
Backoff Inspired Features for Maximum Entropy Language Models

Fadi Biadsy, Keith Hall, Pedro Moreno and Brian Roark

Google, Inc.
{biadsy,kbhall,pedro,roark}@google.com

Abstract
Maximum Entropy (MaxEnt) language models [1, 2] are linear
models that are typically regularized via well-known L1 or L2
terms in the likelihood objective, hence avoiding the need for
the kinds of backoff or mixture weights used in smoothed n-
gram language models using Katz backoff [3] and similar tech-
niques. Even though backoff cost is not required to regularize
the model, we investigate the use of backoff features in Max-
Ent models, as well as some backoff-inspired variants. These
features are shown to improve model quality substantially, as
shown in perplexity and word-error rate reductions, even in very
large scale training scenarios of tens or hundreds of billions of
words and hundreds of millions of features.
Index Terms: maximum entropy modeling, language model-
ing, n-gram models, linear models

1. Introduction
A central problem in language modeling is how to combine in-
formation from various model components, e.g., mixing mod-
els trained with differing Markov orders for smoothing or on
distinct corpora for adaptation. Smoothing (regularization) for
n-gram language models is typically presented as a mechanism
whereby higher-order models are combined with lower-order
models so as to achieve both the specificity of the higher-order
model and the more robust generality of the lower-order model.
Most commonly, this combination is effected via an interpola-
tion or backoff mechanism, in which each prefix (history) of an
n-gram has a parameter which dictates how much cost is asso-
ciated with making use of lower-order n-gram estimates, often
called the “backoff cost”. This becomes a parameter estimation
problem in its own right, either through discounting or mixing
parameters; and these are often estimated via extensive param-
eter tying, heuristics based on count histograms, or both.

Log linear models provide an alternative to n-gram backoff
or interpolated models for combining evidence from multiple,
overlapping sources of evidence, with very different regulariza-
tion methods. Instead of defining a specific model structure with
backoff costs and/or mixing parameters, these models combine
features from many sources into a single linear feature vector,
and score a word by taking the dot product of the feature vec-
tor with a learned parameter vector. Learning can be via locally
normalized likelihood objective functions, as in Maximum En-
tropy (MaxEnt) models [1, 2, 4] or global “whole sentence” ob-
jectives [5, 6, 7]. For locally normalized MaxEnt models, which
estimate a conditional distribution over a vocabulary given the
prefix history (just as the backoff smoothed n-gram models do),
the brute-force local normalization over the vocabulary obviates
the need for complex backoff schemes to avoid zero probabili-
ties. One can simply toss in n-gram features of all the orders,
and learn their relative contribution.

Recall, however, that the standard backoff n-gram models
do not only contain parameters associated with n-grams; they
also contain parameters associated with the backoff weights for
each prefix history. For every proper prefix of an n-gram in
the model, there will be an associated backoff weight, which

penalizes to a greater or lesser extent words that have been pre-
viously unseen following that prefix history. For some histories
we should have a relatively high expectation of seeing some-
thing new, either because the history itself is rare (hence we
do not have enough observations yet to be strongly predictive)
or it simply predicts relatively open classes of possible words,
e.g., “the”, which can precede many possible words, including
many that were presumably unobserved following “the” in the
training corpus. Other prefixes may be highly predictive so that
the expectation of seeing something previously unobserved is
relatively low, e.g., “Barack”.

