
Encoding linear models as weighted finite-state transducers

Ke Wu◦, Cyril Allauzen†, Keith Hall†, Michael Riley†, Brian Roark†

◦Institute for Advanced Computer Studies, University of Maryland †Google, Inc.
wuke@cs.umd.edu, {allauzen,kbhall,riley,roark}@google.com

Abstract
We present algorithms, implemented as an extension to the
OpenFst library, that yield a class of transducers that encode lin-
ear models for structured inference tasks like segmentation and
tagging. This allows the use of general finite-state operations
with such models. For instance, finite-state composition can
be used to apply the model to lattice input (or other more gen-
eral automata) and then the result automaton can be passed to
subsequent processing such as general shortest path algorithms.
We demonstrate the use of the library extension on grapheme-
to-phoneme conversion, encoding multiple varieties of linear
models for that task, and achieve solid PER/WER gains over
previous best reported results on g2p conversion of a publicly
available dataset (CMU).
Index Terms: finite-state transducers, linear models,
grapheme-to-phoneme conversion

1. Introduction
Finite-state sequence models are very widely used in speech and
natural language processing, for annotating strings with vari-
ous kinds of hidden information (e.g., segmentation, tagging
or labeled bracketing), and also for language modeling. Cer-
tain kinds of models, such as hidden Markov models or con-
ventionally smoothed n-gram models, have structures that are
relatively easily representable compactly in explicit weighted
finite-state automata or transducers (WFST) [1, 2, 3]. Other
kinds of models may have a structure that, while finite-state,
yield a state space that is difficult to represent compactly in
a WFST. For example, linear models, such as Maximum En-
tropy Markov models [4], conditional random fields (CRF) [5],
or the structured perceptron algorithm [6], combine evidence
from multiple, typically overlapping, features defined over in-
put/output string pairs (e.g., words and their POS-tags). States
in a WFST must remember enough of the previous input and
output strings to be able to derive all necessary features of the
model, e.g., the previous k input symbols xt−k . . . xt−1 and j
output symbols yt−j . . . yt−1. If some active features include
xt−k . . . xt−1 and some (possibly different) features include
yt−j . . . yt−1, then a state corresponding to the configuration
(xt−k . . . xt−1, yt−j . . . yt−1) must be included in the WFST,
even if no active feature in the model includes all of it. This
generally results in a state space which grows much faster than
the feature set, unless the features are very carefully selected,
as in the n-gram modeling of [7]. Similar issues arise for other
complex model topologies, e.g., factored language models [8].

Encoding such models as WFSTs, however, can yield some
major benefits, due to general operations that can be applied
to them, such as composition. Composition of sequence models
and joint inference can often be preferable to a simple cascading
of the models where the single-best output of one serves as the
input to the other [9]; and also for model combination. In this
paper, we present an extension to the OpenFst software library
[1] that provides a C++ class that implicitly represents linear
models as WFSTs and expands them on-the-fly, hence avoiding

the kind of state-space explosion described above.
After introducing linear FSTs, we then present a case study

in their use for grapheme-to-phoneme conversion (G2P). There
are several ways to model the G2P problem, including as a
joint multi-gram transducer [10] – essentially an n-gram model
over input/output pairs – or by mapping groups of letters to
groups of phonemes. This latter approach is achieved either by
first segmenting the input letter sequence into groups of letters,
then transducing those groups of letters into (potentially groups
of) phonemes, as is done in the Phonetisaurus system [11],
or by performing phrase-based “translation” [12]. Recently,
CRF models have been explored in this space [12, 13, 14],
though they have not been shown to improve upon generative
joint multi-gram models. We demonstrate how to encode var-
ious models as linear FSTs and then use composition to com-
bine segmentation with tagging and to combine system outputs,
achieving the best reported results for the CMU dictionary task.

