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Abstract

User-facing, latency-sensitive services, such as websearch,

underutilize their computing resources during daily periods of

low traffic. Reusing those resources for other tasks is rarely done

in production services since the contention for shared resources

can cause latency spikes that violate the service-level objectives

of latency-sensitive tasks. The resulting under-utilization hurts

both the affordability and energy-efficiency of large-scale data-

centers. With technology scaling slowing down, it becomes im-

portant to address this opportunity.

We present Heracles, a feedback-based controller that en-

ables the safe colocation of best-effort tasks alongside a latency-

critical service. Heracles dynamically manages multiple hard-

ware and software isolation mechanisms, such as CPU, memory,

and network isolation, to ensure that the latency-sensitive job

meets latency targets while maximizing the resources given to

best-effort tasks. We evaluate Heracles using production latency-

critical and batch workloads from Google and demonstrate aver-

age server utilizations of 90% without latency violations across

all the load and colocation scenarios that we evaluated.

1 Introduction

Public and private cloud frameworks allow us to host an in-
creasing number of workloads in large-scale datacenters with
tens of thousands of servers. The business models for cloud
services emphasize reduced infrastructure costs. Of the total
cost of ownership (TCO) for modern energy-efficient datacen-
ters, servers are the largest fraction (50-70%) [7]. Maximizing
server utilization is therefore important for continued scaling.

Until recently, scaling from Moore’s law provided higher
compute per dollar with every server generation, allowing dat-
acenters to scale without raising the cost. However, with sev-
eral imminent challenges in technology scaling [21, 25], alter-
nate approaches are needed. Some efforts seek to reduce the
server cost through balanced designs or cost-effective compo-
nents [31, 48, 42]. An orthogonal approach is to improve the
return on investment and utility of datacenters by raising server
utilization. Low utilization negatively impacts both operational
and capital components of cost efficiency. Energy proportion-
ality can reduce operational expenses at low utilization [6, 47].
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But, to amortize the much larger capital expenses, an increased
emphasis on the effective use of server resources is warranted.

Several studies have established that the average server uti-
lization in most datacenters is low, ranging between 10% and
50% [14, 74, 66, 7, 19, 13]. A primary reason for the low uti-
lization is the popularity of latency-critical (LC) services such as
social media, search engines, software-as-a-service, online maps,
webmail, machine translation, online shopping and advertising.
These user-facing services are typically scaled across thousands
of servers and access distributed state stored in memory or Flash
across these servers. While their load varies significantly due to
diurnal patterns and unpredictable spikes in user accesses, it is
difficult to consolidate load on a subset of highly utilized servers
because the application state does not fit in a small number of
servers and moving state is expensive. The cost of such under-
utilization can be significant. For instance, Google websearch
servers often have an average idleness of 30% over a 24 hour
period [47]. For a hypothetical cluster of 10,000 servers, this
idleness translates to a wasted capacity of 3,000 servers.

A promising way to improve efficiency is to launch best-
effort batch (BE) tasks on the same servers and exploit any re-
sources underutilized by LC workloads [52, 51, 18]. Batch an-
alytics frameworks can generate numerous BE tasks and derive
significant value even if these tasks are occasionally deferred or
restarted [19, 10, 13, 16]. The main challenge of this approach is
interference between colocated workloads on shared resources
such as caches, memory, I/O channels, and network links. LC
tasks operate with strict service level objectives (SLOs) on tail
latency, and even small amounts of interference can cause sig-
nificant SLO violations [51, 54, 39]. Hence, some of the past
work on workload colocation focused only on throughput work-
loads [58, 15]. More recent systems predict or detect when a LC
task suffers significant interference from the colocated tasks, and
avoid or terminate the colocation [75, 60, 19, 50, 51, 81]. These
systems protect LC workloads, but reduce the opportunities for
higher utilization through colocation.

Recently introduced hardware features for cache isolation and
fine-grained power control allow us to improve colocation. This
work aims to enable aggressive colocation of LC workloads and
BE jobs by automatically coordinating multiple hardware and
software isolation mechanisms in modern servers. We focus on
two hardware mechanisms, shared cache partitioning and fine-
grained power/frequency settings, and two software mechanisms,
core/thread scheduling and network traffic control. Our goal is
to eliminate SLO violations at all levels of load for the LC job
while maximizing the throughput for BE tasks.

There are several challenges towards this goal. First, we must
carefully share each individual resource; conservative allocation
will minimize the throughput for BE tasks, while optimistic al-
location will lead to SLO violations for the LC tasks. Second,
the performance of both types of tasks depends on multiple re-
sources, which leads to a large allocation space that must be
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explored in real-time as load changes. Finally, there are non-
obvious interactions between isolated and non-isolated resources
in modern servers. For instance, increasing the cache allocation
for a LC task to avoid evictions of hot data may create memory
bandwidth interference due to the increased misses for BE tasks.

We present Heracles1, a real-time, dynamic controller that
manages four hardware and software isolation mechanisms in a
coordinated fashion to maintain the SLO for a LC job. Compared
to existing systems [80, 51, 19] that prevent colocation of inter-
fering workloads, Heracles enables a LC task to be colocated
with any BE job. It guarantees that the LC workload receives
just enough of each shared resource to meet its SLO, thereby
maximizing the utility from the BE task. Using online monitor-
ing and some offline profiling information for LC jobs, Heracles

identifies when shared resources become saturated and are likely
to cause SLO violations and configures the appropriate isolation
mechanism to proactively prevent that from happening.

The specific contributions of this work are the following.
First, we characterize the impact of interference on shared re-
sources for a set of production, latency-critical workloads at
Google, including websearch, an online machine learning clus-
tering algorithm, and an in-memory key-value store. We show
that the impact of interference is non-uniform and workload de-
pendent, thus precluding the possibility of static resource parti-
tioning within a server. Next, we design Heracles and show that:
a) coordinated management of multiple isolation mechanisms is
key to achieving high utilization without SLO violations; b) care-
fully separating interference into independent subproblems is ef-
fective at reducing the complexity of the dynamic control prob-
lem; and c) a local, real-time controller that monitors latency in
each server is sufficient. We evaluate Heracles on production
Google servers by using it to colocate production LC and BE
tasks . We show that Heracles achieves an effective machine uti-
lization of 90% averaged across all colocation combinations and
loads for the LC tasks while meeting the latency SLOs. Heracles

also improves throughput/TCO by 15% to 300%, depending on
the initial average utilization of the datacenter. Finally, we es-
tablish the need for hardware mechanisms to monitor and isolate
DRAM bandwidth, which can improve Heracles’ accuracy and
eliminate the need for offline information.

To the best of our knowledge, this is the first study to make
coordinated use of new and existing isolation mechanisms in a
real-time controller to demonstrate significant improvements in
efficiency for production systems running LC services.

