
Outlawing Ghosts: Avoiding Out-of-Thin-Air Results

Hans-J. Boehm
Google, Inc. ∗

hboehm@google.com

Brian Demsky
UC Irvine

bdemsky@uci.edu

Abstract
It is very difficult to define a programming language memory model
for shared variables that both

• allows programmers to take full advantage of weakly-ordered
memory operations, but still

• correctly disallows so-called “out-of-thin-air” results, i.e. re-
sults that can be justified only via reasoning that is in some
sense circular.

Real programming language implementations do not produce out-
of-thin-air results. Architectural specifications successfully disal-
low them. Nonetheless, the difficulty of disallowing them in lan-
guage specifications causes real, and serious, problems. In the ab-
sence of such a specification, essentially all precise reasoning about
non-trivial programs becomes impractical. This remains a critical
open problem in the specifications of Java, C, and C++, among oth-
ers.

We argue that there are plausible and relatively straight-forward
solutions, but their performance impact requires further study. In
the long run, they are likely to require strengthening of some hard-
ware guarantees, so that they translate properly to guarantees at the
programming language source level.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Concurrent Programming Structures

Keywords relaxed memory models, atomic operations, C++, Java

1. Introduction
A programming language memory model specifies the values read
when an object is accessed in a multithreaded program. Most re-
cent programming languages have adopted memory models that at
their core guarantee sequential consistency (cf. [11]) for data-race-
free programs.[1, 2, 5, 9, 10, 12, 19] Ordinary data variables should
not be concurrently accessed by multiple threads, unless all of the
accesses are read accesses. If that rule is followed, sequentially con-
sistent (interleaving of thread operations) semantics are guaranteed.
There is a way to declare special synchronization variables (e.g.

∗ Closely related content previously appeared in an unreviewed C++ stan-
dards committee paper [6] produced while the first author was at HP Labs.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MSPC 14, June 13, 2014, Edinburgh, United Kingdom.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2917-0/14/06.
http://dx.doi.org/10.1145/2618128.2618134

volatile variables in Java, atomic<T> variables in C++) that do
support concurrent accesses, and which can be used, along with
locks, to prevent concurrent accesses to data variables.

However, C, C++, and Java have all found it necessary to allow
programmers to explicitly circumvent this core guarantee, so as to
allow direct access to weakly ordered memory operations. Motiva-
tions for this have varied.

Java was designed to allow the inclusion of untrusted code in
trusted applications. Since we have not found a practical way to
detect data races in untrusted applications on current hardware,
Java must provide reasonable semantics for code that includes data
races, so that we can reason about the possible effects of untrusted
code. These semantics provide very weak ordering guarantees in
order to minimize performance costs.

C[9] and C++[10] are perfectly happy to leave the semantics of
programs with data races undefined, but found the cost of enforcing
sequential consistency for atomic (synchronization) variables high
enough to provide programmers an escape to more relaxed memory
consistency for such synchronization variables. Programmers may,
for example, annotate individual accesses to these synchronization
variables with memory_order_relaxed to indicate that such ac-
cesses do not enforce sequentially consistent memory ordering, and
cannot be used to order data accesses. Java is also moving in this
direction.

Thus, in C++, if we declare

int data;
atomic<bool> sync;

then the following two threads running concurrently do not have
a data race, and we are guaranteed that r1 = 17 when thread 2
finishes:

Thread 1 Thread 2
data = 17; while (!sync) {}
sync = true; r1 = data;

Here we have assumed the customary conventions for memory
model examples: All variables are initially zero/false, the variables
ri are local to a thread (“registers”), and all other variables are
potentially shared.

However, if we change either or both of the references to sync
to mention memory_order_relaxed, as in, for example

Thread 1 Thread 2
data = 17; while (!sync) {}
sync.store(true, r1 = data;

memory_order_relaxed);

then that is no longer true. The stores to data and sync can
become visible to Thread 2 out of order. Hence we now have a
race on data, and the program may produce any result whatsoever.
If data were declared as atomic<int> and all accesses to data
used memory_order_relaxed then the program would no longer



Thread 1 Thread 2
r1 = x; r2 = y;
y = r1; x = 42;

Figure 1. “Real” example: r1 = r2 = 42 expected

Thread 1 Thread 2
r1 = x; r2 = y;
y = r1; x = r2;

Figure 2. “Ghostly” example: r1 = r2 = 42 unexpected

produce undefined behavior, since there are no longer any data
races. However, r1 may still be set to zero since, for example, the
two stores in thread 1 may still become visible to thread 2 out of
order.

