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Abstract
We present a new ensemble learning algorithm,
DeepBoost, which can use as base classifiers a
hypothesis set containing deep decision trees, or
members of other rich or complex families, and
succeed in achieving high accuracy without over-
fitting the data. The key to the success of the al-
gorithm is a capacity-conscious criterion for the
selection of the hypotheses. We give new data-
dependent learning bounds for convex ensembles
expressed in terms of the Rademacher complexi-
ties of the sub-families composing the base clas-
sifier set, and the mixture weight assigned to each
sub-family. Our algorithm directly benefits from
these guarantees since it seeks to minimize the
corresponding learning bound. We give a full de-
scription of our algorithm, including the details
of its derivation, and report the results of several
experiments showing that its performance com-
pares favorably to that of AdaBoost and Logistic
Regression and their L

1

-regularized variants.

1. Introduction
Ensemble methods are general techniques in machine
learning for combining several predictors or experts to
create a more accurate one. In the batch learning set-
ting, techniques such as bagging, boosting, stacking, error-
correction techniques, Bayesian averaging, or other av-
eraging schemes are prominent instances of these meth-
ods (Breiman, 1996; Freund & Schapire, 1997; Smyth &
Wolpert, 1999; MacKay, 1991; Freund et al., 2004). En-
semble methods often significantly improve performance
in practice (Quinlan, 1996; Bauer & Kohavi, 1999; Caru-
ana et al., 2004; Dietterich, 2000; Schapire, 2003) and ben-
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efit from favorable learning guarantees. In particular, Ad-
aBoost and its variants are based on a rich theoretical anal-
ysis, with performance guarantees in terms of the margins
of the training samples (Schapire et al., 1997; Koltchinskii
& Panchenko, 2002).

Standard ensemble algorithms such as AdaBoost combine
functions selected from a base classifier hypothesis set H .
In many successful applications of AdaBoost, H is reduced
to the so-called boosting stumps, that is decision trees of
depth one. For some difficult tasks in speech or image
processing, simple boosting stumps are not sufficient to
achieve a high level of accuracy. It is tempting then to use
a more complex hypothesis set, for example the set of all
decision trees with depth bounded by some relatively large
number. But, existing learning guarantees for AdaBoost
depend not only on the margin and the number of the
training examples, but also on the complexity of H mea-
sured in terms of its VC-dimension or its Rademacher com-
plexity (Schapire et al., 1997; Koltchinskii & Panchenko,
2002). These learning bounds become looser when us-
ing too complex base classifier sets H . They suggest a
risk of overfitting which indeed can be observed in some
experiments with AdaBoost (Grove & Schuurmans, 1998;
Schapire, 1999; Dietterich, 2000; Rätsch et al., 2001b).

This paper explores the design of alternative ensemble al-
gorithms using as base classifiers a hypothesis set H that
may contain very deep decision trees, or members of some
other very rich or complex families, and that can yet suc-
ceed in achieving a higher performance level. Assume that
the set of base classifiers H can be decomposed as the
union of p disjoint families H

1

, . . . ,Hp ordered by increas-
ing complexity, where Hk, k 2 [1, p], could be for example
the set of decision trees of depth k, or a set of functions
based on monomials of degree k. Figure 1 shows a pictorial
illustration. Of course, if we strictly confine ourselves to
using hypotheses belonging only to families Hk with small
k, then we are effectively using a smaller base classifier set
H with favorable guarantees. But, to succeed in some chal-
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Figure 1. Base classifier set H decomposed in terms of sub-
families H1, . . . , Hp or their unions.

lenging tasks, the use of a few more complex hypotheses
could be needed. The main idea behind the design of our
algorithms is that an ensemble based on hypotheses drawn
from H

1

, . . . ,Hp can achieve a higher accuracy by making
use of hypotheses drawn from Hks with large k if it allo-
cates more weights to hypotheses drawn from Hks with a
small k. But, can we determine quantitatively the amounts
of mixture weights apportioned to different families? Can
we provide learning guarantees for such algorithms?