2 Shared Resource Interference

When two or more workloads execute concurrently on a
server, they compete for shared resources. This section reviews
the major sources of interference, the available isolation mecha-
nisms, and the motivation for dynamic management.

The primary shared resource in the server are the cores in the
one or more CPU sockets. We cannot simply statically partition
cores between the LC and BE tasks using mechanisms such as
cgroups cpuset [55]. When user-facing services such as
search face a load spike, they need all available cores to meet
throughput demands without latency SLO violations. Similarly,
we cannot simply assign high priority to LC tasks and rely on

1The mythical hero that killed the multi-headed monster, Lernaean Hydra.

OS-level scheduling of cores between tasks. Common schedul-
ing algorithms such as Linux’s completely fair scheduler (CFS)
have vulnerabilities that lead to frequent SLO violations when
LC tasks are colocated with BE tasks [39]. Real-time scheduling
algorithms (e.g., SCHED_FIFO) are not work-preserving and
lead to lower utilization. The availability of HyperThreads in
Intel cores leads to further complications, as a HyperThread exe-
cuting a BE task can interfere with a LC HyperThread on instruc-
tion bandwidth, shared L1/L2 caches, and TLBs.

Numerous studies have shown that uncontrolled interference
on the shared last-level cache (LLC) can be detrimental for colo-
cated tasks [68, 50, 19, 22, 39]. To address this issue, Intel has
recently introduced LLC cache partitioning in server chips. This
functionality is called Cache Allocation Technology (CAT), and
it enables way-partitioning of a highly-associative LLC into sev-
eral subsets of smaller associativity [3]. Cores assigned to one
subset can only allocate cache lines in their subset on refills, but
are allowed to hit in any part of the LLC. It is already well under-
stood that, even when the colocation is between throughput tasks,
it is best to dynamically manage cache partitioning using either
hardware [30, 64, 15] or software [58, 43] techniques. In the pres-
ence of user-facing workloads, dynamic management is more
critical as interference translates to large latency spikes [39]. It is
also more challenging as the cache footprint of user-facing work-
loads changes with load [36].

Most important LC services operate on large datasets that do
not fit in on-chip caches. Hence, they put pressure on DRAM
bandwidth at high loads and are sensitive to DRAM bandwidth

interference. Despite significant research on memory bandwidth
isolation [30, 56, 32, 59], there are no hardware isolation mech-
anisms in commercially available chips. In multi-socket servers,
one can isolate workloads across NUMA channels [9, 73], but
this approach constrains DRAM capacity allocation and address
interleaving. The lack of hardware support for memory band-
width isolation complicates and constrains the efficiency of any
system that dynamically manages workload colocation.

Datacenter workloads are scale-out applications that generate
network traffic. Many datacenters use rich topologies with suf-
ficient bisection bandwidth to avoid routing congestion in the
fabric [28, 4]. There are also several networking protocols that
prioritize short messages for LC tasks over large messages for
BE tasks [5, 76]. Within a server, interference can occur both
in the incoming and outgoing direction of the network link. If a
BE task causes incast interference, we can throttle its core alloca-
tion until networking flow-control mechanisms trigger [62]. In
the outgoing direction, we can use traffic control mechanisms in
operating systems like Linux to provide bandwidth guarantees to
LC tasks and to prioritize their messages ahead of those from BE
tasks [12]. Traffic control must be managed dynamically as band-
width requirements vary with load. Static priorities can cause un-
derutilization and starvation [61]. Similar traffic control can be
applied to solid-state storage devices [69].

Power is an additional source of interference between colo-
cated tasks. All modern multi-core chips have some form of
dynamic overclocking, such as Turbo Boost in Intel chips and
Turbo Core in AMD chips. These techniques opportunistically
raise the operating frequency of the processor chip higher than
the nominal frequency in the presence of power headroom. Thus,
the clock frequency for the cores used by a LC task depends not
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just on its own load, but also on the intensity of any BE task
running on the same socket. In other words, the performance of
LC tasks can suffer from unexpected drops in frequency due to
colocated tasks. This interference can be mitigated with per-core
dynamic voltage frequency scaling, as cores running BE tasks
can have their frequency decreased to ensure that the LC jobs
maintain a guaranteed frequency. A static policy would run all
BE jobs at minimum frequency, thus ensuring that the LC tasks
are not power-limited. However, this approach severely penal-
izes the vast majority of BE tasks. Most BE jobs do not have the
profile of a power virus2 and LC tasks only need the additional
frequency boost during periods of high load. Thus, a dynamic
solution that adjusts the allocation of power between cores is
needed to ensure that LC cores run at a guaranteed minimum fre-
quency while maximizing the frequency of cores for BE tasks.

A major challenge with colocation is cross-resource inter-

actions. A BE task can cause interference in all the shared re-
sources discussed. Similarly, many LC tasks are sensitive to in-
terference on multiple resources. Therefore, it is not sufficient to
manage one source of interference: all potential sources need to
be monitored and carefully isolated if need be. In addition, inter-
ference sources interact with each other. For example, LLC con-
tention causes both types of tasks to require more DRAM band-
width, also creating a DRAM bandwidth bottleneck. Similarly, a
task that notices network congestion may attempt to use compres-
sion, causing core and power contention. In theory, the number
of possible interactions scales with the square of the number of
interference sources, making this a very difficult problem.

3 Interference Characterization & Analysis

This section characterizes the impact of interference on
shared resources for latency-critical services.

3.1 Latency­critical Workloads

We use three Google production latency-critical workloads.

websearch is the query serving portion of a production web
search service. It is a scale-out workload that provides high
throughput with a strict latency SLO by using a large fan-out
to thousands of leaf nodes that process each query on their shard
of the search index. The SLO for leaf nodes is in the tens of
milliseconds for the 99%-ile latency. Load for websearch is gen-
erated using an anonymized trace of real user queries.

websearch has high memory footprint as it serves shards of
the search index stored in DRAM. It also has moderate DRAM
bandwidth requirements (40% of available bandwidth at 100%
load), as most index accesses miss in the LLC. However, there
is a small but significant working set of instructions and data in
the hot path. Also, websearch is fairly compute intensive, as it
needs to score and sort search hits. However, it does not consume
a significant amount of network bandwidth. For this study, we
reserve a small fraction of DRAM on search servers to enable
colocation of BE workloads with websearch.

ml_cluster is a standalone service that performs real-time text
clustering using machine-learning techniques. Several Google
services use ml_cluster to assign a cluster to a snippet of text.
ml_cluster performs this task by locating the closest clusters for
the text in a model that was previously learned offline. This

2A computation that maximizes activity and power consumption of a core.

model is kept in main memory for performance reasons. The
SLO for ml_cluster is a 95%-ile latency guarantee of tens of mil-
liseconds. ml_cluster is exercised using an anonymized trace of
requests captured from production services.