For our purposes, though not in general, accesses to or-
dinary Java variables behave “close enough” to C++ (or C)
memory_order_relaxed accesses that we will no longer distin-
guish between the two. From here on, we will generically use or-
dinary C/Java assignment notation to denote either ordinary Java
assignments or C/C++ memory_order_relaxed operations.

Unfortunately, it is well-known that such hopefully-well-defined
relaxed memory references are exceedingly difficult to specify cor-
rectly. The rest of this paper provides some new insights into the
character and severity of the problem as well as the space of possi-
ble solutions.

Although this topic is one that requires careful formal treatment,
our primary goal in this paper is to present an informal intuitive
explanation for a problem that most people find highly counter-
intuitive.

2. The Out-of-thin-air problem
Consider the example in Figure 1, recalling that all assignments
are intended to have well-defined semantics with relaxed memory
ordering.

In this example, we expect r1 = r2 = 42 to be a legal exe-
cution as the store to x in thread 2 may be reordered by either the
compiler or the hardware to before the load into r2. Thus the store
of 42 may immediately become visible to thread 1, which can then
store 42 to y, and then finally thread 2 reads 42 from y.

In Figure 1, two threads each execute a load followed by a
store, and each load sees the other thread’s store. If we apply the
same reasoning to the similar example in Figure 2, we can get
r1 = r2 = 42 or for that matter, any value whatsoever:

An execution in which both stores store 42 is entirely consistent:
both loads can see these stored values, indeed causing both stores
to store a value of 42; the value 42 is essentially generated “out of
thin air”.

Both Java and C++ memory models are defined by specifying
when a particular mapping of loads to corresponding stores (“seen
by” the load) is allowed. The natural formulations of the memory
model in both cases is to simply allow a load l to see any store s
that is not ordered after it by synchronization or program order (“l
does not happen-before s”), and is not hidden by an intervening
store similarly ordered between them. This allows weakly ordered
operations to either observe racing operations or not. This naturally
allows both the expected result in Figure 1, and the out-of-thin-air
behavior in Figure 2, since the loads in both examples race with the
store in the other thread, and are thus allowed to see it.

One can conceive of wildly speculative (and correspondingly
dubious) execution mechanisms that in fact generate such out-of-

thin-air results: The language implementation might remember that
the last time this code was executed, x and y both had a value of
42. It might speculatively assume that they will again this time,
tentatively assigning 42 to both r1 and r2. The stores would go
ahead and speculatively store the values of r1 and r2 (both 42)
back to, say a shared cache. It would then confirm that the initial
guesses for the loads were correct, which they now are, and thus
conclude that it was safe to commit the speculative stores.

Such cross-thread speculation in fact does not occur in practice.
As a result, out-of-thin-air results do not occur in practice. The
problem is that it is exceedingly difficult to specify semantics that
preclude them, while not precluding the analogous result in the
“real” example in Figure 1. In fact, it is extremely difficult to
precisely define an “out-of-thin-air” result; if we could define what
it is, we could explicitly disallow it.

Both Java and C++ (and C) have tried and failed to effectively
prohibit out-of-thin-air results in their specifications. Java [12] in-
troduced complicated causality rules, which turned out not to have
the intended effect [21]. The C++11 standard includes rules in-
tended to prohibit certain kinds of out-of-thin-air values, and in-
formally discourages the rest. Those initial rules were again sub-
sequently found not to specify what was intended, and were sub-
sequently replaced, in the current C++14 draft, by vague encour-
agement to do the right thing. [4] We consider this unsatisfactory,
since the current specification is too imprecise to support formal
reasoning.

In the next sections we analyze these difficulties, and propose a
solution, though at some performance cost.