Note that our objective is somewhat reminiscent of that of
model selection, in particular Structural Risk Minimization
(SRM) (Vapnik, 1998), but it differs from that in that we
do not wish to limit our base classifier set to some optimal
Hq =

Sq
k=1

Hk. Rather, we seek the freedom of using as
base hypotheses even relatively deep trees from rich Hks,
with the promise of doing so infrequently, or that of re-
serving them a somewhat small weight contribution. This
provides the flexibility of learning with deep hypotheses.

We present a new algorithm, DeepBoost, whose design is
precisely guided by the ideas just discussed. Our algorithm
is grounded in a solid theoretical analysis that we present
in Section 2. We give new data-dependent learning bounds
for convex ensembles. These guarantees are expressed in
terms of the Rademacher complexities of the sub-families
Hk and the mixture weight assigned to each Hk, in ad-
dition to the familiar margin terms and sample size. Our
capacity-conscious algorithm is derived via the application
of a coordinate descent technique seeking to minimize such
learning bounds. We give a full description of our algo-
rithm, including the details of its derivation and its pseu-
docode (Section 3) and discuss its connection with previ-
ous boosting-style algorithms. We also report the results of
several experiments (Section 4) demonstrating that its per-
formance compares favorably to that of AdaBoost, which
is known to be one of the most competitive binary classifi-
cation algorithms.

2. Data-dependent learning guarantees for
convex ensembles with multiple hypothesis
sets

Non-negative linear combination ensembles such as boost-
ing or bagging typically assume that base functions are se-
lected from the same hypothesis set H . Margin-based gen-
eralization bounds were given for ensembles of base func-
tions taking values in {�1,+1} by Schapire et al. (1997) in

terms of the VC-dimension of H . Tighter margin bounds
with simpler proofs were later given by Koltchinskii &
Panchenko (2002), see also (Bartlett & Mendelson, 2002),
for the more general case of a family H taking arbitrary
real values, in terms of the Rademacher complexity of H .

Here, we also consider base hypotheses taking arbitrary
real values but assume that they can be selected from sev-
eral distinct hypothesis sets H

1

, . . . ,Hp with p � 1 and
present margin-based learning in terms of the Rademacher
complexity of these sets. Remarkably, the complexity term
of these bounds admits an explicit dependency in terms of
the mixture coefficients defining the ensembles. Thus, the
ensemble family we consider is F = conv(

Sp
k=1

Hk), that
is the family of functions f of the form f =

PT
t=1

↵tht,
where ↵ = (↵

1

, . . . ,↵T ) is in the simplex � and where,
for each t 2 [1, T ], ht is in Hkt for some kt 2 [1, p].

Let X denote the input space. H
1

, . . . ,Hp are thus fam-
ilies of functions mapping from X to R. We consider
the familiar supervised learning scenario and assume that
training and test points are drawn i.i.d. according to some
distribution D over X ⇥ {�1,+1} and denote by S =

((x
1

, y
1

), . . . , (xm, ym)) a training sample of size m drawn
according to Dm.

Let ⇢ > 0. For a function f taking values in R, we de-
note by R(f) its binary classification error, by R⇢(f) its
⇢-margin error, and by bRS,⇢(f) its empirical margin error:

R(f) = E

(x,y)⇠D
[1yf(x)0

], R⇢(f) = E

(x,y)⇠D
[1yf(x)⇢],

bR⇢(f) = E

(x,y)⇠S
[1yf(x)⇢],

where the notation (x, y) ⇠ S indicates that (x, y) is drawn
according to the empirical distribution defined by S.

The following theorem gives a margin-based Rademacher
complexity bound for learning with such functions in the
binary classification case. As with other Rademacher com-
plexity learning guarantees, our bound is data-dependent,
which is an important and favorable characteristic of our
results. For p = 1, that is for the special case of a single
hypothesis set, the analysis coincides with that of the stan-
dard ensemble margin bounds (Koltchinskii & Panchenko,
2002).
Theorem 1. Assume p > 1. Fix ⇢ > 0. Then, for any
� > 0, with probability at least 1 � � over the choice of
a sample S of size m drawn i.i.d. according to Dm, the
following inequality holds for all f =

PT
t=1

↵tht 2 F:

R(f)  bRS,⇢(f) +

4

⇢

TX

t=1

↵tRm(Hkt)

+

2

⇢

r
log p

m
+

s⇠
4

⇢2

log

h ⇢2m

log p

i⇡
log p

m
+

log

2

�

2m
.
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Thus, R(f)  bRS,⇢(f) +

4

⇢

PT
t=1

↵tRm(Hkt) + C(m, p)

with C(m, p) = O
⇣q

log p
⇢2m log

⇥
⇢2m
log p

⇤⌘
.