Compared to websearch, ml_cluster is more memory band-
width intensive (with 60% DRAM bandwidth usage at peak) but
slightly less compute intensive (lower CPU power usage over-
all). It has low network bandwidth requirements. An interesting
property of ml_cluster is that each request has a very small cache
footprint, but, in the presence of many outstanding requests, this
translates into a large amount of cache pressure that spills over to
DRAM. This is reflected in our analysis as a super-linear growth
in DRAM bandwidth use for ml_cluster versus load.

memkeyval is an in-memory key-value store, similar to mem-

cached [2]. memkeyval is used as a caching service in the back-
ends of several Google web services. Other large-scale web
services, such as Facebook and Twitter, use memcached exten-
sively. memkeyval has significantly less processing per request
compared to websearch, leading to extremely high throughput
in the order of hundreds of thousands of requests per second at
peak. Since each request is processed quickly, the SLO latency
is very low, in the few hundreds of microseconds for the 99%-
ile latency. Load generation for memkeyval uses an anonymized
trace of requests captured from production services.

At peak load, memkeyval is network bandwidth limited. De-
spite the small amount of network protocol processing done
per request, the high request rate makes memkeyval compute-
bound. In contrast, DRAM bandwidth requirements are low
(20% DRAM bandwidth utilization at max load), as requests sim-
ply retrieve values from DRAM and put the response on the wire.
memkeyval has both a static working set in the LLC for instruc-
tions, as well as a per-request data working set.

3.2 Characterization Methodology

To understand their sensitivity to interference on shared re-
sources, we ran each of the three LC workloads with a synthetic
benchmark that stresses each resource in isolation. While these
are single node experiments, there can still be significant network
traffic as the load is generated remotely. We repeated the char-
acterization at various load points for the LC jobs and recorded
the impact of the colocation on tail latency. We used produc-
tion Google servers with dual-socket Intel Xeons based on the
Haswell architecture. Each CPU has a high core-count, with a
nominal frequency of 2.3GHz and 2.5MB of LLC per core. The
chips have hardware support for way-partitioning of the LLC.

We performed the following characterization experiments:

Cores: As we discussed in §2, we cannot share a logical core (a
single HyperThread) between a LC and a BE task because OS
scheduling can introduce latency spikes in the order of tens of
milliseconds [39]. Hence, we focus on the potential of using sep-
arate HyperThreads that run pinned on the same physical core.
We characterize the impact of a colocated HyperThread that im-
plements a tight spinloop on the LC task. This experiment cap-
tures a lower bound of HyperThread interference. A more com-
pute or memory intensive microbenchmark would antagonize the
LC HyperThread for more core resources (e.g., execution units)
and space in the private caches (L1 and L2). Hence, if this exper-
iment shows high impact on tail latency, we can conclude that
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core sharing through HyperThreads is not a practical option.

LLC: The interference impact of LLC antagonists is measured
by pinning the LC workload to enough cores to satisfy its SLO
at the specific load and pinning a cache antagonist that streams
through a large data array on the remaining cores of the socket.
We use several array sizes that take up a quarter, half, and almost
all of the LLC and denote these configurations as LLC small,
medium, and big respectively.

DRAM bandwidth: The impact of DRAM bandwidth interfer-
ence is characterized in a similar fashion to LLC interference,
using a significantly larger array for streaming. We use numactl

to ensure that the DRAM antagonist and the LC task are placed
on the same socket(s) and that all memory channels are stressed.

Network traffic: We use iperf, an open source TCP streaming
benchmark [1], to saturate the network transmit (outgoing) band-
width. All cores except for one are given to the LC workload.
Since the LC workloads we consider serve request from multiple
clients connecting to the service they provide, we generate inter-
ference in the form of many low-bandwidth “mice” flows. Net-
work interference can also be generated using a few “elephant”
flows. However, such flows can be effectively throttled by TCP
congestion control [11], while the many “mice” flows of the LC
workload will not be impacted.

Power: To characterize the latency impact of a power antagonist,
the same division of cores is used as in the cases of generating
LLC and DRAM interference. Instead of running a memory ac-
cess antagonist, a CPU power virus is used. The power virus
is designed such that it stresses all the components of the core,
leading to high power draw and lower CPU core frequencies.

OS Isolation: For completeness, we evaluate the overall impact
of running a BE task along with a LC workload using only the
isolation mechanisms available in the OS. Namely, we execute
the two workloads in separate Linux containers and set the BE
workload to be low priority. The scheduling policy is enforced by
CFS using the shares parameter, where the BE task receives
very few shares compared to the LC workload. No other isola-
tion mechanisms are used in this case. The BE task is the Google
brain workload [38, 67], which we will describe further in §5.1.

3.3 Interference Analysis

Figure 1 presents the impact of the interference microbench-
marks on the tail latency of the three LC workloads. Each row in
the table shows tail latency at a certain load for the LC workload
when colocated with the corresponding microbenchmark. The
interference impact is acceptable if and only if the tail latency is
less than 100% of the target SLO. We color-code red/yellow all
cases where SLO latency is violated.

By observing the rows for brain, we immediately notice that
current OS isolation mechanisms are inadequate for colocating
LC tasks with BE tasks. Even at low loads, the BE task creates
sufficient pressure on shared resources to lead to SLO violations
for all three workloads. A large contributor to this is that the
OS allows both workloads to run on the same core and even the
same HyperThread, further compounding the interference. Tail
latency eventually goes above 300% of SLO latency. Proposed
interference-aware cluster managers, such as Paragon [18] and
Bubble-Up [51], would disallow these colations. To enable ag-
gressive task colocation, not only do we need to disallow differ-

ent workloads on the same core or HyperThread, we also need
to use stronger isolation mechanisms.

The sensitivity of LC tasks to interference on individual
shared resources varies. For instance, memkeyval is quite sensi-
tive to network interference, while websearch and ml_cluster are
not affected at all. websearch is uniformly insensitive to small
and medium amounts of LLC interference, while the same can-
not be said for memkeyval or ml_cluster. Furthermore, the im-
pact of interference changes depending on the load: ml_cluster

can tolerate medium amounts of LLC interference at loads <50%
but is heavily impacted at higher loads. These observations moti-
vate the need for dynamic management of isolation mechanisms
in order to adapt to differences across varying loads and differ-
ent workloads. Any static policy would be either too conserva-
tive (missing opportunities for colocation) or overly optimistic
(leading to SLO violations).