3. Allowing out-of-thin-air results is disastrous
During the Java memory model effort that resulted in [12], it was
widely believed that the primary problems with allowing out-of-
thin-air values were:

1. If the semantics allowed out-of-thin-air results, there is no way
to prove that untrusted, potentially malicious, code will not be
able to generate out-of-thin-air values that compromise secu-
rity, e.g. secret passwords. The semantics would allow untrusted
code to generate an out-of-thin-air value that happens to be the
secret password. Such attacks are not entirely implausible: Im-
plementation techniques that could result in out-of-thin-air val-
ues generally rely on speculating/guessing values, typically val-
ues that have arisen before when the code was last executed. By
invoking a function that had previously been used for password
computation in such a context, an attacker might be able to coax
the implementation into generating that password again. Cer-
tainly there would be no way to prove that this couldn’t happen,
and hence it would be difficult to prove properties of applica-
tions including untrusted code.

2. Certain kinds of out-of-thin-air computations can induce race-
free computations to produce non-sequentially consistent re-
sults. The canonical example (repeatedly pointed out by Sarita
Adve) is

Thread 1 Thread 2
if (x) y = 1; if (y) x = 1;

If each condition sees the assignment from the other thread,
then (with x and y initially zero, as usual), this can result in
both variables set to one, in spite of the fact that there is no
sequentially consistent execution in which either assignment is
executed, and hence, if we interpret x and y as ordinary data
variables, there is no data race.

3. There was concern that out-of-thin-air pointers might violate
type safety by pointing to objects of the wrong type.



struct foo {
atomic<struct foo *> next;

};
struct foo *a, *b;
// a & b initially reference
// disjoint data structures

Thread 1 Thread 2
r1 = a->next; r2 = b->next;
r1->next = a; r2->next = b;

Figure 3. Ghostly linking of data structures

int a[2];
int a_is_big = 0;
int ok_to_write_a2 = 0;

Thread 1 Thread 2
if (a_is_big) if (ok_to_write_a2)

ok_to_write_a2 = 1; a[2] = 17;

Figure 4. Ghostly results from control dependence

It seems at least plausible that the last two could be explicitly
prohibited without addressing the general problem. And there was
some debate about the importance of being able to run untrusted
code as part of a Java application.

Perhaps more importantly, none of these are completely con-
vincing in the context of C++ memory_order_relaxed atomic
operations: It is never safe to allow untrusted code into a C++ ap-
plication, for many reasons. Memory_order_relaxed operations
are unlikely to be used in such non-racing contexts. Type-safety
guarantees in C++ are already weak.

Thus the original C++11 specification took a somewhat cavalier
attitude towards this problem, knowingly including only a partial
solution.1

Here we argue that the situation is in fact much worse: If
we allow out-of-thin-air results, we break the most basic forms
of reasoning about very ordinary code, be it C++ code using
memory_order_relaxed or Java code.

We show this by assuming that out-of-thin-air results are al-
lowed and looking at the surprising consequences for even tiny
code examples.

Consider the example in Figure 3 in which a and b initially ref-
erence two disjoint lists. The two threads in this example then cre-
ate a reference from the second objects in their respective disjoint
lists to the first objects.

Surprisingly, out-of-thin-air behavior allows an execution of
this example in which r1=b, r2=a. Assuming r1=b, the store
r1->next = a in Thread 1 then justifies the load r2 = b->next
in Thread 2 assigning r2=a. The same reasoning can be applied to
r2=a to justify r1=b. The end result is that two independent threads
spontaneously link disjoint data structures. Clearly, allowing such
behavior is unacceptable as it makes it impossible to reason about
the behavior of almost any code.

Like the first example in this section, this one produces a non-
sequentially-consistent result for what is really a data-race-free
program. But it even more profoundly violates our intuitions about
parallel program behavior.

1 As previously mentioned, this solution was also later discovered to be
incorrect.[6]

Out-of-thin-air behavior involving control dependences can also
lead to similarly disastrous behavior. Consider the example in Fig-
ure 4. If thread 2 speculates ok_to_write_a2, and writes a[2] (out
of bounds, updating a_is_big), then thread 1 speculatively writes
ok_to_write_a2 after seeing the speculative write to a_is_big,
then thread 2’s speculative hypothesis is satisfied.

This of course involves C++ undefined behavior, but this is
likely to be the problem in practice; speculation can lead to un-
defined behavior, which can then satisfy the speculation.