Granted, MaxEnt language models (LMs) do not need this
information about prefix histories to estimate regularized prob-
abilities. Chen and Rosenfeld [4] survey various smoothing and
regularization methods for MaxEnt language models, including
reducing the number of features (as L1 regularization does), op-
timizing to match expected frequencies to discounted counts, or
optimizing to modified objectives, such as L2 regularization. In
none of these methods are there parameters in the model asso-
ciated with the sort of “otherwise” semantics of conventional
n-gram backoffs. Because such features are not required for
smoothing, they are not part of the typical feature set used in
log linear language modeling, yet our results demonstrate that
they should be. The ultimate usefulness of such features likely
depends on the amount of training data available, and we have
thus applied highly optimized MaxEnt training to very large
data sets. In large scale n-gram modeling, it has been shown
that the specific details of the smoothing algorithm is typically
less important than the scale. So-called “stupid backoff” [8]
is an efficient, scalable estimation method that, despite lack of
normalization guarantees, is shown to be extremely effective
in very large data set scenarios. While this has been taken to
demonstrate that the specifics of smoothing is unimportant as
the data gets large, those parameters are still important com-
ponents of the modeling approach, even if their usefulness is
robust to variation in parameter value.

We demonstrate that features patterned after backoff
weights, and several related generalizations of these features,
can in fact make a large difference to a MaxEnt language model,
even if the amount of training data is very large. In the next sec-
tion, we present background for language modeling and cover
related work. We then present our MaxEnt training approach,
and the new features. Finally, we present experimental results
on a range of large scale speech tasks.

2. Background and Related Work
Let wi be the word at position i in the string, and let wi−1

i−k =
wi−k . . . wi−1 be the prefix history of the string prior to wi,
and P a probability estimate assigned to seen n-grams by the
specific smoothing method. Then the standard backoff language
model formulation is as follows:

P(wi | wi−1
i−k) =

{
P(wi | wi−1

i−k) if c(wi
i−k) > 0

α(wi−1
i−k) P(wi | wi−1

i−k+1) otherwise

This recursive smoothing formulation has two kinds of param-

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

2645

eters: n-gram probabilities P (wi | wi−1
i−k) and backoff weights

α(wi−1
i−k), which are parameters associated with the prefix his-

tory wi−1
i−k.

MaxEnt models are log linear models score that alterna-
tives by taking the exponential of the dot product between a
feature vector and a parameter vector and normalizing. Let
Φ(wi−k . . . wi) be a d-dimensional feature vector, θ a d-
dimensional parameter vector, and V a vocabulary. Then

P(wi | wi−1
i−k) =

exp(Φ(wi−k . . . wi) · θ)
Z(wi−k . . . wi−1, θ)

where Z is a partition function (normalization constant):

Z(wi−k, . . . , wi−1, θ) =
∑
v∈V

exp(Φ(wi−k, . . . , wi−1v) · θ)

Training with a likelihood objective function is a convex opti-
mization problem, with well-studied efficient estimation tech-
niques, such as stochastic gradient descent. Regularization
techniques are also well-studied, and include L1 and L2 regu-
larization, or their combination, which are modifications of the
likelihood objective to either keep parameter values as close to
zero as possible (L2) or reduce the number of features with non-
zero parameter weights by pushing many parameters to zero
(L1). We employ a distributed approximation to L1, see Sec-
tion 3.1.

The most expensive part of this optimization is the calcula-
tion of the partition function, since it requires summing over the
entire vocabulary, which can be very large. Efficient methods
to enable training with very large corpora and large vocabular-
ies have been investigated over the past decades, from methods
to exploit structural overlap between features [9, 10] to meth-
ods for decomposing the multi-class language modeling prob-
lem into many binary language modeling problems (one versus
the rest) and sampling less data to effectively learn the models
[11]. For this paper, we employed many optimizations to enable
training with very large vocabularies (several hundred thousand
words) and very large training sets (>100B words).

3. Methods
3.1. Maximum Entropy training

Many features have been used in MaxEnt language models, in-
cluding standard n-grams and trigger words [1], topic-based
features [12] and morphological and sub-word based features
[13, 14]. Feature engineering is a major consideration in this
sort of modeling, and in Section 3.2 we detail our newly de-
signed feature templates. Before we do so, we present the train-
ing methods that allow us to scale up to a very large vocabulary
and many training instances. In this work, we wish to scale up
MaxEnt language model training to learn from the same amount
of data used for standard backoff n-gram language models. We
achieve this by exploiting recent work on gradient-based dis-
tributed optimization; specifically, distributed stochastic gradi-
ent descent (SGD) [15, 16, 17, 18, 19].

