNN
(α) (#layers × #units) Neutral p value z value

15.8 (16) 38.5 (4 × 256) 45.7 < 10−6 -9.9
16.1 (4) 27.2 (4 × 512) 56.8 < 10−6 -5.1
12.7 (1) 36.6 (4 × 1 024) 50.7 < 10−6 -11.5
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Conclusion

Deep learning in speech synthesis

• Aims to replace HMM with acoustic model based on deep
architectures

• Different groups presented different architectures at ICASSP 2013

− HMM-DBN
− DBN
− DNN
− DNN-GP

• DNN-based approach achieved reasonable performance

• Many possible future research topics
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