In practice, we expect such issues to arise where a programmer
calls a library function f() that expects a certain precondition to
hold. The library implementer does not specify the behavior of
f() when the precondition fails to hold. In order to prove this
program correct without absence-of-out-of-thin-air guarantees, the
programmer has to ensure that such a bad call to f() cannot result
in bad behavior that sets a variable seen by another thread, and then
indirectly justifies the bad call to f(). Without understanding the
implementation of f(), we have no way to reason about whether
or not this may yield such a self-satisfying misspeculation.

For a developer to reason about the correctness of code, the de-
veloper must postulate all of the different ways code might interact
to generate out-of-thin-air behaviors. This is complicated by the
fact that these interactions may not be localized and could easily
cross API boundaries. In fact even supposedly dead code can po-
tentially generate out-of-thin-air behaviors.

Many of the concurrent algorithms that stand to benefit from
relaxed memory operations have complex enough bugs that they
stand to benefit greatly from formal methods. Out-of-thin-air be-
haviors have been recognized by many experts[3, 14, 20] to make
verifying code infeasible.

4. Out-of-thin-air results at hardware level
The fundamental difference between the “real” and “ghostly” ex-
amples above (Figures 1 and 2) is that the latter involves depen-
dences between each load and the subsequent store. Informally, the
out-of-thin-air results form a cycle of dependences: The thread 1
store depends on the thread 1 load, which depends on the thread 2
store, which depends on the thread 2 load, which depends on the
thread 1 store.

If we can define a precise notion of “dependence”, we can pre-
cisely define “out-of-thin-air” results, and simply state that they are
disallowed. The difficulty is defining the notion of “dependence”.

At the hardware level, it is entirely feasible, and common, to
do so. Weakly-ordered architectures, including ARM, Power, and
Itanium, specify when one instruction in an execution trace is de-
pendent on another. This notion of dependence is defined essen-
tially in terms of which instruction mentions the result produced by
another. For example, these architectures view the xor instruction,
and hence the subsequent store instruction, in

load r1 = [a]
xor r2 = r1 ^ r1
store [b] = r2

as depending on the prior load, in spite of the fact that r2 is
always set to zero, independent of the contents or r1. Similarly,
they generally consider all instructions as depending on any prior
conditional branch, and transitively on any preceding instructions
producing results that fed into the branch condition.2

In doing so, hardware, in some sense, uses a conservative ap-
proximation to “actual dependences”. The hardware notion is easy
to define, but not all “hardware dependences” reflect cases in which
the final outcome can actually be affected.

2 Itanium is the exception here, in that the specification appears to use a
more restrictive rule for branch dependences.



Thread 1 Thread 2
r3 = x; r2 = y;
if (r3 != 42) x = r2;

x = 42;
r1 = x;
y = r1;

Figure 5. Ghosts are real!

Unfortunately, as we will see in the next section, this hardware
approximation to “dependences” does not make sense at higher
levels of the software stack. The core problem is that we have not
been able to find one that does.

With such a hardware definition of dependence, the surprising
results in Figure 2 are easily disallowed. The architecture specifi-
cation disallows stores from being made visible before the loads on
which they depend. This effectively disallows cyclic dependences
as we saw in Figure 2.

5. Out-of-thin-air results at language level
Standard compiler optimizations do not introduce the most prob-
lematic forms of out-of-thin-air behavior in programs. As precisely
defining what constitutes out-of-thin-air behavior is the core prob-
lem, it is difficult to make a blanket statement that there are no
issues.

Indeed, compilers can introduce behaviors that yield executions
that arguably contain causal cycles. Figure 5, a variation on the
“ghostly” example, is taken from the JMM causality tests[15].
Compiler optimizations can actually transform this example to
allow executions where r1 = r2 = r3 = 42. (The value of r3
is the most surprising one.) A compiler could determine that it
must be legal for r1 = x; to see the value 42. (In the absence
of interference from another thread x is always 42 at this point,
and it is certainly allowable for no other thread to be scheduled
while the first three lines of Thread 1 are executing.) It could then
transform y = r1; to y = 42; and perform it earlier. At this point,
the transformed program allows the behavior in question.

Compiler optimizations on vanilla sequential code routinely
break dependences. And the ability to do so is often important.

Consider the following code excerpt:

if (x) {
a[i++] = 1;

} else {
a[i++] = 2;

}

Does the store to i depend on the load of x? Requiring com-
pilers to preserve such dependences in vanilla code would prevent
compilers from hoisting the expression i++ out of the conditional,
since that would remove the dependence on x. There are numerous
other examples of this. Optimizing a multiplication by zero poten-
tially eliminates a dependence.