We differ slightly from previous work in multiple aspects:
(1) we apply a final L1 regularization setp at the end of each
reducer using statistics collected from the mappers; (2) We es-
timate the gradient using a mini-batch of 16 samples where the
mini-batch is processed in parallel via multi-threading; (3) We
do not perform any binarization or subsampling as in [20]; (4)
Unlike [21], we do not peform any clustering of our vocabulary.

Algorithm 1 presents our variant of the iterative parameter
mixtures (IPM) algorithm based on sampling. This presents a
merging of concepts from the original IPM algorithm described
in [16] and the distributed sample-based algorithm in [18] as
well as the lazy L1 SGD computation from [22].

Algorithm 1 Sample-based Iterative Parameter Mixtures
Require: n is the number of samples per worker per epoch
Require: Break S into K partitions

1: S ← {D1, . . . , Dj , . . . , DK}
2: t← 0
3: Θt ← 0
4: repeat
5: t← t+ 1
6: {θ11, . . . , θKL } ← IPMMAP(D1, . . . , DK ,Θt−1, n)

7: Θ′t ← IPMREDUCE(θ11, . . . , θ
j
l , . . . , θ

K
L)

8: Θt ← APPLYL1(Θ′t)
9: until converged

10: function IPMMAP(D,Θ, n)
11: . IPMMAP processes training data in parallel
12: Θ0 ← Θ
13: for i = 1 . . . n do . n examples from D
14: Sample di from D
15: Θ′i ← ApplyLazyL1(ActiveFeatures(di,Θi−1))
16: Θi ← Θ′i − α∇Fdi(Θ

′
i)

17: α← UpdateAlpha(α, i)
18: end for
19: return Θn

20: end function

21: function IPMREDUCE(θ1l , . . . , θ
j
l , . . . , θ

K
l)

22: . IPMREDUCE processes model parameters in parallel
23: θl ← 1

K

∑
j θ

j
l

24: return θl
25: end function

While this is a general paradigm for distributed optimiza-
tion, we show the MapReduce [23] implementation in Algo-
rithm 1. We begin the process by partitioning the training data
S into multiple units Dj , processing each of these units with
the IPMMAP function on separate processing nodes. On each
of these nodes, IPMMAP samples a subset of Dj which we call
di. This can be a single example or a mini-batch of examples.
We perform the Lazy L1 regularization update to the model,
compute the gradient of the regularized loss associated with the
mini-batch (which can be also be done in parallel), update the
local copy of the model parameters Θ, and update the learning-
rate α. Each node samples n examples from its data partition.
Finally, IPMREDUCE collects the local model parameters from
each IPMMAP and averages them in parallel. Parallelization
here can be done over subsets of the parameter indices (each
IPMREDUCE node averages a subset of the parameter space).
We refer to each full MapReduce pass as an epoch of training.
Starting with the second epoch, the IPMMAP nodes are initial-
ized with the previous epoch’s merged, regularized model.

In a general shared distributed framework, which is used
at Google, some machines may be slower than others (due to
hardware or overload), machines may fail, or jobs may be pre-
empted. When using a large number of machines this is in-
evitable. To avoid starting the training process over in these
cases, and make all others wait for for the lagging machines,
we enforce a timeout on our trainers. In other words, all map-
pers have to finish within a certain amount of time. Therefore,
the reducer will merge all models when they either finished pro-
cessing their samples or timed-out.

3.2. Backoff inspired features

MaxEnt language models commonly have n-gram features,
which we denote here as a function of the string, the position,

2646

and the order as follows:

NGram(w1 . . . wn, i, k) = <wi−k, . . . wi−1, wi>

We now introduce some features inspired by the backoff param-
eters α(wi−1

i−k) presented in Section 2. We begin with the most
directly related features, which we term suffix backoff features.