We now discuss each LC workload separately, in order to un-
derstand their particular resource requirements.

websearch: This workload has a small footprint and LLC (small)
and LLC (med) interference do not impact its tail latency. Nev-
ertheless, the impact is significant with LLC (big) interference.
The degradation is caused by two factors. First, the inclusive
nature of the LLC in this particular chip means that high LLC
interference leads to misses in the working set of instructions.
Second, contention for the LLC causes significant DRAM pres-
sure as well. websearch is particularly sensitive to interference
caused by DRAM bandwidth saturation. As the load of web-

search increases, the impact of LLC and DRAM interference de-
creases. At higher loads, websearch uses more cores while the
interference generator is given fewer cores. Thus, websearch can
defend its share of resources better.

websearch is moderately impacted by HyperThread interfer-
ence until high loads. This indicates that the core has sufficient
instruction issue bandwidth for both the spinloop and the web-

search until around 80% load. Since the spinloop only accesses
registers, it doesn’t cause interference in the L1 or L2 caches.
However, since the HyperThread antagonist has the smallest pos-
sible effect, more intensive antagonists will cause far larger per-
formance problems. Thus, HyperThread interference in practice
should be avoided. Power interference has a significant impact
on websearch at lower utilization, as more cores are executing
the power virus. As expected, the network antagonist does not
impact websearch, due to websearch’s low bandwidth needs.

ml_cluster ml_cluster is sensitive to LLC interference of smaller
size, due to the small but significant per-request working set.
This manifests itself as a large jump in latency at 75% load
for LLC (small) and 50% load for LLC (medium). With larger
LLC interference, ml_cluster experiences major latency degrada-
tion. ml_cluster is also sensitive to DRAM bandwidth interfer-
ence, primarily at lower loads (see explanation for websearch).
ml_cluster is moderately resistant to HyperThread interference
until high loads, suggesting that it only reaches high instruction
issue rates at high loads. Power interference has a lesser impact
on ml_cluster since it is less compute intensive than websearch.
Finally, ml_cluster is not impacted at all by network interference.

memkeyval: Due to its significantly stricter latency SLO,
memkeyval is sensitive to all types of interference. At high load,
memkeyval becomes sensitive even to small LLC interference as
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websearch
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

LLC (small) 134% 103% 96% 96% 109% 102% 100% 96% 96% 104% 99% 100% 101% 100% 104% 103% 104% 103% 99%
LLC (med) 152% 106% 99% 99% 116% 111% 109% 103% 105% 116% 109% 108% 107% 110% 123% 125% 114% 111% 101%
LLC (big) >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% 264% 222% 123% 102%

DRAM >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% 270% 228% 122% 103%
HyperThread 81% 109% 106% 106% 104% 113% 106% 114% 113% 105% 114% 117% 118% 119% 122% 136% >300% >300% >300%
CPU power 190% 124% 110% 107% 134% 115% 106% 108% 102% 114% 107% 105% 104% 101% 105% 100% 98% 99% 97%

Network 35% 35% 36% 36% 36% 36% 36% 37% 37% 38% 39% 41% 44% 48% 51% 55% 58% 64% 95%
brain 158% 165% 157% 173% 160% 168% 180% 230% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300%

ml_cluster
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

LLC (small) 101% 88% 99% 84% 91% 110% 96% 93% 100% 216% 117% 106% 119% 105% 182% 206% 109% 202% 203%
LLC (med) 98% 88% 102% 91% 112% 115% 105% 104% 111% >300% 282% 212% 237% 220% 220% 212% 215% 205% 201%
LLC (big) >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% 276% 250% 223% 214% 206%

DRAM >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% 287% 230% 223% 211%
HyperThread 113% 109% 110% 111% 104% 100% 97% 107% 111% 112% 114% 114% 114% 119% 121% 130% 259% 262% 262%
CPU power 112% 101% 97% 89% 91% 86% 89% 90% 89% 92% 91% 90% 89% 89% 90% 92% 94% 97% 106%

Network 57% 56% 58% 60% 58% 58% 58% 58% 59% 59% 59% 59% 59% 63% 63% 67% 76% 89% 113%
brain 151% 149% 174% 189% 193% 202% 209% 217% 225% 239% >300% >300% 279% >300% >300% >300% >300% >300% >300%

memkeyval
5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

LLC (small) 115% 88% 88% 91% 99% 101% 79% 91% 97% 101% 135% 138% 148% 140% 134% 150% 114% 78% 70%
LLC (med) 209% 148% 159% 107% 207% 119% 96% 108% 117% 138% 170% 230% 182% 181% 167% 162% 144% 100% 104%
LLC (big) >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% 280% 225% 222% 170% 79% 85%

DRAM >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% 252% 234% 199% 103% 100%
HyperThread 26% 31% 32% 32% 32% 32% 33% 35% 39% 43% 48% 51% 56% 62% 81% 119% 116% 153% >300%
CPU power 192% 277% 237% 294% >300% >300% 219% >300% 292% 224% >300% 252% 227% 193% 163% 167% 122% 82% 123%

Network 27% 28% 28% 29% 29% 27% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300%
brain 197% 232% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300% >300%

Each entry is color-coded as follows: 140% is ≥120%, 110% is between 100% and 120%, and 65% is ≤100%.

Figure 1. Impact of interference on shared resources on websearch, ml_cluster, and memkeyval. Each row is an antagonist and

each column is a load point for the workload. The values are latencies, normalized to the SLO latency.

the small per-request working sets add up. When faced with
medium LLC interference, there are two latency peaks. The first
peak at low load is caused by the antagonist removing instruc-
tions from the cache. When memkeyval obtains enough cores at
high load, it avoids these evictions. The second peak is at higher
loads, when the antagonist interferes with the per-request work-
ing set. At high levels of LLC interference, memkeyval is unable
to meet its SLO. Even though memkeyval has low DRAM band-
width requirements, it is strongly affected by a DRAM streaming
antagonist. Ironically, the few memory requests from memkeyval

are overwhelmed by the DRAM antagonist.

memkeyval is not sensitive to the HyperThread antagonist ex-
cept at high loads. In contrast, it is very sensitive to the power
antagonist, as it is compute-bound. memkeyval does consume a
large amount of network bandwidth, and thus is highly suscepti-
ble to competing network flows. Even at small loads, it is com-
pletely overrun by the many small “mice” flows of the antagonist
and is unable to meet its SLO.

4 Heracles Design

We have established the need for isolation mechanisms be-
yond OS-level scheduling and for a dynamic controller that man-
ages resource sharing between LC and BE tasks. Heracles

is a dynamic, feedback-based controller that manages in real-
time four hardware and software mechanisms in order to isolate
colocated workloads. Heracles implements an iso-latency pol-
icy [47], namely that it can increase resource efficiency as long
as the SLO is being met. This policy allows for increasing server
utilization through tolerating some interference caused by colo-
cation, as long as the the difference between the SLO latency
target for the LC workload and the actual latency observed (la-
tency slack) is positive. In its current version, Heracles manages

one LC workload with many BE tasks. Since BE tasks are abun-
dant, this is sufficient to raise utilization in many datacenters. We
leave colocation of multiple LC workloads to future work.

4.1 Isolation Mechanisms

Heracles manages 4 mechanisms to mitigate interference.