In general dependences between two shared variable operations
may pass through arbitrary other functions. Even in C++, where
memory_order_relaxed operations are easily identifiable, we can
write:

y.store(f(x.load(memory_order_relaxed)),
memory_order_relaxed);

If the language specification required dependence preservation,
this would require f() to preserve dependences, even if f() in-
volved no atomic accesses and was compiled separately. Even func-
tions that appear entirely single-threaded, but might be called from

a multithreaded program using memory_order_relaxed would be
affected. In C++, this seems entirely indefensible. Even in Java,
such constraints are extremely undesirable. In addition to the neg-
ative performance consequences, all the world’s compilers would
have to be substantially rewritten.

Since we can’t easily preserve a naı̈ve notion of dependence,
can we define a more sophisticated one that respects compiler
optimizations? So far, such definitions have been elusive, nor is it
really clear what that should mean. Consider

y = n * x;

Is the store of y dependent on the load of x? If n 6= 0, pre-
sumably yes. But what if the expression occurs inside a function
with parameter n and the function was invoked with an argument
of zero for n, and then inlined by the compiler? In that case again
there are execution paths on which the load of x and store of y are
not ordered.

Again, such transformations don’t actually introduce anything
that looks like an out-of-thin-air result. But this example demon-
strates the difficulty of defining a reasonable notion of dependence.

The C++ and Java memory models essentially define when a
particular “candidate” execution is valid, i.e. reflects correct cross-
thread visibility of updates. But there appears to be no reasonable
way to define a notion of dependence on such candidate execu-
tions.3

6. A solution: preserve load-to-store ordering

load

store

load

store

Thread 1 Thread 3Thread 2

load

store

Figure 6. cyclic dependence

Our goal is to prevent “dependence” cycles that involve multiple
threads. Such cycles must be composed of intra-thread segments,
each starting with a load and ending with a store dependent on that
load. This is illustrated in Figure 6, where the blue edges are intra-
thread dependences and the black edges represent the fact that a
store is seen by a load in another thread, i.e. the cross-thread reads-
from relation.

Very informally speaking, we can always prevent such cycles if
we make sure that the result of a store instruction seen by another
thread never becomes visible to that thread before a load by the
same thread on which it depends. One way to ensure this is to
have both the compiler and hardware ensure that no store ever

3 Peter Sewell and Mark Batty have an unpublished, but much more precise,
version of such a result.



becomes visible to other threads before any prior load by that
thread, dependence or not.

Prior work [7, 22] has observed that this can be achieved by
requiring the hardware to enforce a TSO [17, 18] memory model,
and having the compiler preserve it. However TSO is impractically
expensive to enforce on common weakly ordered architectures like
ARMv7 and Power.4

But TSO is a much stronger memory model than we need for
present purposes. We simply need to prohibit all reordering of load
instructions with respect to later store instructions executed by the
same thread. This property is enforced by TSO, but it can also be
enforced on more weakly ordered architectures, at much less cost
than TSO enforcement.

This property is easy to state as an addition to the existing
C++ memory model (as a replacement for the current vague “no
out-of-thin-air” wording) or within the framework of the current
Java memory model (as a replacement for the current discussion
of “Causality Requirements” in [8]). We simply require that the
existing happens-before relation is consistent with the “reads-from”
relation, relating stores to the loads that retrieve the stored value.
More formally:

(happens-before ∪ reads-from)∗

is irreflexive. This is a simple constraint on a single execution
that fits well with the existing model.

However, it is still expensive enough to implement on some ar-
chitectures to remain highly controversial. It prohibits the unde-
sirable results from Figures 2, 3 and 4. But it also disallows the
r1 = r2 = 42 outcome in Figure 1, which we previously argued
should be expected, is commonly allowed by existing implementa-
tions, and is generally accepted as benign.

6.1 Implementation cost
The implementation cost requires much more careful empirical
study before we could adopt such a solution for Java. Here we
briefly outline our preliminary observations.

In general, the costs fall into two categories: prohibited compiler
optimizations and the cost of additional instructions required to
enforce ordering at the hardware level.