This result is remarkable since the complexity term in the
right-hand side of the bound admits an explicit depen-
dency on the mixture coefficients ↵t. It is a weighted aver-
age of Rademacher complexities with mixture weights ↵t,
t 2 [1, T ]. Thus, the second term of the bound suggests
that, while some hypothesis sets Hk used for learning could
have a large Rademacher complexity, this may not be detri-
mental to generalization if the corresponding total mixture
weight (sum of ↵ts corresponding to that hypothesis set) is
relatively small. Such complex families offer the potential
of achieving a better margin on the training sample.

The theorem cannot be proven via a standard Rademacher
complexity analysis such as that of Koltchinskii &
Panchenko (2002) since the complexity term of the bound
would then be the Rademacher complexity of the family
of hypotheses F = conv(

Sp
k=1

Hk) and would not de-
pend on the specific weights ↵t defining a given func-
tion f . Furthermore, the complexity term of a standard
Rademacher complexity analysis is always lower bounded
by the complexity term appearing in our bound. Indeed,
since Rm(conv([p

k=1

Hk)) = Rm([p
k=1

Hk), the follow-
ing lower bound holds for any choice of the non-negative
mixtures weights ↵t summing to one:

Rm(F) � m
max

k=1

Rm(Hk) �
TX

t=1

↵tRm(Hkt). (1)

Thus, Theorem 1 provides a finer learning bound than the
one obtained via a standard Rademacher complexity anal-
ysis. The full proof of the theorem is given in Appendix A.
Our proof technique exploits standard tools used to de-
rive Rademacher complexity learning bounds (Koltchin-
skii & Panchenko, 2002) as well as a technique used by
Schapire, Freund, Bartlett, and Lee (1997) to derive early
VC-dimension margin bounds. Using other standard tech-
niques as in (Koltchinskii & Panchenko, 2002; Mohri et al.,
2012), Theorem 1 can be straightforwardly generalized to
hold uniformly for all ⇢ > 0 at the price of an additional

term that is in O
⇣q

log log

2
⇢

m

⌘
.

3. Algorithm
In this section, we will use the learning guarantees of Sec-
tion 2 to derive a capacity-conscious ensemble algorithm
for binary classification.

3.1. Optimization problem

Let H
1

, . . . ,Hp be p disjoint families of functions taking
values in [�1,+1] with increasing Rademacher complex-

ities Rm(Hk), k 2 [1, p]. We will assume that the hy-
pothesis sets Hk are symmetric, that is, for any h 2 Hk,
we also have (�h) 2 Hk, which holds for most hypothe-
sis sets typically considered in practice. This assumption
is not necessary but it helps simplifying the presentation of
our algorithm. For any hypothesis h 2 [p

k=1

Hk, we denote
by d(h) the index of the hypothesis set it belongs to, that is
h 2 Hd(h)

. The bound of Theorem 1 holds uniformly for
all ⇢ > 0 and functions f 2 conv(

Sp
k=1

Hk).1 Since the
last term of the bound does not depend on ↵, it suggests
selecting ↵ to minimize

G(↵) =

1

m

mX

i=1

1yi
PT

t=1 ↵tht(xi)⇢ +

4

⇢

TX

t=1

↵trt,

where rt = Rm(Hd(ht)
). Since for any ⇢ > 0, f and f/⇢

admit the same generalization error, we can instead search
for ↵ � 0 with

PT
t=1

↵t  1/⇢ which leads to

min

↵�0

1

m

mX

i=1

1yi
PT

t=1↵tht(xi)1

+4

TX

t=1

↵trt s.t.
TX

t=1

↵t 
1

⇢
.