2. Linear FSTs
Consider a linear sequence model of the form:

µ(xt,yt) =

K∑
k=1

λkfk(xt,yt) (1)

where input xt = xt−l . . . xt−1xtxt+1...xt+m for xi ∈ Σ;
output yt = yt−n . . . yt−1yt for yj ∈ ∆; and fk is dimension
k in a K-dimensional feature vector Φ, while λk is dimension
k in a K-dimensional parameter vector Λ. At position t, the
model assigns weight µ(xt,yt) and to do so it can look back at
most l symbols and forward m symbols in the input and back n
symbols in the output. We refer to l as the (input) lookback or
history size, m as the (input) lookahead or future size, n as the
(output) order, the triple (l,m, n) as the context window size of
the model, and fk as a feature. The weight assigned to a full
input/output string pair (x,y) is

M(x,y) =

|x|∑
t=1

µ(xt,yt) (2)

To simplify the presentation, we assume that the alphabets Σ
and ∆ contain a padding symbol �. That symbol is used to pad
the end of the shorter of the two strings x and y, allowing us to
assume that |x| = |y| in the rest of this paper.

2.1. Naive Construction

We can represent a model of this class as a weighted finite-
state transducer TΦ = (Σ,∆, Q, I, F,E,K) with states Q =
Σl+m × ∆n and transitions (q, xl, yn, w, q

′) ∈ E ⊆ Q ×
Σ × ∆ × K × Q, where q = (x0 . . . xl+m−1, y0 . . . yn−1),
q′ = (x1 . . . xl+m, y1 . . . yn) for xi ∈ Σ and yj ∈ ∆ and
weight w = µ(x0 . . . xl+m, y0 . . . yn) ∈ K. The initial state is
(�l+m, �n), all states are final (F = Q), and the weights are in-
terpreted in the log semiring, K = (R+ ∪{∞},⊕log,+,∞, 0)
[15].1

1For a and b in R+, a⊕log b ≡ − log(exp(−a) + exp(−b)).

In other words, from state q, xl+m can be read from the
input, yn is output with weight w and we transition to state q′.
We used xl+m rather than xl as the transition input label to
reduce non-determinism at the cost of the output being delayed
relative to the input when m > 0. In this case, m can also be
referred to as the delay of the transducer.

There are |Σ|l+m|∆|n states and |Σ|l+m+1|∆|n+1 transi-
tions in above construction. Thus, the size of TΦ is exponential
in l,m and n but independent ofK, the number of features. It is
impractical to explicitly build this transducer unless the context
window (l,m, n) is small.

2.2. Compact Representation

To handle larger context windows, we can build TΦ on-the-
fly: as the transducer is explored, states and transitions are
constructed only as needed. OpenFst natively supports on-
the-fly WFST representations as C++ classes derived from an
abstract base. To do so, one provides class methods defin-
ing the initial state and, for a given state, whether it is final
and what the transitions are leaving that state [1]. Given a
source state q and a transition labeled (xl+m, yn), the destina-
tion state q′ and weight w are easily determined from the above
definitions since the source state stores the necessary history
(x0 . . . xl+m−1, y0 . . . yn−1).2 Once defined, this new WFST
can be used with algorithms such as composition just like any
other WFST.

In this approach, the fixed memory used is on the order of
the number of featuresK, while the variable memory used is on
the order of number of states and transitions explored by a given
input. With lattice input, a large number of states of TΦ may be
constructed and there could still be a problem in time and space.
In the rest of this section, we outline methods to reduce the state
space of TΦ.

2.2.1. Minimization

We can conveniently associate TΦ with the corresponding
weighted finite-state acceptor AΦ over the alphabet Σ × ∆
where a transition labeled with (x, y) is treated as a single la-
bel. It is easy to see that AΦ is deterministic. As such it can, in
theory, be transformed into the minimal, deterministic weighted
automaton equivalent to AΦ, reducing the state space as much
as possible (while retaining the determinism for efficiency) [16].

There are, however, two issues that must be resolved. First,
applying the weighted minimization algorithm explicitly to
such a large input would be difficult. Second, since the result is
still likely to be very large if explicitly represented, we would
want to keep an on-the-fly representation. This means, given
a source state and a transition label (x, y), we still need an ef-
ficient way to compute the destination state and weight, but a
state is now not necessarily the simple history tuple as before,
which had made these computations straightforward.

2.2.2. N-Gram Pair Machines

If we signficantly restrict the form of the features, we can im-
mediately deal with these two aforementioned issues; in later
sections we will relax these restrictions, building up more com-
plex features based on the results here. These restrictions are:

1. (No-lookahead) There is no lookahead (i.e. m = 0);

2. All feature functions fk(x,y) are predicates whether
(x,y) = (xk,yk) for some (xk,yk) associated with

2Because OpenFst requires states to be referred to by integer IDs
for uniformity, the class maintains a mapping between these state tuples
and assigned IDs, internal to the WFST class.

fk, where |xk| = l + 1 and |yk| = n+ 1.