SuffixBackoff(w1 . . . wn, i, k) = <wi−k, . . . wi−1,BO>

These fire if and only if the full n-gram
NGram(w1 . . . wn, i, k) is not in the feature dictionary
(see section 4.1). This is directly analogous to the backoff
weights in standard n-gram models, since it is a parameter
associated with the prefix history that fires when the particular
n-gram is unobserved.

Inspired by the form of this feature, we can introduce other
general backoff features. First, rather than just replacing the
suffix, we can replace the prefix:

PrefixBackoff(w1 . . . wn, i, k) = <BO,wi−k+1, . . . wi>

Next, we can replace multiple words in the feature, to generalize
across several such contexts:

PrefixBackoffj(w1 . . . wn, i, k) = <BOk,wi−j , . . . wi>

SuffixBackoffj(w1 . . . wn, i, k) = <wi−k, . . . wi−k+j,BOk>

These features indicate that an n-gram of length k + 1 end-
ing with (PrefixBackoff), or beginning with (SuffixBackoff), the
particular j words, in the feature, are not in the feature dictio-
nary. Note that, if j=k−1, then PrefixBackoffj is identical to
the earlier defined PrefixBackoff feature, and SuffixBackoffj is
identical to SuffixBackoff.

For example, suppose that we have the following string
S=“we will save the quail eggs” and that the 4-gram “will save
the quail” does not exist in our feature dictionary. Then we can
fire the following features at word wi=5 = “quail”:

SuffixBackoff(S, 5, 3) = < will, save, the, BO >
PrefixBackoff(S, 5, 3) = < BO, save, the, quail >

SuffixBackoff0(S, 5, 3) = < will, BO3 >

SuffixBackoff1(S, 5, 3) = < will, save, BO3 >

PrefixBackoff0(S, 5, 3) = < BO3, quail >
PrefixBackoff1(S, 5, 3) = < BO3, the, quail >

As with n-gram feature templates, we include all such features
up to some specified length, e.g., if we have a trigram model,
that includes n-grams up to length 3, including unigrams, bi-
grams and trigrams. Similarly, for our prefix and suffix backoff
features, we will have a maximum length and include in our
possible feature set all such features of that length or shorter.

4. Experimental results
We performed two experiments to evaluate the utility of these
new backoff-inspired features in maximum entropy language
models trained on very large corpora. First, we examine per-
plexity improvements when such features are included in the
model alongside n-gram features. Next, we look at Word Error
Rate (WER) performance when reranking the output of a base-
line recognizer, again using different backoff feature templates.
In all cases, we fixed the vocabulary and feature budget of the
model so that improvements are not simply due to having more
parameters in the model. We set the vocabulary of our model to
200 thousand words, by selecting all words from the 2M words
in the baseline recognizer vocabulary that had been emitted by
the recognizer in the last 6 months of log files. All other words
are mapped to “<UNK>”. We use the same vocabulary in all
of our experiments.

For our experiments, we focus on the voice search task. Our
data sets are assembled and pooled from anonymized super-
vised and unsupervised spoken queries (such as, search queries,
questions, and voice actions) and typed queries to google.com,
YouTube, and Google Maps, from desktop and mobile devices.
Our overall training set is about 305 billion words (including
end of sentence symbols). We divide this set intoK subsets. We
assign subset Dk to trainer k (where, 1 ≤ k ≤ K). Then, we
run our distributed training (Algorithm 1) using K machines.
Since the amount of training data is very large, trainer k ran-
domly samples data points from its subset Dk. Each epoch uti-
lizes a different seed for sampling, which equals to the epoch
number. As mentioned above, the trainer may terminate due to
completing its subsample or due to a timeout. We fix the time-
out threshold for each epoch across all our experiments. In our
experiments, the timout is 6 hours.