The first term of the objective is not a convex function
of ↵ and its minimization is known to be computation-
ally hard. Thus, we will consider instead a convex upper
bound. Let u 7! �(�u) be a non-increasing convex func-
tion upper bounding u 7! 1u0

with � differentiable over
R and �

0
(u) 6= 0 for all u. � may be selected to be for

example the exponential function as in AdaBoost (Freund
& Schapire, 1997) or the logistic function. Using such an
upper bound, we obtain the following convex optimization
problem:

min

↵�0

1

m

mX

i=1

�

⇣
1� yi

TX

t=1

↵tht(xi)

⌘
+ �

TX

t=1

↵trt (2)

s.t.
TX

t=1

↵t 
1

⇢
,

where we introduced a parameter � � 0 controlling the bal-
ance between the magnitude of the values taken by function
� and the second term. Introducing a Lagrange variable
� � 0 associated to the constraint in (2), the problem can
be equivalently written as

min

↵�0

1

m

mX

i=1

�

⇣
1� yi

TX

t=1

↵tht(xi)

⌘
+

TX

t=1

(�rt + �)↵t.

Here, � is a parameter that can be freely selected by the
algorithm since any choice of its value is equivalent to a

1The condition
PT

t=1 ↵t = 1 of Theorem 1 can be relaxed
to

PT
t=1 ↵t  1. To see this, use for example a null hypothesis

(ht = 0 for some t).
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choice of ⇢ in (2). Let {h
1

, . . . , hN} be the set of distinct
base functions, and let G be the objective function based
on that collection:

G(↵)=

1

m

mX

i=1

�

⇣
1�yi

NX

j=1

↵jhj(xi)

⌘
+

NX

t=1

(�rj +�)↵j ,

with ↵ = (↵
1

, . . . ,↵N ) 2 RN . Note that we can drop the
requirement ↵ � 0 since the hypothesis sets are symmetric
and ↵tht = (�↵t)(�ht). For each hypothesis h, we keep
either h or �h in {h

1

, . . . , hN}. Using the notation

⇤j = �rj + �, (3)

for all j 2 [1, N ], our optimization problem can then be
rewritten as min↵ F (↵) with

F (↵)=

1

m

mX

i=1

�

⇣
1�yi

NX

j=1

↵jhj(xi)

⌘
+

NX

t=1

⇤j |↵j |, (4)

with no non-negativity constraint on ↵. The function F
is convex as a sum of convex functions and admits a sub-
differential at all ↵ 2 R. We can design a boosting-style
algorithm by applying coordinate descent to F (↵).

Let ↵t = (↵t,1, . . . ,↵t,N )

> denote the vector obtained af-
ter t � 1 iterations and let ↵

0

= 0. Let ek denote the
kth unit vector in RN , k 2 [1, N ]. The direction ek and
the step ⌘ selected at the tth round are those minimizing
F (↵t�1

+ ⌘ek), that is

F (↵t�1

+ ⌘ek)=

1

m

mX

i=1

�

⇣
1� yift�1

(xi)�⌘yihk(xi)

⌘

+

X

j 6=k

⇤j |↵t�1,j |+ ⇤k|↵t�1,k + ⌘|,

where ft�1

=

PN
j=1

↵t�1,jhj . For any t 2 [1, T ], we
denote by Dt the distribution defined by

Dt(i) =

�

0�
1� yift�1

(xi)
�

St
, (5)

where St is a normalization factor, St =

Pm
i=1

�

0
(1 �

yift�1

(xi)). For any s 2 [1, T ] and j 2 [1, N ], we denote
by ✏s,j the weighted error of hypothesis hj for the distribu-
tion Ds, for s 2 [1, T ]:

✏s,j =

1

2

h
1� E

i⇠Ds

[yihj(xi)]

i
. (6)

3.2. DeepBoost

Figure 2 shows the pseudocode of the algorithm DeepBoost
derived by applying coordinate descent to the objective
function (4). The details of the derivation of the expres-
sion are given in Appendix B. In the special cases of the

DEEPBOOST(S = ((x
1

, y
1

), . . . , (xm, ym)))

1 for i 1 to m do
2 D

1

(i) 1

m
3 for t 1 to T do
4 for j  1 to N do
5 if (↵t�1,j 6= 0) then
6 dj  

�
✏t,j � 1

2

�
+ sgn(↵t�1,j)