Under these restrictions, a feature function fk can be conve-
niently represented by the pair of an input (l + 1)-gram and an
output (n+ 1)-gram (xk,yk).

If the underlying linear model is sparse, the number of
states needed in this case to represent AΦ will not be |Σ|l|∆|n
but only on the order of the number of features,K, in the model.
To obtain this, we need to efficiently identify and merge states
that have equivalent futures, i.e., states from which the same set
of string pairs can be read with the same weights, the basis for
minimization [16]. To further explain this, we first need some
definitions. For any two string pairs (x,y), (z,w) ∈ Σ∗×∆∗,
Definition 1. (x,y) is a suffix of (z,w) if and only if x is a
suffix of z and y is a suffix of w. Refer to the set of all suffixes
of (z,w) as suff(z,w).
Definition 2. Given a set of string pairs S, (x,y) ∈ S is a
maximal string pair from S if and only if any other (x′,y′) ∈ S,
(x,y) is not a suffix of (x′,y′).
Definition 3. (x,y) is a prefix of (z,w) if and only if there
exists two strings u ∈ Σ∗,v ∈ ∆∗ such that xu = z and
yv = w, and one of the following is true: (1) |u| = |v|;
(2) x = ε and |u| ≤ |v|; or (3) y = ε and |u| ≥ |v|. Refer to
the set of all proper prefixes of (x,y) as pref(x,y) .
Definition 4. Given a set of features Φ = {f1, . . . , fK}
and a string pair (x,y) ∈ Σ∗ × ∆∗, let S = {s | s ∈
suff(x,y),∃fk ∈ Φ, s ∈ pref(fk), i.e., all suffixes of (x,y)
that are a proper prefix of some fk. βΦ(x,y) is defined as the
maximal string pair from S.

It is not difficult to show the following theorem:
Theorem 1. The maximal string pair, βΦ(x,y), is unique
and thus well-defined. Further, for any two states q, q′ ∈ Q,
βΦ(q) = βφ(q′) if and only if q and q′ have equivalent futures
in AΦ.
This theorem is the basis for constructing A′Φ, the minimal
automaton equivalent to AΦ. Let A′Φ have the state set Q′

of all proper prefixes of features in Φ, all of which are fi-
nal states, and the transitions(q, (xi, yj), w, q′) ∈ Q′ × (Σ ×
∆) × R × Q′ where q = (x1 . . . xi−1, y1 . . . yj−1), q′ =
βΦ(x1 . . . xi, y1 . . . yj) for xi ∈ Σ and yj ∈ ∆ and weight
w = WΦ(x1 . . . xi, y1 . . . yj) which is defined as follows:

WΦ(x,y) =

{
λk ∃fk ∈ Φ, (x,y) = (xk,yk)
0 otherwise

This automaton is equivalent to AΦ and minimal3 since, by
construction, we are merging precisely those states with equiv-
alent futures according to the theorem. In the worst case, there
are K(max(l, n)) proper prefixes of features in Φ, therefore
|Q′| = O(K max(l, n)), which is linear in K, l and n.

We can compute βΦ efficiently using a trie with suffix
links similar to what is used in [17]. We represent the set
P =

⋃K
k=1 pref(fk) in a trie labeled with symbol pairs. Each

node in the trie corresponds to string pair (u,v) in P and the
suffix link of that node points to the maximal suffix of (u,v)
that belongs to P . When l = n, this corresponds exactly to
the Aho-Corasick construction over sequences of pairs of sym-
bols. βΦ can then be computed by interpreting the suffix links
as failure transitions: if there is a transition labeled (a, b) out of
the node corresponding to (u,v) then βΦ(ua,vb) = (ua,vb).
Otherwise we follow the suffix links until we reach a node with

3Specifically, it is minimal when considered as an unweighted au-
tomaton where a transition label and weight are treated as a single
label. Weighted minimization would require the weights to also be
pushed [16].

an (a, b) outgoing transition. The destination of that transition
then corresponds to βΦ(ua,vb).

When l > n (resp. l < n), the trie will contain transitions
of the form (a, ε) (resp. (ε, b)) that need to be interpreted as a
set of transitions {(a, b) | b ∈ ∆} (resp. {(a, b) | a ∈ Σ})
when computing βΦ.