For core isolation, Heracles uses Linux’s cpuset

cgroups to pin the LC workload to one set of cores and BE
tasks to another set (software mechanism) [55]. This mechanism
is necessary, since in §3 we showed that core sharing is detrimen-
tal to latency SLO. Moreover, the number of cores per server is
increasing, making core segregation finer-grained. The alloca-
tion of cores to tasks is done dynamically. The speed of core
(re)allocation is limited by how fast Linux can migrate tasks to
other cores, typically in the tens of milliseconds.

For LLC isolation, Heracles uses the Cache Allocation Tech-
nology (CAT) available in recent Intel chips (hardware mech-
anism) [3]. CAT implements way-partitioning of the shared
LLC. In a highly-associative LLC, this allows us to define non-
overlapping partitions at the granularity of a few percent of the
total LLC capacity. We use one partition for the LC workload
and a second partition for all BE tasks. Partition sizes can be
adjusted dynamically by programming model specific registers
(MSRs), with changes taking effect in a few milliseconds.

There are no commercially available DRAM bandwidth iso-
lation mechanisms. We enforce DRAM bandwidth limits in the
following manner: we implement a software monitor that peri-
odically tracks the total bandwidth usage through performance
counters and estimates the bandwidth used by the LC and BE
jobs. If the LC workload does not receive sufficient bandwidth,
Heracles scales down the number of cores that BE jobs use. We
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discuss the limitations of this coarse-grained approach in §4.2.

For power isolation, Heracles uses CPU frequency monitor-
ing, Running Average Power Limit (RAPL), and per-core DVFS
(hardware features) [3, 37]. RAPL is used to monitor CPU power
at the per-socket level, while per-core DVFS is used to redis-
tribute power amongst cores. Per-core DVFS setting changes go
into effect within a few milliseconds. The frequency steps are
in 100MHz and span the entire operating frequency range of the
processor, including Turbo Boost frequencies.

For network traffic isolation, Heracles uses Linux traf-
fic control (software mechanism). Specifically we use the
qdisc [12] scheduler with hierarchical token bucket queueing
discipline (HTB) to enforce bandwidth limits for outgoing traf-
fic from the BE tasks. The bandwidth limits are set by limiting
the maximum traffic burst rate for the BE jobs (ceil parameter
in HTB parlance). The LC job does not have any limits set on
it. HTB can be updated very frequently, with the new bandwidth
limits taking effect in less than hundreds of milliseconds. Manag-
ing ingress network interference has been examined in numerous
previous work and is outside the scope of this work [33].

4.2 Design Approach

Each hardware or software isolation mechanism allows rea-
sonably precise control of an individual resource. Given that, the
controller must dynamically solve the high dimensional problem
of finding the right settings for all these mechanisms at any load
for the LC workload and any set of BE tasks. Heracles solves
this as an optimization problem, where the objective is to maxi-
mize utilization with the constraint that the SLO must be met.

Heracles reduces the optimization complexity by decoupling
interference sources. The key insight that enables this reduction
is that interference is problematic only when a shared resource

becomes saturated, i.e. its utilization is so high that latency prob-
lems occur. This insight is derived by the analysis in §3: the
antagonists do not cause significant SLO violations until an in-
flection point, at which point the tail latency degrades extremely
rapidly. Hence, if Heracles can prevent any shared resource from
saturating, then it can decompose the high-dimensional optimiza-

tion problem into many smaller and independent problems of one

or two dimensions each. Then each sub-problem can be solved
using sound optimization methods, such as gradient descent.

Since Heracles must ensure that the target SLO is met for the
LC workload, it continuously monitors latency and latency slack
and uses both as key inputs in its decisions. When the latency
slack is large, Heracles treats this as a signal that it is safe to be
more aggressive with colocation; conversely, when the slack is
small, it should back off to avoid an SLO violation. Heracles

also monitors the load (queries per second), and during periods
of high load, it disables colocation due to a high risk of SLO
violations. Previous work has shown that indirect performance
metrics, such as CPU utilization, are insufficient to guarantee
that the SLO is met [47].

Ideally, Heracles should require no offline information other
than SLO targets. Unfortunately, one shortcoming of current
hardware makes this difficult. The Intel chips we used do
not provide accurate mechanisms for measuring (or limiting)
DRAM bandwidth usage at a per-core granularity. To understand
how Heracles’ decisions affect the DRAM bandwidth usage of

LC workload
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Figure 2. The system diagram of Heracles.

latency-sensitive and BE tasks and to manage bandwidth satura-
tion, we require some offline information. Specifically, Heracles

uses an offline model that describes the DRAM bandwidth used
by the latency-sensitive workloads at various loads, core, and
LLC allocations. We verified that this model needs to be regen-
erated only when there are significant changes in the workload
structure and that small deviations are fine. There is no need
for any offline profiling of the BE tasks, which can vary widely
compared to the better managed and understood LC workloads.
There is also no need for offline analysis of interactions between
latency-sensitive and best effort tasks. Once we have hardware
support for per-core DRAM bandwidth accounting [30], we can
eliminate this offline model.

4.3 Heracles Controller

Heracles runs as a separate instance on each server, managing
the local interactions between the LC and BE jobs. As shown in
Figure 2, it is organized as three subcontrollers (cores & mem-
ory, power, network traffic) coordinated by a top-level controller.
The subcontrollers operate fairly independently of each other and
ensure that their respective shared resources are not saturated.

Top-level controller: The pseudo-code for the controller is
shown in Algorithm 1. The controller polls the tail latency and
load of the LC workload every 15 seconds. This allows for suf-
ficient queries to calculate statistically meaningful tail latencies.
If the load for the LC workload exceeds 85% of its peak on the
server, the controller disables the execution of BE workloads.
This empirical safeguard avoids the difficulties of latency man-
agement on highly utilized systems for minor gains in utilization.
For hysteresis purposes, BE execution is enabled when the load
drops below 80%. BE execution is also disabled when the la-
tency slack, the difference between the SLO target and the cur-
rent measured tail latency, is negative. This typically happens
when there is a sharp spike in load for the latency-sensitive work-
load. We give all resources to the latency critical workload for a
while (e.g., 5 minutes) before attempting colocation again. The
constants used here were determined through empirical tuning.

When these two safeguards are not active, the controller uses
slack to guide the subcontrollers in providing resources to BE
tasks. If slack is less than 10%, the subcontrollers are instructed
to disallow growth for BE tasks in order to maintain a safety
margin. If slack drops below 5%, the subcontroller for cores is
instructed to switch cores from BE tasks to the LC workload.
This improves the latency of the LC workload and reduces the
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1 while True:

2 latency=PollLCAppLatency()
3 load=PollLCAppLoad()
4 slack=(target-latency)/target
5 if slack<0:

6 DisableBE()
7 EnterCooldown()

8 elif load>0.85:

9 DisableBE()
10 elif load<0.80:

11 EnableBE()
12 elif slack<0.10:

13 DisallowBEGrowth()
14 if slack<0.05:

15 be_cores.Remove(be_cores.Size()-2)

16 sleep(15)

Algorithm 1: High-level controller.

ability of the BE job to cause interference on any resources. If
slack is above 10%, the subcontrollers are instructed to allow BE
tasks to acquire a larger share of system resources. Each sub-
controller makes allocation decisions independently, provided of
course that its resources are not saturated.