⇤jm
2St

7 elseif
���✏t,j � 1

2

��  ⇤jm
2St

�
then

8 dj  0

9 else dj  
�
✏t,j � 1

2

�
� sgn(✏t,j � 1

2

)

⇤jm
2St

10 k  argmax

j2[1,N ]

|dj |

11 ✏t  ✏t,k

12 if
�
|(1� ✏t)e↵t�1,k�✏te�↵t�1,k | ⇤km

St

�
then

13 ⌘t  �↵t�1,k

14 elseif
�
(1� ✏t)e↵t�1,k�✏te�↵t�1,k > ⇤km

St

�
then

15 ⌘t  log

h
� ⇤km

2✏tSt
+

q⇥
⇤km
2✏tSt

⇤
2

+

1�✏t

✏t

i

16 else ⌘t  log

h
+

⇤km
2✏tSt

+

q⇥
⇤km
2✏tSt

⇤
2

+

1�✏t

✏t

i

17 ↵t  ↵t�1

+ ⌘tek

18 St+1

 
Pm

i=1

�

0�
1� yi

PN
j=1

↵t,jhj(xi)
�

19 for i 1 to m do

20 Dt+1

(i) �

0
�
1�yi

PN
j=1 ↵t,jhj(xi)

�

St+1

21 f  
PN

j=1

↵T,jhj

22 return f

Figure 2. Pseudocode of the DeepBoost algorithm for both the
exponential loss and the logistic loss. The expression of the
weighted error ✏t,j is given in (6). In the generic case of a sur-
rogate loss � different from the exponential or logistic losses, ⌘t

is found instead via a line search or other numerical methods from
⌘t = argmax⌘ F (↵t�1 + ⌘ek).

exponential loss (�(�u) = exp(�u)) or the logistic loss
(�(�u) = log

2

(1 + exp(�u))), a closed-form expression
is given for the step size (lines 12-16), which is the same in
both cases (see Sections B.4 and B.5). In the generic case,
the step size ⌘t can be found using a line search or other
numerical methods. Note that when the condition of line
12 is satisfied, the step taken by the algorithm cancels out
the coordinate along the direction k, thereby leading to a
sparser result. This is consistent with the fact that the ob-
jective function contains a second term based on (weighted)
L

1

-norm, which is favoring sparsity.

Our algorithm is related to several other boosting-type al-
gorithms devised in the past. For � = 0 and � = 0 and
using the exponential surrogate loss, it coincides with Ada-
Boost (Freund & Schapire, 1997) with precisely the same
direction and same step log

hq
1�✏t

✏t

i
using H =

Sp
k=1

Hk

as the hypothesis set for base learners. This corresponds to
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ignoring the complexity term of our bound as well as the
control of the sum of the mixture weights via �. For � = 0

and � = 0 and using the logistic surrogate loss, our algo-
rithm also coincides with additive logistic loss (Friedman
et al., 1998).

In the special case where � = 0 and � 6= 0 and for
the exponential surrogate loss, our algorithm matches the
L

1

-norm regularized AdaBoost (e.g., see (Rätsch et al.,
2001a)). For the same choice of the parameters and for
the logistic surrogate loss, our algorithm matches the L

1

-
norm regularized additive Logistic Regression studied by
Duchi & Singer (2009) using the base learner hypothesis
set H =

Sp
k=1

Hk. H may in general be very rich. The key
foundation of our algorithm and analysis is instead to take
into account the relative complexity of the sub-families Hk.
Also, note that L

1

-norm regularized AdaBoost and Logis-
tic Regression can be viewed as algorithms minimizing the
learning bound obtained via the standard Rademacher com-
plexity analysis (Koltchinskii & Panchenko, 2002), using
the exponential or logistic surrogate losses. Instead, the
objective function minimized by our algorithm is based on
the generalization bound of Theorem 1, which as discussed
earlier is a finer bound (see (1)). For � = 0 but � 6= 0, our
algorithm is also close to the so-called unnormalized Arc-
ing (Breiman, 1999) or AdaBoost⇢ (Rätsch & Warmuth,
2002) using H as a hypothesis set. AdaBoost⇢ coincides
with AdaBoost modulo the step size, which is more con-
servative than that of AdaBoost and depends on ⇢. Rätsch
& Warmuth (2005) give another variant of the algorithm
that does not require knowing the best ⇢, see also the re-
lated work of Kivinen & Warmuth (1999); Warmuth et al.
(2006).