2.2.3. More Complex Features

Requiring the input features to be n-grams of input words
is very restrictive. One simple variant is to instead al-
low n-grams of word classes. For example, Γ =
{lowercase, capitalized, uppercase} could be one possi-
ble class set. This can be implemented by first creating a TΦ

as in Section 2.2.2 but using Γ as the input alphabet and then
using FΓ ◦ TΦ as the final transducer where FΓ is a single state
transducer that maps from Σ to Γ. Note that this composition
can be performed on-the-fly, available in OpenFst, to preserve
the dynamic expansion of the TΦ.

Another way to extend the features allowed is to combine
two linear automata AΦ and AΨ on Σ × ∆. The intersection
automaton AΦ ∩ AΨ linearly combines the weights assigned
by each component to a string pair. In this way pair n-grams
of different context windows or different feature classes can be
easily combined. The intersection operation can be performed
on-the-fly preserving the component dynamic expansions. If
the components are minimal and complete, their intersection is
likely to be near minimal as well.

2.2.4. Lookahead

So far we have assumed there is no lookahead, m = 0. Ap-
plying a model with a context window (l,m, n) on a string pair
(x,y) is equivalent to applying to the string pair (x�m, �my)
the model with context window (l + m, 0, n) defined by the
same feature functions. This corresponds to delaying the out-
put by m as described in section 2.1. Moreover, this allows us
to build the delayed transducer TΦ as presented in section 2.2.2
and to combine models with same lookahead as described in
section 2.2.3.

This leaves the issue of combining models with different
lookaheads. GivenAΦ with delaym1 andAΨ with delaym2 >
m1, we need to additionally delay AΦ by m2 −m1 in order to
be able to intersect withAΨ: Shiftm2−m1(AΦ)∪AΨ using the
Shiftm operation defined below.

Given a WFST T = (Σ,∆, Q, I, F,E,K) and a delay
m > 0, the transducer Shiftm(T) = (Σ,∆, Q′, I ′, F ′, E′,K)
such that T (x,y) = Shiftm(T)(�mx,y�m) is defined by
Q′ = Σm × Q, I ′ = {�m} × I , F ′ = {�m} × F , and E′

contains all transitions of the form:
• ((�ix, q), x, �, 1, (�i−1xx, q)) for 0 < i ≤ m, q ∈ I

and xx ∈ (Σ \ {�})m−i+1,
• ((xx, q), x′, y, w, (xx′, q′)) for (q, x, y, w, q′) ∈ E,

x ∈ Σm−1 and x′ ∈ Σ.
This construction is implemented on-the-fly.

2.3. Normalized Model Application

Linear models are often used to represent the unnormalized con-
ditional or joint probabilities of the input/output pairs in the neg-
ative log domain. This means normalization needs to be applied
to obtain the actual conditional probability of y given x:

P (y | x) =
exp(−M(x,y))∑

y′∈∆∗ exp(−M(x,y′))
.

This normalization is important when combining globally nor-
malized models because the normalization factor can vary

widely depending on x. It can be performed using standard
finite-state operations.

Let X be the finite-state acceptor representing the set of
input strings. The acyclic WFST M = X ◦ TΦ represents the
set of possible outputs for the inputs inX such that: M(x,y) =
M(x,y) for x ∈ X .

We compute the WFSA N = π1(M), the projection of M
on its input,

N(x) ≡
⊕
y′∈∆∗

M(x,y′) = − log
∑
y′∈∆∗

exp(−M(x,y′)).

Normalization can then be performed by composing −N (ob-
tained by negating every weight in N) and M :

−N ◦M(x,y) = −N(x) +M(x,y) = − logP (y | x).

The algorithm is optimized by determinizing N .

3. Grapheme-to-Phoneme Conversion
Grapheme-to-phoneme conversion (or letter-to-sound mapping)
is the transduction from an input stream of letters to an output
stream of phonemes. For example, the word “ABLE” has the
pronunciation “EY B AH L” (using the ARPAbet representa-
tion for phonemes) in the CMU pronouncing dictionary [18]. It
is clear that the letters A, B and L correspond to the phonemes
EY, B and L respectively; but there is an inserted phoneme (AH)
between the B and L in this sequence; and the final letter (E)
is deleted, i.e., it is unpronounced (though influencing the pro-
nunciation of the word). One can write this transduction as a
sequence of input:output pairs, where the input symbols are let-
ters (or the empty string ε) and the output symbols are phonemes
(or ε), giving, for our current example, the sequence:

A:EY B:B ε:AH L:L E:ε
This task is of high importance for very large (e.g., 1M word)
vocabulary automatic speech recognition, where a core subset
may have manually validated pronunciations, but many are gen-
erated automatically; or in scenarios where personalized infor-
mation such as proper names are incorporated into recognition.
It is also of high importance for text-to-speech synthesis, which
may be required to pronounce out-of-vocabulary words.