Prior research has shown that in many cases, even the cost of
having the compiler preserve sequential consistency (i.e., ensure se-
quential consistency on sequentially consistent hardware) is mod-
est. [13] Here we impose much weaker constraints. In particular, it
remains acceptable to advance loads and to delay stores. Moving
loop invariant loads out of loops is legal where it previously was.
Heroic loop-nest optimizations for cache locality are a problem,
but we do not believe that these are commonly performed for either
Java loops, or for C++ loops containing memory_order_relaxed
accesses.

For Java, the precise compiler costs warrant further study,
but our expectation is that the added restriction adds only mod-
est overhead. For C++, it is likely to be minuscule, since only
memory_order_relaxed operations are affected. These are cur-
rently extremely rare, since compiler support for them is new. We
expect them to remain reasonably rare.

We briefly outline the expected cost of adding hardware order-
ing instructions on some common architectures:

4 Among other issues, TSO requires that stores be made visible to all other
threads in the system at the same time. Enforcing this on ARM or Power
requires a heavy-weight fence (dmb or sync) between every pair of shared
memory accesses.[16] Such fences typically incur costs on the order of
dozens of cycles, so we expect this to be impractical in the absence of heroic
whole-program analysis (which, in turn, has also proven impractical in most
contexts).

6.1.1 X86
X86 and other TSO memory models already forbid load-to-store
reordering for normal loads and stores. Thus no additional instruc-
tions are needed and no additional cost is incurred.

6.1.2 Power
The Power architectural specification allows loads to be reordered
with subsequent stores. There is some evidence that current imple-
mentations do not take advantage of this [16].

If necessary, spec-compliant ordering can be enforced with a
relatively light-weight fence between every shared and potentially
racing load and the following such store, or probably preferably, by
inserting a bogus conditional branch (e.g. to the next instruction),
which “depends” (by the conservative hardware definition) on each
load. The architecture guarantees that stores are not speculatively
executed, so the branch is sufficient to preserve ordering.

The compiler has several opportunities to further reduce the cost
of these branches. They can be delayed until the next store to a
potentially shared location, or omitted if other constructs along the
path (e.g. a branch on the load appearing in the code, or a fence
inserted for other reasons) already enforce the ordering.

Thus the cost to enforce ordering either involves a conditional
branch for a significant fraction of potentially shared loads, or
possibly a change to the hardware specification, restricting future
implementations.

6.1.3 ARMv7
The situation is similar to Power, except that current implementa-
tions are known to perform load-to-store reordering, and thus it is
not an option to simply change the specification. A fence or condi-
tional branch is required after shared loads. However, a fairly wide-
spread processor erratum already appears to require this fence for
C++.5 Thus the cost of enforcing this ordering for C++ may actu-
ally be similar to the x86 case. However the cost of enforcing this
ordering for Java, where the erratum is irrelevant, remains a major
concern.

6.1.4 ARMv8
ARMv8 provides yet another option to enforce ordering: One could
use the newly provided acquire and release load and store opera-
tions, most likely by replacing all affected stores by release stores.
On the other hand, we expect that added overhead is required even
for C++; there is presumably not a similar processor erratum to
mitigate the restriction.

6.2 A variation on preserving load-to-store ordering
Preserving load-to-store ordering implicitly preserves all depen-
dence ordering between such pairs of atomic operations. Alterna-
tively, this requirement could be weakened to require that syntac-
tic dependences be preserved, as for hardware, but to enforce it in
many cases by again fully preserving load-to-store ordering. This is
somewhat more complex to specify as it requires that the language
memory model define a syntactic notion of dependence. However,
this more complex approach has the potential to provide compiler
writers with some more room to implement optimizations.

The straightforward implementation strategy would then be to
simply preserve load-to-store ordering as above. The dependence
based specification approach opens up an alternative implementa-
tion strategy of preserving dependences in code that contains atom-
ics and requiring that load-store fences be inserted at any point that
carries a dependence on a relaxed load to code outside of the com-

5 See http://infocenter.arm.com/help/topic/com.arm.doc.
uan0004a/UAN0004A_a9_read_read.pdf for details.



pilation unit. In some cases, it may be possible to avoid the fence al-
together if existing operations already provide the necessary fence
or if no dependence on a relaxed load can leave the compilation
unit.