Our algorithm directly benefits from the learning guaran-
tees given in Section 2 since it seeks to minimize the bound
of Theorem 1. In the next section, we report the results of
our experiments with DeepBoost. Let us mention that we
have also designed an alternative deep boosting algorithm
that we briefly describe and discuss in Appendix C.

4. Experiments
An additional benefit of the learning bounds presented in
Section 2 is that they are data-dependent. They are based
on the Rademacher complexity of the base hypothesis sets
Hk, which in some cases can be well estimated from the
training sample. The algorithm DeepBoost directly inher-
its this advantage. For example, if the hypothesis set Hk

is based on a positive definite kernel with sample matrix
Kk, it is known that its empirical Rademacher complexity

can be upper bounded by
p

Tr[Kk]

m and lower bounded by
1p
2

p
Tr[Kk]

m . In other cases, when Hk is a family of func-
tions taking binary values, we can use an upper bound on

the Rademacher complexity in terms of the growth func-

tion of Hk, ⇧Hk
(m): Rm(Hk) 

q
2 log ⇧Hk

(m)

m . Thus,
for the family Hstumps

1

of boosting stumps in dimension d,
⇧Hstumps

1
(m)  2md, since there are 2m distinct threshold

functions for each dimension with m points. Thus, the fol-
lowing inequality holds:

Rm(Hstumps
1

) 
r

2 log(2md)

m
. (7)

Similarly, we consider the family of decision trees Hstumps
2

of depth 2 with the same question at the internal nodes of
depth 1. We have ⇧Hstumps

2
(m)  (2m)

2

d(d�1)

2

since there
are d(d � 1)/2 distinct trees of this type and since each
induces at most (2m)

2 labelings. Thus, we can write

Rm(Hstumps
2

) 
r

2 log(2m2d(d� 1))

m
. (8)

More generally, we also consider the family of all binary
decision trees H trees

k of depth k. For this family it is known
that VC-dim(H trees

k )  (2

k
+ 1) log

2

(d + 1) (Mansour,
1997). More generally, the VC-dimension of Tn, the fam-
ily of decision trees with n nodes in dimension d can be
bounded by (2n + 1) log

2

(d + 2) (see for example (Mohri

et al., 2012)). Since Rm(H) 
q

2 VC-dim(H) log(m+1)

m ,
for any hypothesis class H we have

Rm(Tn) 
r

(4n + 2) log

2

(d + 2) log(m + 1)

m
. (9)

The experiments with DeepBoost described below use ei-
ther Hstumps

= Hstumps
1

[Hstumps
2

or Htrees
K =

SK
k=1

H trees
k ,

for some K > 0, as the base hypothesis sets. For any hy-
pothesis in these sets, DeepBoost will use the upper bounds
given above as a proxy for the Rademacher complexity
of the set to which it belongs. We leave it to the future
to experiment with finer data-dependent estimates or up-
per bounds on the Rademacher complexity, which could
further improve the performance of our algorithm. Re-
call that each iteration of DeepBoost searches for the base
hypothesis that is optimal with respect to a certain crite-
rion (see lines 5-10 of Figure 2). While an exhaustive
search is feasible for Hstumps

1

, it would be far too expen-
sive to visit all trees in Htrees

K when K is large. There-
fore, when using Htrees

K and also Hstumps
2

as the base hy-
potheses we use the following heuristic search procedure
in each iteration t: First, the optimal tree h⇤

1

2 H trees
1

is
found via exhaustive search. Next, for all 1 < k  K,
a locally optimal tree h⇤k 2 H trees

k is found by consider-
ing only trees that can be obtained by adding a single layer
of leaves to h⇤k�1

. Finally, we select the best hypotheses
in the set {h⇤

1

, . . . , h⇤K , h
1

, . . . , ht�1

}, where h
1

, . . . , ht�1

are the hypotheses selected in previous iterations.
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Table 1. Results for boosted decision stumps and the exponential loss function.