A popular approach to this task, one shown to provide state-
of-the-art results relative to other approaches [10, 19], is joint
multi-gram modeling, also known as joint or pair n-gram mod-
eling. For this approach, the training input (letter) sequences
and output (phoneme) sequences are aligned, each input:output
pair in the alignments is taken as a single token, and a smoothed
n-gram language model is estimated. Let Σ be the set of letters
and ∆ the set of phonemes, and A = (Σ ∪ {ε}) × (∆ ∪ {ε})
the set of possible letter to phoneme transduction pairs i:o, in-
cluding insertions and deletions. For a given alignment a =
a1 . . . am ∈ Am, let i(a) = x ∈ Σ∗, the input string of the
alignment and o(a) = y ∈ ∆∗, the output string of the align-
ment. Let A(x,y) be the set of alignments a ∈ A∗ such that
i(a) = x and o(a) = y. Then the joint probability of the string
pair (x,y) is calculated as4

P(x,y) = max
a1...am∈A(x,y)

m∏
j=1

P(aj | aj−n . . . aj−1) (3)

This is estimated with a smoothed n-gram language model
(including <s> and </s> symbols), then converted to a
weighted finite-state transducer with letters on the input side
and phonemes on the output side. As noted in Novak et al. [11],
this presents an issue with exact encoding of backoff transitions,
though this is not a major problem in practice.

4We follow common practice and use the most likely alignment
rather than summing over all alignments.

4. Experiments and Discussion
For this paper, we look at predicting a subset of the CMU
pronouncing dictionary with models trained on another, larger
subset, a task that has been reported on many times over the
past decade, thus allowing us to compare with the state-of-the-
art on a publicly available resource. Given an input word in
graphemes, the task is to predict the phoneme sequence repre-
senting the word’s pronunciation. We evaluate with the conven-
tional measures for this task: phoneme error rate (PER), which
is the number of substitutions, deletions or insertions divided by
the number of true phonemes; and word error rate (WER), the
number of words with an error divided by the number of words.

We made use of the Phonetisaurus distribution5 that pro-
vides the data and evaluation from Novak et al. [11], and suc-
cessfully replicated the result from that paper. The training pro-
cedure for that algorithm produces an alignment between letters
and phones, and we used those alignments as the starting point
for our systems. Note that these alignments do not make use
of epsilons for deletions and insertions but rather includes au-
tomatically learned letter pairs and phoneme pairs, e.g., E|R or
AH|L. We split these so as to only include a single symbol (or ε)
on the input or output, e.g., L:AH|L becomes ε:AH and L:L.

From the original training set of 106,837 words (with just
over 113k pronunciations), we selected 2,670 words as a de-
velopment set, which we used for determining stopping criteria
for learning and setting meta-parameters. The final evaluation
set contains 12,000 words and their nearly 13k pronunciations.
This is the same evaluation setup as found in [20, 21, 10, 11].
Joint multi-gram. We used the OpenGrm n-gram library [2] to
build joint multi-gram language models encoded as OpenFst [1]
format WFSA. We convert these to transducers by splitting the
input and output part of the paired symbols. We tried a number
of smoothing methods and n-gram orders on the development
set, and settled on Kneser-Ney smoothing [22] for an 8-gram
model, which matches the order used in [11]. This model has
approximately 2 million parameters. Table 1 presents the PER
and WER on the dev set for this model.
CRF trained model. We then trained a linear tagging model
using the Wapiti toolkit [23]. Note that, in order to train this as
a tagging task, the input symbols (including ε where insertions
occur) must be given at time of inference. To do this, we train
an n-gram model (also an 8-gram Kneser-Ney model) over the
input-side of aligned sequences, which predicts, based solely on
letter context, where the insertions can occur. Using this model,
we produce a weighted lattice of input sequences corresponding
to the original letter string. This lattice is then simply composed
with the linear model encoded as a linear FST, which predicts
the most likely outputs given the inputs.