Core & memory subcontroller: Heracles uses a single subcon-
troller for core and cache allocation due to the strong coupling
between core count, LLC needs, and memory bandwidth needs.
If there was a direct way to isolate memory bandwidth, we would
use independent controllers. The pseudo-code for this subcon-
troller is shown in Algorithm 2. Its output is the allocation of
cores and LLC to the LC and BE jobs (2 dimensions).

The first constraint for the subcontroller is to avoid memory
bandwidth saturation. The DRAM controllers provide registers
that track bandwidth usage, making it easy to detect when they
reach 90% of peak streaming DRAM bandwidth. In this case, the
subcontroller removes as many cores as needed from BE tasks
to avoid saturation. Heracles estimates the bandwidth usage of
each BE task using a model of bandwidth needs for the LC work-
load and a set of hardware counters that are proportional to the
per-core memory traffic to the NUMA-local memory controllers.
For the latter counters to be useful, we limit each BE task to a
single socket for both cores and memory allocations using Linux
numactl. Different BE jobs can run on either socket and LC
workloads can span across sockets for cores and memory.

When the top-level controller signals BE growth and there
is no DRAM bandwidth saturation, the subcontroller uses gra-
dient descent to find the maximum number of cores and cache
partitions that can be given to BE tasks. Offline analysis of
LC applications (Figure 3) shows that their performance is a
convex function of core and cache resources, thus guaranteeing
that gradient descent will find a global optimum. We perform
the gradient descent in one dimension at a time, switching be-
tween increasing the cores and increasing the cache given to BE
tasks. Initially, a BE job is given one core and 10% of the LLC
and starts in the GROW_LLC phase. Its LLC allocation is in-
creased as long as the LC workload meets its SLO, bandwidth
saturation is avoided, and the BE task benefits. The next phase
(GROW_CORES) grows the number of cores for the BE job. Her-

acles will reassign cores from the LC to the BE job one at a

1 def PredictedTotalBW():

2 return LcBwModel()+BeBw()+bw_derivative
3 while True:

4 MeasureDRAMBw()
5 if total_bw>DRAM_LIMIT:

6 overage=total_bw-DRAM_LIMIT
7 be_cores.Remove(overage/BeBwPerCore())
8 continue

9 if not CanGrowBE():

10 continue
11 if state==GROW_LLC:

12 if PredictedTotalBW()>DRAM_LIMIT:

13 state=GROW_CORES
14 else:

15 GrowCacheForBE()
16 MeasureDRAMBw()
17 if bw_derivative>=0:

18 Rollback()
19 state=GROW_CORES

20 if not BeBenefit():

21 state=GROW_CORES

22 elif state==GROW_CORES:

23 needed=LcBwModel()+BeBw()+BeBwPerCore()
24 if needed>DRAM_LIMIT:

25 state=GROW_LLC
26 elif slack>0.10:

27 be_cores.Add(1)

28 sleep(2)

Algorithm 2: Core & memory sub-controller.

time, each time checking for DRAM bandwidth saturation and
SLO violations for the LC workload. If bandwidth saturation oc-
curs first, the subcontroller will return to the GROW_LLC phase.
The process repeats until an optimal configuration has been con-
verged upon. The search also terminates on a signal from the
top-level controller indicating the end to growth or the disabling
of BE jobs. The typical convergence time is about 30 seconds.

During gradient descent, the subcontroller must avoid trying
suboptimal allocations that will either trigger DRAM bandwidth
saturation or a signal from the top-level controller to disable BE
tasks. To estimate the DRAM bandwidth usage of an alloca-
tion prior to trying it, the subcontroller uses the derivative of the
DRAM bandwidth from the last reallocation of cache or cores.
Heracles estimates whether it is close to an SLO violation for
the LC task based on the amount of latency slack.

Power subcontroller: The simple subcontroller described in
Algorithm 3 ensures that there is sufficient power slack to run
the LC workload at a minimum guaranteed frequency. This fre-
quency is determined by measuring the frequency used when the
LC workload runs alone at full load. Heracles uses RAPL to de-
termine the operating power of the CPU and its maximum design
power, or thermal dissipation power (TDP). It also uses CPU fre-
quency monitoring facilities on each core. When the operating
power is close to the TDP and the frequency of the cores running
the LC workload is too low, it uses per-core DVFS to lower the
frequency of cores running BE tasks in order to shift the power
budget to cores running LC tasks. Both conditions must be met
in order to avoid confusion when the LC cores enter active-idle
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Figure 3. Characterization of websearch showing that its per-

formance is a convex function of cores and LLC.

1 while True:

2 power=PollRAPL()
3 ls_freq=PollFrequency(ls_cores)
4 if power>0.90*TDP and ls_freq<guaranteed:

5 LowerFrequency(be_cores)
6 elif power<=0.90*TDP and ls_freq>=guaranteed:

7 IncreaseFrequency(be_cores)
8 sleep(2)

Algorithm 3: CPU power sub-controller.

1 while True:

2 ls_bw=GetLCTxBandwidth()
3 be_bw=LINK_RATE-ls_bw-max(0.05*LINK_RATE,

0.10*ls_bw)
4 SetBETxBandwidth(be_bw)
5 sleep(1)

Algorithm 4: Network sub-controller.

modes, which also tends to lower frequency readings. If there is
sufficient operating power headroom, Heracles will increase the
frequency limit for the BE cores in order to maximize their per-
formance. The control loop runs independently for each of the
two sockets and has a cycle time of two seconds.

Network subcontroller: This subcontroller prevents satura-
tion of network transmit bandwidth as shown in Algorithm 4.
It monitors the total egress bandwidth of flows associated
with the LC workload (LCBandwidth) and sets the total band-
width limit of all other flows as LinkRate − LCBandwidth −

max(0.05LinkRate,0.10LCBandwidth). A small headroom of
10% of the current LCBandwidth or 5% of the LinkRate is added
into the reservation for the LC workload in order to handle spikes.
The bandwidth limit is enforced via HTB qdiscs in the Linux ker-
nel. This control loop is run once every second, which provides
sufficient time for the bandwidth enforcer to settle.

5 Heracles Evaluation

5.1 Methodology

We evaluated Heracles with the three production, latency-
critical workloads from Google analyzed in §3. We first per-
formed experiments with Heracles on a single leaf server, intro-
ducing BE tasks as we run the LC workload at different levels
of load. Next, we used Heracles on a websearch cluster with
tens of servers, measuring end-to-end workload latency across
the fan-out tree while BE tasks are also running. In the clus-
ter experiments, we used a load trace that represents the traffic
throughout a day, capturing diurnal load variation. In all cases,
we used production Google servers.