For small compilation units, the dependence preservation imple-
mentation approach is unlikely to yield improvements and thus the
preferred implementation strategy is likely to be preserving load-
to-store dependences as above. For larger compilation units, the
freedom to avoid stronger atomics or fences within the compilation
unit by preserving dependences may enable better code generation.
Further investigation is necessary to see whether the potential per-
formance benefits from this approach merit the additional specifica-
tion and compiler complexity. Either variation of these approaches
would benefit from better future hardware support for constraining
load-to-store reordering.

7. Conclusions
Our inability to specify the absence of out-of-thin-air results for
concurrent programming languages is a serious obstacle to rea-
soning about very conventional multi-threaded programs. After a
decade of trying to address this problem in the context of current
hardware, we believe it is time to consider solutions that incur mod-
est performance costs on current hardware, and are likely to re-
quire long-term hardware changes. It appears more and more that a
core contributor to the problem are hardware specifications, such as
those involving dependences, that we do not know how to translate
to the programming language level.

Acknowledgments
This paper relies significantly on insights from discussions involv-
ing Mark Batty, Peter Sewell, Richard Grisenthwaite, Paul McKen-
ney, Jeremy Manson and others, who are unlikely to fully agree
with all of our conclusions. This project was partly supported
by a Google Research Award and by the National Science Foun-
dation under grants CCF-0846195, CCF-1217854, CNS-1228995,
and CCF-1319786.

References
[1] S. V. Adve and H.-J. Boehm. Memory models: A case for rethinking

parallel languages and hardware. Communications of the ACM, 53(8):
90–101, August 2010.

[2] S. V. Adve and M. D. Hill. Weak ordering—A new definition. In
Proceedings of the 17th International Symposium on Computer Archi-
tecture, pages 2–14, 1990.

[3] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2013.

[4] H.-J. Boehm. N3786: Prohibiting “out of thin air” results in
C++14. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2013/n3786.htm, September 2013.

[5] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency
memory model. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 68–78, 2008.

[6] H.-J. Boehm et al. N3710: Specifying the absence of “out of
thin air” results (LWG2265). http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2013/n3710.html, August 2013.

[7] D. Demange, V. Laporte, L. Zhao, S. Jagannathan, D. Pichardie, and
J. Vitek. Plan B: A buffered memory model for Java. In POPL, pages
329–342, 2013.

[8] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buck-
ley. The Java language specification: Java SE 8 edition.
http://docs.oracle.com/javase/specs/jls/se8/html/index.html, 2014.

[9] ISO JTC1/SC22/WG14. ISO/IEC 9899:2011, informa-
tion technology — programming languages — C. http:

//www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=57853 or an approxima-
tion at http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1548.pdf, 2011.

[10] ISO JTC1/SC22/WG21. ISO/IEC 14882:2011, infor-
mation technology — programming languages — C++.
http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=50372 or a close approxi-
mation at http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2012/n3376.pdf, 2011.

[11] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
C-28(9):690–691, 1979.

[12] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Pro-
ceedings of the Symposium on Principles of Programming Languages,
2005.

[13] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and
S. Narayanasamy. A case for an SC-preserving compiler. In
PLDI, pages 199–210, 2011.

[14] B. Norris and B. Demsky. CDSChecker: Checking concurrent data
structures written with C/C++ atomics. In ”Proceeding of the 28th
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications”, 2013.

[15] B. Pugh et al. JMM causality test cases. http://www.cs.umd.edu/
~pugh/java/memoryModel/unifiedProposal/testcases.
html, retrieved March, 2014.

[16] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Under-
standing POWER multiprocessors. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2011.

[17] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: A rigorous and usable programmer’s model for x86 multi-
procesors. Communications of the ACM, 53(7):89–97, July 2010.

[18] I. SPARC International. The SPARC architecture manual (version 9).
Prentice-Hall, Inc, 1994.

[19] Reference Manual for the Ada Programming Language: ANSI/MIL-
STD-1815A-1983 Standard 1003.1-2001. United States Department
of Defense, 1983. Springer.

[20] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages and Applications, 2013.

[21] J. Ševčı́k and D. Aspinall. On validity of program transformations in
the Java memory model. In Proceedings of the European Conference
on Object-Oriented Programming, pages 27–51, 2008.

[22] J. Ševčı́k, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
JACM, 60, 2013.