The CRF features include n-gram input sequences with ei-
ther the current label or the previous and current label. The
n-gram sequences are all n-grams up to 8-grams ending in the
current word; up to 5-grams ending in the next word (look-
ahead 1); and up to 5-grams ending in the next word after that
(look-ahead 2). Given Wapiti’s relatively high memory usage,
this feature set is too large to train with L-BFGS directly, so
we trained the model in two stages: (1) trained a model using
stochastic gradient descent (SGD) and L1 regularization; then
(2) fixed the features to only those in the SGD trained model
and re-trained with L-BFGS using a joint L1 and L2 regular-
ization. Based on dev set results, we set the L1 regularization
meta-parameter to 0.1 for both the first and second stage, and
the L2 regularization meta-parameter to 1.0 for stage two. To-
gether with the input-side n-gram model, the total number of

5https://code.google.com/p/phonetisaurus/

Model PER % WER %
Joint multi-gram (8-gram Kneser-Ney) 6.7 26.5
CRF trained model (8-gram features) 7.0 29.6
Segmentation/Tagging 6.7 28.0
Joint multi-gram + Seg/Tag 6.1 24.5
Joint multi-gram + CRF 6.1 24.9

Table 1: CMU development set results.

parameters in this approach is approximately 3 million.
Segmentation/Tagging. An alternative approach is to use the
output of the Phonetisaurus alignments of the training set as if
they were supervised training examples for a segmenter and tag-
ger. We use the alignment segmentation to label the graphemes
as either beginning (B), inside (I), or a singleton (S) segmenta-
tion component. Given an input segmentation, we train a tagger
to tag input segments with phonetic tags, where the tags are
groups of phonemes or epsilon (no pronunciation). We train
a CRF [5] for each of these models using local grapheme n-
grams for the segmentation model and segment n-grams for the
tagging model, similar to the features described above. These
models together have approximately 2 million parameters.

The advantage of encoding these models as linear FST
models is that we can process lattice input, allowing us to per-
form joint decoding by way of FST composition. We compose
each input grapheme sequence (a word) with the segmentation
linear FST, transform the output lattice to a segment-based lat-
tice, and then compose with the tagging linear FST. Results for
this approach are shown in the third row of Table 1.
System combination. Finally, we combined the joint multi-
gram model and both the CRF and Segmentation/Tagging mod-
els by simply intersecting the two output lattices and finding the
shortest path through the result. Although we have the ability to
scale the weights of the different system outputs, we found little
to no improvement over leaving the weights unscaled, so we re-
port that here. As we can see from the development set results in
Table 1, the CRF and Segmentation/Tagging models do substan-
tially worse on WER than the baseline, despite their similarity
in terms of PER, indicating that they are better at tagging longer
words that are less likely to be completely correctly labeled. In-
deed, the complementary nature of the models is demonstrated
in the combined result, which yields strong PER and WER re-
ductions over the individual methods.

Table 2 presents results of our systems on the evaluation set,
alongside prior reported results for this train/test setup. We find
a similar pattern for the eval set as we find for the dev set, in
that the CRF and Segmentation/Tagging models underperform
relative to the joint multi-gram (particularly on WER) but the
combination yields strong gains in both PER and WER. As far
as we know, these are the best results reported for this task.

In future work, we would like to further extend the form
of the features allowed, e.g., n-grams of heterogenous features,
which is straightforward for coarse-to-fine feature hierarchies.

Table 2: Evaluation set results, development set included in training.

Model PER % WER %
Galescu and Allen [20] 7.0 28.5
Chen [21] 5.9 24.7
Bisani and Ney [10] 5.9 24.5
Novak et al. [11] 5.8 24.4
Joint multi-gram (8-gram Kneser-Ney) 6.0 24.7
CRF trained model (8-gram features) 6.4 28.9
Segmentation/Tagging 6.4 28.3
Joint multi-gram + Seg/Tag 5.6 24.0
Joint multi-gram + CRF 5.5 23.4

5. References
[1] C. Allauzen, M. Mohri, and B. Roark, “The design prin-

ciples and algorithms of a weighted grammar library,” In-
ternational Journal of Foundations of Computer Science,
vol. 16, no. 3, pp. 403–421, 2005.