4.1. Feature Dictionary

A feature dictionary maps each feature key (e.g., trigram: “save
the quail”) to an index in the paramater vector Θ. As described
in Algorithm 2, we build this dictionary by iterating over all
strings in our training data and make use of the NGgram func-
tion (defined above) to build the ngram feature keys (for every
k = 0 . . . 4). Also, for each string, we build the required backoff
feature keys (depending on the experiment).

Upon collecting all of these keys, we compute the total ob-
served count for each feature key and then retain only the most
frequent ones. We assign a different count cutoff for each fea-
ture template. We determine these counts based on a classical
cross-entropy pruned n-gram model trained on the same data
Afterwards, our dictionary maps each key to a unique consecu-
tive index = 0 . . . Dim. In all our experiments, we allocated the
same budget of 228 million paramaters. It is important to note
that the number of features dedicated for backoff features may
significantly vary across backoff-feature types.

Note that, while the backoff inspired features detailed in
section 3.2 are defined to fire only when the corresponding n-
gram does not appear in the feature dictionary, they themselves
must appear in the feature dictionary in order to fire. If one
of these features does not appear frequently enough, it will not
appear in the feature dictionary and neither the original n-gram
nor the backoff feature will fire.

4.2. Feature Sets

In these experiments, all MaxEnt language models include n-
grams up to 5-grams. Our backoff inspired features are also

Algorithm 2 Dictionary Construction
for all w1, w2, . . . , wn ∈ Data do

for i← 1 . . . n do
. We use 5-gram features.
for k ← 0 . . . 4 do

key ← NGram(w1, . . . , wn, i, k)
dictk ← dictk ∪ {key}
countk[key]← countk[key] + 1
. Call the backoff functions above.
bo key ← SuffixBackoff(w1, . . . , wn, i, k)
dictk ← dictk ∪ {bo key}
countk[bo key]← countk[bo key] + 1

end for
end for

end for
. Retain the most frequent features in dictk and map each
feature to a unique index, for each k = 0, . . . , 4.

2647

Pe
rp

le
xi

ty

Fi
gu

re
1:

Pe
rp

le
xi

ty
ve

rs
us

nu
m

be
r

of
ep

oc
hs

of
tr

ai
ni

ng
fo

r
va

ri
ou

s
fe

at
ur

e
se

ts
un

de
r

th
e

sa
m

e
fe

at
ur

e
bu

dg
et

co
ns

tr
ai

nt
.

Fe
at

ur
e

se
ts

in
-

cl
ud

e:
(1

)n
-g

ra
m

fe
at

ur
es

(N
G

);
(2

)P
re

fix
B

ac
ko

ff
(P

);
(3

)S
uf

fix
B

ac
k-

of
f(

S)
;(

4)
Pr

efi
xB

ac
ko

ff
-k

(P
k)

;a
nd

(5
)S

uf
fix

B
ac

ko
ff

-k
(S

k)
.

Pe
rp

le
xi

ty

Fi
gu

re
1:

Pe
rp

le
xi

ty
ve

rs
us

nu
m

be
r

of
ep

oc
hs

of
tr

ai
ni

ng
fo

r
va

ri
ou

s
fe

at
ur

e
se

ts
un

de
r

th
e

sa
m

e
fe

at
ur

e
bu

dg
et

co
ns

tr
ai

nt
.

Fe
at

ur
e

se
ts

in
-

cl
ud

e:
(1

)n
-g

ra
m

fe
at

ur
es

(N
G

);
(2

)P
re

fix
B

ac
ko

ff
(P

);
(3

)S
uf

fix
B

ac
k-

of
f(

S)
;(

4)
Pr

efi
xB

ac
ko

ff
-k

(P
k)

;a
nd

(5
)S

uf
fix

B
ac

ko
ff

-k
(S

k)
.