AdaBoost AdaBoost AdaBoost AdaBoost
breastcancer Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost ocr17 Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost

Error 0.0429 0.0437 0.0408 0.0373 Error 0.0085 0.008 0.0075 0.0070
(std dev) (0.0248) (0.0214) (0.0223) (0.0225) (std dev) 0.0072 0.0054 0.0068 (0.0048)

Avg tree size 1 2 1.436 1.215 Avg tree size 1 2 1.086 1.369
Avg no. of trees 100 100 43.6 21.6 Avg no. of trees 100 100 37.8 36.9

AdaBoost AdaBoost AdaBoost AdaBoost
ionosphere Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost ocr49 Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost

Error 0.1014 0.075 0.0708 0.0638 Error 0.0555 0.032 0.03 0.0275
(std dev) (0.0414) (0.0413) (0.0331) (0.0394) (std dev) 0.0167 0.0114 0.0122 (0.0095)

Avg tree size 1 2 1.392 1.168 Avg tree size 1 2 1.99 1.96
Avg no. of trees 100 100 39.35 17.45 Avg no. of trees 100 100 99.3 96

AdaBoost AdaBoost AdaBoost AdaBoost
german Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost ocr17-mnist Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost

Error 0.243 0.2505 0.2455 0.2395 Error 0.0056 0.0048 0.0046 0.0040
(std dev) (0.0445) (0.0487) (0.0438) (0.0462) (std dev) 0.0017 0.0014 0.0013 (0.0014)

Avg tree size 1 2 1.54 1.76 Avg tree size 1 2 2 1.99
Avg no. of trees 100 100 54.1 76.5 Avg no. of trees 100 100 100 100

AdaBoost AdaBoost AdaBoost AdaBoost
diabetes Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost ocr49-mnist Hstumps

1 Hstumps
2 AdaBoost-L1 DeepBoost

Error 0.253 0.260 0.254 0.253 Error 0.0414 0.0209 0.0200 0.0177
(std dev) (0.0330) (0.0518) (0.04868) (0.0510) (std dev) 0.00539 0.00521 0.00408 (0.00438)

Avg tree size 1 2 1.9975 1.9975 Avg tree size 1 2 1.9975 1.9975
Avg no. of trees 100 100 100 100 Avg no. of trees 100 100 100 100

Breiman (1999) and Reyzin & Schapire (2006) extensively
investigated the relationship between the complexity of de-
cision trees in an ensemble learned by AdaBoost and the
generalization error of the ensemble. We tested DeepBoost
on the same UCI datasets used by these authors, http://
archive.ics.uci.edu/ml/datasets.html, specifi-
cally breastcancer, ionosphere, german(numeric)
and diabetes. We also experimented with two optical
character recognition datasets used by Reyzin & Schapire
(2006), ocr17 and ocr49, which contain the handwritten
digits 1 and 7, and 4 and 9 (respectively). Finally, because
these OCR datasets are fairly small, we also constructed
the analogous datasets from all of MNIST, http://yann.
lecun.com/exdb/mnist/, which we call ocr17-mnist
and ocr49-mnist. More details on all the datasets are
given in Table 4, Appendix D.1.

As we discussed in Section 3.2, by fixing the parameters �
and � to certain values, we recover some known algorithms
as special cases of DeepBoost. Our experiments compared
DeepBoost to AdaBoost (� = � = 0 with exponential
loss), to Logistic Regression (� = � = 0 with logistic
loss), which we abbreviate as LogReg, to L

1

-norm regular-
ized AdaBoost (e.g., see (Rätsch et al., 2001a)) abbreviated
as AdaBoost-L1, and also to the L

1

-norm regularized ad-
ditive Logistic Regression algorithm studied by (Duchi &
Singer, 2009) (� > 0,� = 0) abbreviated as LogReg-L1.