[2] B. Roark, R. Sproat, C. Allauzen, M. Riley, J. Sorensen,
and T. Tai, “The OpenGrm open-source finite-state gram-
mar software libraries,” in Proceedings of the ACL 2012
System Demonstrations, 2012, pp. 61–66.

[3] R. Sproat, M. Yarmohammadi, I. Shafran, and B. Roark,
“Applications of lexicographic semirings to problems in
speech and language processing,” Computational Linguis-
tics, 2014, forthcoming.

[4] A. McCallum, D. Freitag, and F. C. Pereira, “Maximum
entropy markov models for information extraction and
segmentation.” in Proceedings of ICML, 2000, pp. 591–
598.

[5] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Con-
ditional random fields: Probabilistic models for segment-
ing and labeling sequence data,” in Proceedings of the
Eighteenth International Conference on Machine Learn-
ing, ser. ICML ’01. Morgan Kaufmann Publishers Inc.,
2001, pp. 282–289.

[6] M. Collins, “Discriminative training methods for hidden
markov models: Theory and experiments with perceptron
algorithms,” in Proceedings of EMNLP, 2002, pp. 1–8.

[7] B. Roark, M. Saraclar, and M. Collins, “Discriminative n-
gram language modeling,” Computer Speech & Language,
vol. 21, no. 2, pp. 373–392, 2007.

[8] J. A. Bilmes and K. Kirchhoff, “Factored language models
and generalized parallel backoff,” in Proceedings of HLT-
NAACL–short papers-Volume 2, 2003, pp. 4–6.

[9] C. Sutton and A. McCallum, “Composition of conditional
random fields for transfer learning,” in Proceedings of
HLT-EMNLP, 2005, pp. 748–754.

[10] M. Bisani and H. Ney, “Joint-sequence models for
grapheme-to-phoneme conversion,” Speech Communica-
tion, vol. 50, no. 5, pp. 434–451, 2008.

[11] J. R. Novak, N. Minematu, and K. Hirose, “Failure tran-
sitions for joint n-gram models and g2p conversion,” in
Proceedings of Interspeech, 2013.

[12] S. Jiampojamarn, C. Cherry, and G. Kondrak, “Joint pro-
cessing and discriminative training for letter-to-phoneme
conversion.” in Proceedings of ACL, 2008, pp. 905–913.

[13] D. Wang and S. King, “Letter-to-sound pronunciation pre-
diction using conditional random fields,” IEEE Signal
Processing Letters, vol. 18, no. 2, pp. 122–125, 2011.

[14] P. Lehnen, A. Allauzen, T. Lavergne, F. Yvon, S. Hahn,
and H. Ney, “Structure learning in hidden conditional ran-
dom fields for grapheme-to-phoneme conversion,” in Pro-
ceedings of Interspeech, 2013.

[15] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state
transducers in speech recognition,” Computer Speech &
Language, vol. 16, no. 1, pp. 69–88, 2002.

[16] M. Mohri, “Minimization algorithms for sequential trans-
ducers,” Theoretical Computer Science, vol. 234, no. 1,
pp. 177–201, 2000.

[17] A. V. Aho and M. J. Corasick, “Efficient string matching:
An aid to bibliographic search,” Communications of the
ACM, vol. 18, no. 6, pp. 333–340, 1975.

[18] R. Weide, “The CMU pronunciation dictionary, release
0.6,” 1998.

[19] S. Hahn, P. Vozila, and M. Bisani, “Comparison of
grapheme-to-phoneme methods on large pronunciation
dictionaries and LVCSR tasks.” in Proceedings of Inter-
speech, 2012.

[20] L. Galescu and J. F. Allen, “Pronunciation of proper
names with a joint n-gram model for bi-directional
grapheme-to-phoneme conversion,” in Proceedings of In-
terspeech, 2002.

[21] S. F. Chen, “Conditional and joint models for grapheme-
to-phoneme conversion,” in Proceedings of Interspeech,
2003.

[22] R. Kneser and H. Ney, “Improved backing-off for m-gram
language modeling,” in Proceedings of ICASSP, 1995, pp.
181–184.

[23] T. Lavergne, O. Cappé, and F. Yvon, “Practical very large
scale CRFs,” in Proceedings the 48th Annual Meeting
of the Association for Computational Linguistics (ACL).
Association for Computational Linguistics, 2010, pp.
504–513.