Epochs
Figure 1: Perplexity versus number of epochs of training for various
feature sets under the same feature budget constraint. Feature sets in-
clude: (1) n-gram features (NG); (2) PrefixBackoff (P); (3) SuffixBack-
off (S); (4) PrefixBackoff-k (Pk); and (5) SuffixBackoff-k (Sk).

based on substrings up to length 5, i.e., up to 4 words, either
preceded (prefix) or followed (suffix) by the “BO” token in the
case of PrefixBackoff and SuffixBackoff features; or “BOj” up
to j = 4 preceding (prefix) or following (suffix) the word.

We examine several feature set pools: (1) n-gram features
alone (NG); (2) n-gram features plus PrefixBackoff (NG+P) or
SuffixBackoff (NG+S); (3) n-gram features plus PrefixBackoffj
(NG+Pk) or SuffixBackoffj (NG+Sk); and (4) n-gram fea-
tures plus PrefixBackoffj and SuffixBackoff (NG+Pk+S) or
SuffixBackoffj (NG+Pk+Sk). In each case, feature dictionar-
ies are built, so they may contain more or fewer n-grams as
required to include the backoff features in the dictionary.

For the current experiments, trials with PrefixBackoffj or
SuffixBackoffj only include features with j = 0, i.e., a single
word alongside the “BOk” token. Note that the number of such
features is relatively constrained compared to the n-gram fea-
tures and other backoff features – at most k|V | possible features
for a vocabulary V .

4.3. Perplexity

Perplexity was measured on a held-aside random sample of 5
million words from our pool of data. Figure 1 plots perplexity
versus number of epochs (up to 11) for different possible fea-
ture sets. Recall that data is randomly sampled from the overall
training set, so that this plot also shows behavior as the amount
of training data is increased.

Table 1 presents perplexities after the epoch 11, along with
the number of samples used during the training and number of
active features with non-zero parameters. The number of sam-
ples varies because some trainers may run faster than others
depending on the number and type of features used; since we
enforce a timeout, an epoch may vary in the number of samples
processed in time. Nonetheless, Figure 1 shows that most mod-
els have approached or reached convergence before completing
all the 11 epochs. A notable exception is the n-gram only model,
which seems to require a few more epochs before reaching con-
vergence – though clearly performance will not reach that of the
other trials. This points to another benefit of the backoff features
– they also seem to speed convergence for these models. Inter-
estingly, they also seem to considerably reduce the number of
active features.

The results show a large perplexity improvement due to
the use of backoff features, and in particular the generalized
Prefix/SuffixBackoff-k features. One potential reason for the
improved performance with these generalized backoff features
is the relatively small number of them and they fire more often,
as discussed in the previous section.

Feature Set Description Pplx Samp ActFt
NG N-grams only 167.0 137B 197.8M
NG+P N-grams + PrefixBackoff 122.6 112B 189.5M
NG+S N-grams + SuffixBackoff 109.8 125B 188.9M
NG+Pk N-grams + PrefixBackoffk 88.0 100B 170.1M
NG+Pk+S N-grams + PrefixBackoffk

+ SuffixBackoff
85.5 113B 172.6M

NG+Sk N-grams + SuffixBackoffk 82.7 126B 160.2M
NG+Pk+Sk N-grams + PrefixBackoffk

+ SuffixBackoffk
80.2 96B 162.4M

Table 1: Perplexity (Pplx) after 11 epochs of training, with a fixed
feature budget. Also giving number of samples (Samp) used for training
each model, in billions; and active features (ActFt), in millions.