For the LC workloads we focus on SLO latency. Since the
SLO is defined over 60-second windows, we report the worst-
case latency that was seen during experiments. For the produc-
tion batch workloads, we compute the throughput rate of the
batch workload with Heracles and normalize it to the throughput
of the batch workload running alone on a single server. We then
define the Effective Machine Utilization (EMU) = LC Through-
put + BE Throughput. Note that Effective Machine Utilization

can be above 100% due to better binpacking of shared resources.
We also report the utilization of shared resources when necessary
to highlight detailed aspects of the system.

The BE workloads we use are chosen from a set containing
both production batch workloads and the synthetic tasks that
stress a single shared resource. The specific workloads are:

stream-LLC streams through data sized to fit in about half
of the LLC and is the same as LLC (med) from §3.2. stream-

DRAM streams through an extremely large array that cannot fit
in the LLC (DRAM from the same section). We use these work-
loads to verify that Heracles is able to maximize the use of LLC
partitions and avoid DRAM bandwidth saturation.

cpu_pwr is the CPU power virus from §3.2. It is used to
verify that Heracles will redistribute power to ensure that the LC
workload maintains its guaranteed frequency.

iperf is an open source network streaming benchmark used to
verify that Heracles partitions network transmit bandwidth cor-
rectly to protect the LC workload.

brain is a Google production batch workload that performs
deep learning on images for automatic labelling [38, 67]. This
workload is very computationally intensive, is sensitive to LLC
size, and also has high DRAM bandwidth requirements.

streetview is a production batch job that stitches together mul-
tiple images to form the panoramas for Google Street View. This
workload is highly demanding on the DRAM subsystem.

5.2 Individual Server Results

Latency SLO: Figure 4 presents the impact of colocating
each of the three LC workloads with BE workloads across all
possible loads under the control of Heracles. Note that Her-

acles attempts to run as many copies of the BE task as possi-
ble and maximize the resources they receive. At all loads and
in all colocation cases, there are no SLO violations with Her-

acles. This is true even for brain, a workload that even with
the state-of-the-art OS isolation mechanisms would render any
LC workload unusable. This validates that the controller keeps
shared resources from saturating and allocates a sufficient frac-
tion to the LC workload at any load. Heracles maintains a small
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Figure 4. Latency of LC applications co-located with BE jobs under Heracles. For clarity we omit websearch and ml_cluster with

iperf as those workloads are extremely resistant to network interference.
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Figure 5. EMU achieved by Heracles.

latency slack as a guard band to avoid spikes and control insta-
bility. It also validates that local information on tail latency is
sufficient for stable control for applications with milliseconds
and microseconds range of SLOs. Interestingly, the websearch

binary and shard changed between generating the offline profil-
ing model for DRAM bandwidth and performing this experiment.
Nevertheless, Heracles is resilient to these changes and performs
well despite the somewhat outdated model.

Heracles reduces the latency slack during periods of low uti-
lization for all workloads. For websearch and ml_cluster, the
slack is cut in half, from 40% to 20%. For memkeyval, the reduc-
tion is much more dramatic, from a slack of 80% to 40% or less.
This is because the unloaded latency of memkeyval is extremely
small compared to the SLO latency. The high variance of the tail
latency for memkeyval is due to the fact that its SLO is in the hun-
dreds of microseconds, making it more sensitive to interference
than the other two workloads.

Server Utilization: Figure 5 shows the EMU achieved when
colocating production LC and BE tasks with Heracles. In all
cases, we achieve significant EMU increases. When the two
most CPU-intensive and power-hungry workloads are combined,
websearch and brain, Heracles still achieves an EMU of at least
75%. When websearch is combined with the DRAM bandwidth
intensive streetview, Heracles can extract sufficient resources for
a total EMU above 100% at websearch loads between 25% and
70%. This is because websearch and streetivew have complemen-
tary resource requirements, where websearch is more compute
bound and streetview is more DRAM bandwidth bound. The
EMU results are similarly positive for ml_cluster and memkeyval.

By dynamically managing multiple isolation mechanisms, Hera-

cles exposes opportunities to raise EMU that would otherwise be
missed with scheduling techniques that avoid interference.

Shared Resource Utilization: Figure 6 plots the utilization
of shared resources (cores, power, and DRAM bandwidth) under
Heracles control. For memkeyval, we include measurements of
network transmit bandwidth in Figure 7.

Across the board, Heracles is able to correctly size the
BE workloads to avoid saturating DRAM bandwidth. For the
stream-LLC BE task, Heracles finds the correct cache partitions
to decrease total DRAM bandwidth requirements for all work-
loads. For ml_cluster, with its large cache footprint, Heracles

balances the needs of stream-LLC with ml_cluster effectively,
with a total DRAM bandwidth slightly above the baseline. For
the BE tasks with high DRAM requirements (stream-DRAM,
streetview), Heracles only allows them to execute on a few cores
to avoid saturating DRAM. This is reflected by the lower CPU
utilization but high DRAM bandwidth. However, EMU is still
high, as the critical resource for those workloads is not compute,
but memory bandwidth.

Looking at the power utilization, Heracles allows significant
improvements to energy efficiency. Consider the 20% load case:
EMU was raised by a significant amount, from 20% to 60%-90%.
However, the CPU power only increased from 60% to 80%.
This translates to an energy efficiency gain of 2.3-3.4x. Overall,
Heracles achieves significant gains in resource efficiency across
all loads for the LC task without causing SLO violations.

5.3 Websearch Cluster Results

We also evaluate Heracles on a small minicluster for web-

search with tens of servers as a proxy for the full-scale cluster.
The cluster root fans out each user request to all leaf servers and
combines their replies. The SLO latency is defined as the aver-
age latency at the root over 30 seconds, denoted as µ/30s. The
target SLO latency is set as µ/30s when serving 90% load in the
cluster without colocated tasks. Heracles runs on every leaf node
with a uniform 99%-ile latency target set such that the latency at
the root satisfies the SLO. We use Heracles to execute brain on
half of the leafs and streetview on the other half. Heracles shares
the same offline model for the DRAM bandwidth needs of web-

search across all leaves, even though each leaf has a different
shard. We generate load from an anonymized, 12-hour request
trace that captures the part of the daily diurnal pattern when web-
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Figure 6. Various system utilization metrics of LC applications co-located with BE jobs under Heracles.
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Figure 7. Network bandwidth of memkeyval under Heracles.

search is not fully loaded and colocation has high potential.

Latency SLO: Figure 8 shows the latency SLO with and
without Heracles for the 12-hour trace. Heracles produces no
SLO violations while reducing slack by 20-30%. Meeting the
99%-ile tail latency at each leaf is sufficient to guarantee the
global SLO. We believe we can further reduce the slack in larger
websearch clusters by introducing a centralized controller that
dynamically sets the per-leaf tail latency targets based on slack
at the root [47]. This will allow a future version of Heracles to
take advantage of slack in higher layers of the fan-out tree.