4.4. Speech Recognition Rescoring Results

We evaluated our models by rescoring n-best outputs from a
baseline recognizer. In our experiments, we set n to 500. The
acoustic model of the baseline system is a deep-neural network-
based model with 85M parameters, consisting of eight hidden
layers with 2560 Rectified Linear hidden units each and softmax
outputs for the 14,000 context-dependent state posteriors. The
network processes a context window of 26 (20 past and 5 future)
frames of speech, each represented with 40 dimensional log mel
filterbank energies taken from 25ms windows every 10ms. The
system is trained to a Cross-Entropy criterion on a US English
data set of 3M anonymized utterances (1,700 hours or about
600 million frames) collected from live voice search dictation
trafic. The utterances are hand-transcribed and force-aligned
with a previously trained DNN. See [24] for Google’s Voice-
Search system design. The baseline LM is a Katz [3] smoothed
5-gram model pruned to 23M n-grams, trained on the same data
using Bayesian interpolation to balance multiple sources. It has
vocabulary size of 2M and an OOV rate of 0.57% [25].

The score assigned to each hypothesis by our MaxEnt LM
is linearly interpolated with the baseline recognizer’s LM score
(with an untuned mixture factor of 0.33). Table 2 presents WER
results for multiple anonymized voice-search data sets collected
from anonymized and manually transcribed live traffic from
mobile devices. These data sets contain regular spoken search
queries, questions, and YouTube queries. We achieve modest
gains over the baseline system and over rescoring with just n-
gram features in all of the test sets, achieving, in aggregate, a
half a point of improvement over the baseline system.

5. Conclusion
In this paper we introduced and explored features for maximum
entropy language models inspired by the backoff mechanism
of standardly smoothed language models. We found large per-
plexity improvements over using n-gram features alone, for the
same feature budget; and a 0.5% absolute (3.4% relative) WER
improvement over the baseline system for our best performing
model. Future work will include exploring further variants of
our general backoff feature templates and combining with other
features beyond n-grams.

Table 2: WER results on 7 sub-corpora and overall, for the baseline
recognizer (no reranking) versus reranking models trained with differ-
ent feature sets.

Reranking feature set
Test Utts / Wds NG+ NG+ NG+
Set (×1000) None NG Pk Sk Pk+Sk
1 22.5 / 98.0 12.7 12.6 12.4 12.4 12.4
2 17.8 / 74.0 12.7 12.5 12.4 12.4 12.3
3 16.2 / 61.1 17.3 17.1 16.7 16.8 16.7
4 18.0 / 64.0 12.8 12.7 12.6 12.6 12.5
5 7.4 / 50.7 16.8 16.6 16.2 16.2 16.2
6 7.3 / 31.9 15.1 15.0 14.8 14.8 14.9
7 19.6 / 69.1 16.5 16.2 15.9 15.9 15.9

all 108.9 / 448.8 14.6 14.4 14.2 14.2 14.1

2648

6. References
[1] R. Lau, R. Rosenfeld, and S. Roukos, “Trigger-based lan-

guage models: a maximum entropy approach,” in Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 1993, pp. 45–
48.

[2] R. Rosenfeld, “A maximum entropy approach to adap-
tive statistical language modeling,” Computer Speech and
Language, vol. 10, pp. 187–228, 1996.

[3] S. M. Katz, “Estimation of probabilities from sparse data
for the language model component of a speech recog-
niser,” IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. 35, no. 3, pp. 400–401, 1987.

[4] S. F. Chen and R. Rosenfeld, “A survey of smoothing tech-
niques for ME models,” IEEE Transactions on Speech and
Audio Processing, vol. 8, pp. 37–50, 2000.

[5] R. Rosenfeld, “A whole sentence maximum entropy lan-
guage model,” in Proceedings of IEEE Workshop on
Speech Recognition and Understanding, 1997, pp. 230–
237.

[6] R. Rosenfeld, S. F. Chen, and X. Zhu, “Whole-sentence
exponential language models: a vehicle for linguistic-
statistical integration,” Computer Speech and Language,
vol. 15, no. 1, pp. 55–73, Jan. 2001.

[7] B. Roark, M. Saraclar, and M. Collins, “Discriminative n-
gram language modeling,” Computer Speech & Language,
vol. 21, no. 2, pp. 373–392, 2007.

[8] T. Brants, A. C. Popat, P. Xu, F. J. Och, and J. Dean,
“Large language models in machine translation,” in In
Proceedings of the Joint Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP) and Com-
putational Natural Language Learning (CoNLL), 2007.

[9] J. Wu and S. Khudanpur, “Efficient training methods
for maximum entropy language modeling.” in INTER-
SPEECH, 2000, pp. 114–118.

[10] T. Alumäe and M. Kurimo, “Efficient estimation of maxi-
mum entropy language models with n-gram features: an
srilm extension.” in INTERSPEECH, 2010, pp. 1820–
1823.

[11] P. Xu, A. Gunawardana, and S. Khudanpur, “Efficient sub-
sampling for training complex language models,” in Pro-
ceedings of the Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computa-
tional Linguistics, 2011, pp. 1128–1136.

[12] J. Wu and S. Khudanpur, “Building a topic-dependent
maximum entropy model for very large corpora,” in
Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on, vol. 1. IEEE, 2002,
pp. I–777.

[13] R. Sarikaya, M. Afify, Y. Deng, H. Erdogan, and Y. Gao,
“Joint morphological-lexical language modeling for pro-
cessing morphologically rich languages with application
to dialectal arabic,” Audio, Speech, and Language Pro-
cessing, IEEE Transactions on, vol. 16, no. 7, pp. 1330–
1339, 2008.

[14] M. A. B. Shaik, A. E.-D. Mousa, R. Schlüter, and H. Ney,
“Feature-rich sub-lexical language models using a maxi-
mum entropy approach for german LVCSR,” in INTER-
SPEECH, 2013.

[15] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Dis-
tributed asynchronous deterministic and stochastic gradi-
ent optimization algorithms,” IEEE Transactions on Auto-
matic Control, vol. 31:9, 1986.

[16] K. Hall, S. Gilpin, and G. Mann, “Mapreduce/bigtable for
distributed optimization,” in Neural Information Process-
ing Systems Workshop on Leaning on Cores, Clusters, and
Clouds, 2010.

[17] R. McDonald, K. Hall, and G. Mann, “Distributed training
strategies for the structured perceptron,” in Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 2010, pp. 456–464.

[18] M. Zinkevich, M. Weimer, A. Smola, and L. Li, “Paral-
lelized stochastic gradient descent,” in Advances in Neural
Information Processing Systems 23, J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
Eds., 2010, pp. 2595–2603.

[19] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild: A
lock-free approach to parallelizing stochastic gradient de-
scent,” in Advances in Neural Information Processing Sys-
tems, 2011.

[20] P. Xu, A. Gunawardana, and S. Khudanpur, “Efficient
subsampling for training complex language models.” in
EMNLP. ACL, 2011, pp. 1128–1136. [Online]. Avail-
able: http://dblp.uni-trier.de/db/conf/emnlp/emnlp2011.
html#XuGK11

[21] F. Morin and Y. Bengio, “Hierarchical probabilistic neural
network language model,” in AISTATS05, 2005, pp. 246–
252.

[22] Y. Tsuruoka, J. Tsujii, and S. Ananiadou, “Stochastic gra-
dient descent training for l1-regularized log-linear models
with cumulative penalty,” in Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL, 2009, pp.
477–485.

[23] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04, 2004, pp.
10–10.

[24] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne,
C. Chelba, M. Cohen, M. Kamvar, and B. Strope, “your
word is my command: Google search by voice: A case
study,” in Advances in Speech Recognition. Springer,
2010, pp. 61–90.

[25] C. Allauzen and M. Riley, “Bayesian language model in-
terpolation for mobile speech input.” in INTERSPEECH,
2011, pp. 1429–1432.

2649

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Keith Hall
	Also by Pedro J. Moreno
	Also by Brian Roark