Server Utilization: Figure 8 also shows that Heracles suc-
cessfully converts the latency slack in the baseline case into sig-
nificantly increased EMU. Throughout the trace, Heracles colo-
cates sufficient BE tasks to maintain an average EMU of 90%
and a minimum of 80% without causing SLO violations. The
websearch load varies between 20% and 90% in this trace.

TCO: To estimate the impact on total cost of ownership, we
use the TCO calculator by Barroso et al. with the parameters
from the case-study of a datacenter with low per-server cost [7].
This model assumes $2000 servers with a PUE of 2.0 and a peak
power draw of 500W as well as electricity costs of $0.10/kW-hr.
For our calculations, we assume a cluster size of 10,000 servers.
Assuming pessimistically that a websearch cluster is highly uti-
lized throughout the day, with an average load of 75%, Heracles’
ability to raise utilization to 90% translates to a 15% through-
put/TCO improvement over the baseline. This improvement in-
cludes the cost of the additional power consumption at higher uti-
lization. Under the same assumptions, a controller that focuses
only on improving energy-proportionality for websearch would
achieve throughput/TCO gains of roughly 3% [47].

If we assume a cluster for LC workloads utilized at an average
of 20%, as many industry studies suggest [44, 74], Heracles can
achieve a 306% increase in throughput/TCO. A controller focus-
ing on energy-proportionality would achieve improvements of
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Figure 8. Latency SLO and effective machine utilization for a websearch cluster managed by Heracles.

less than 7%. Heracles’ advantage is due to the fact that it can
raise utilization from 20% to 90% with a small increase to power
consumption, which only represents 9% of the initial TCO. As
long as there are useful BE tasks available, one should always
choose to improve throughput/TCO by colocating them with LC
jobs instead of lowering the power consumption of servers in
modern datacenters. Also note that the improvements in through-
put/TCO are large enough to offset the cost of reserving a small
portion of each server’s memory or storage for BE tasks.

6 Related Work

Isolation mechanisms: There is significant work on shared
cache isolation, including soft partitioning based on replace-
ment policies [77, 78], way-partitioning [65, 64], and fine-
grained partitioning [68, 49, 71]. Tessellation exposes an inter-
face for throughput-based applications to request partitioned re-
sources [45]. Most cache partitioning schemes have been eval-
uated with a utility-based policy that optimizes for aggregate
throughput [64]. Heracles manages the coarse-grained, way-
partitioning scheme recently added in Intel CPUs, using a search
for a right-sized allocation to eliminate latency SLO violations.
We expect Heracles will work even better with fine-grained par-
titioning schemes when they are commercially available.

Iyer et al. explores a wide range quality-of-service (QoS) poli-
cies for shared cache and memory systems with simulated isola-
tion features [30, 26, 24, 23, 29]. They focus on throughput met-
rics, such as IPC and MPI, and did not consider latency-critical
workloads or other resources such as network traffic. Cook et al.
evaluate hardware cache partitioning for throughput based appli-
cations and did not consider latency-critical tasks [15]. Wu et
al. compare different capacity management schemes for shared
caches [77]. The proposed Ubik controller for shared caches
with fine-grained partitioning support boosts the allocation for
latency-critical workloads during load transition times and re-
quires application level changes to inform the runtime of load
changes [36]. Heracles does not require any changes to the LC
task, instead relying on a steady-state approach for managing
cache partitions that changes partition sizes slowly.

There are several proposals for isolation and QoS features
for memory controllers [30, 56, 32, 59, 57, 20, 40, 70]. While
our work showcases the need for memory isolation for latency-
critical workloads, such features are not commercially available
at this point. Several network interface controllers implement

bandwidth limiters and priority mechanisms in hardware. Unfor-
tunately, these features are not exposed by device drivers. Hence,
Heracles and related projects in network performance isolation
currently use Linux qdisc [33]. Support for network isolation in
hardware should strengthen this work.

The LC workloads we evaluated do not use disks or SSDs in
order to meet their aggressive latency targets. Nevertheless, disk
and SSD isolation is quite similar to network isolation. Thus, the
same principles and controls used to mitigate network interfer-
ence still apply. For disks, we list several available isolation tech-
niques: 1) the cgroups blkio controller [55], 2) native command
queuing (NCQ) priorities [27], 3) prioritization in file-system
queues, 4) partitioning LC and BE to different disks, 5) repli-
cating LC data across multiple disks that allows selecting the
disk/reply that responds first or has lower load [17]. For SSDs:
1) many SSDs support channel partitions, separate queueing, and
prioritization at the queue level, 2) SSDs also support suspending
operations to allow LC requests to overtake BE requests.

Interference-aware cluster management: Several cluster-
management systems detect interference between colocated
workloads and generate schedules that avoid problematic colo-
cations. Nathuji et al. develop a feedback-based scheme that
tunes resource assignment to mitigate interference for colocated
VMs [58]. Bubble-flux is an online scheme that detects memory
pressure and finds colocations that avoid interference on latency-
sensitive workloads [79, 51]. Bubble-flux has a backup mech-
anism to enable problematic co-locations via execution modu-
lation, but such a mechanism would have challenges with ap-
plications such as memkeyval, as the modulation would need to
be done in the granularity of microseconds. DeepDive detects
and manages interference between co-scheduled applications in
a VM system [60]. CPI2 throttles low-priority workloads that in-
terfere with important services [80]. Finally, Paragon and Quasar
use online classification to estimate interference and to colocate
workloads that are unlikely to cause interference [18, 19].

The primary difference of Heracles is the focus on latency-
critical workloads and the use of multiple isolation schemes in
order to allow aggressive colocation without SLO violations at
scale. Many previous approaches use IPC instead of latency as
the performance metric [79, 51, 60, 80]. Nevertheless, one can
couple Heracles with an interference-aware cluster manager in
order to optimize the placement of BE tasks.

Latency-critical workloads: There is also significant work in
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optimizing various aspects of latency-critical workloads, includ-
ing energy proportionality [53, 54, 47, 46, 34], networking per-
formance [35, 8], and hardware-acceleration [41, 63, 72]. Hera-

cles is largely orthogonal to these projects.

7 Conclusions

We present Heracles, a heuristic feedback-based system that
manages four isolation mechanisms to enable a latency-critical
workload to be colocated with batch jobs without SLO viola-
tions. We used an empirical characterization of several sources
of interference to guide an important heuristic used in Heracles:
interference effects are large only when a shared resource is sat-
urated. We evaluated Heracles and several latency-critical and
batch workloads used in production at Google on real hardware
and demonstrated an average utilization of 90% across all evalu-
ated scenarios without any SLO violations for the latency-critical
job. Through coordinated management of several isolation mech-
anisms, Heracles enables colocation of tasks that previously
would cause SLO violations. Compared to power-saving mech-
anisms alone, Heracles increases overall cost efficiency substan-
tially through increased utilization.
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