In the first set of experiments reported in Table 1, we com-
pared AdaBoost, AdaBoost-L1, and DeepBoost with the
exponential loss (�(�u) = exp(�u)) and base hypothe-
ses Hstumps. We tested standard AdaBoost with base hy-
potheses Hstumps

1

and Hstumps
2

. For AdaBoost-L1, we op-

timized over � 2 {2�i
: i = 6, . . . , 0} and for Deep-

Boost, we optimized over � in the same range and � 2
{0.0001, 0.005, 0.01, 0.05, 0.1, 0.5}. The exact parameter
optimization procedure is described below.

In the second set of experiments reported in Table 2, we
used base hypotheses Htrees

K instead of Hstumps, where the
maximum tree depth K was an additional parameter to be
optimized. Specifically, for AdaBoost we optimized over
K 2 {1, . . . , 6}, for AdaBoost-L1 we optimized over those
same values for K and � 2 {10

�i
: i = 3, . . . , 7}, and for

DeepBoost we optimized over those same values for K, �
and � 2 {10

�i
: i = 3, . . . , 7}.

The last set of experiments, reported in Table 3, are identi-
cal to the experiments reported in Table 2, except we used
the logistic loss �(�u) = log

2

(1 + exp(�u)).

We used the following parameter optimization procedure
in all experiments: Each dataset was randomly partitioned
into 10 folds, and each algorithm was run 10 times, with a
different assignment of folds to the training set, validation
set and test set for each run. Specifically, for each run i 2
{0, . . . , 9}, fold i was used for testing, fold i + 1 (mod 10)

was used for validation, and the remaining folds were used
for training. For each run, we selected the parameters that
had the lowest error on the validation set and then measured
the error of those parameters on the test set. The average
error and the standard deviation of the error over all 10 runs
is reported in Tables 1, 2 and 3, as is the average number of
trees and the average size of the trees in the ensembles.

In all of our experiments, the number of iterations was set
to 100. We also experimented with running each algorithm

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Table 2. Results for boosted decision trees and the exponential loss function.

breastcancer AdaBoost AdaBoost-L1 DeepBoost ocr17 AdaBoost AdaBoost-L1 DeepBoost
Error 0.0267 0.0264 0.0243 Error 0.004 0.003 0.002

(std dev) (0.00841) (0.0098) (0.00797) (std dev) (0.00316) (0.00100) (0.00100)
Avg tree size 29.1 28.9 20.9 Avg tree size 15.0 30.4 26.0

Avg no. of trees 67.1 51.7 55.9 Avg no. of trees 88.3 65.3 61.8

ionosphere AdaBoost AdaBoost-L1 DeepBoost ocr49 AdaBoost AdaBoost-L1 DeepBoost
Error 0.0661 0.0657 0.0501 Error 0.0180 0.0175 0.0175

(std dev) (0.0315) (0.0257) (0.0316) (std dev) (0.00555) (0.00357) (0.00510)
Avg tree size 29.8 31.4 26.1 Avg tree size 30.9 62.1 30.2

Avg no. of trees 75.0 69.4 50.0 Avg no. of trees 92.4 89.0 83.0

german AdaBoost AdaBoost-L1 DeepBoost ocr17-mnist AdaBoost AdaBoost-L1 DeepBoost
Error 0.239 0.239 0.234 Error 0.00471 0.00471 0.00409

(std dev) (0.0165) (0.0201) (0.0148) (std dev) (0.0022) (0.0021) (0.0021)
Avg tree size 3 7 16.0 Avg tree size 15 33.4 22.1

Avg no. of trees 91.3 87.5 14.1 Avg no. of trees 88.7 66.8 59.2

diabetes AdaBoost AdaBoost-L1 DeepBoost ocr49-mnist AdaBoost AdaBoost-L1 DeepBoost
Error 0.249 0.240 0.230 Error 0.0198 0.0197 0.0182

(std dev) (0.0272) (0.0313) (0.0399) (std dev) (0.00500) (0.00512) (0.00551)
Avg tree size 3 3 5.37 Avg tree size 29.9 66.3 30.1

Avg no. of trees 45.2 28.0 19.0 Avg no. of trees 82.4 81.1 80.9

Table 3. Results for boosted decision trees and the logistic loss function.

breastcancer LogReg LogReg-L1 DeepBoost ocr17 LogReg LogReg-L1 DeepBoost
Error 0.0351 0.0264 0.0264 Error 0.00300 0.00400 0.00250

(std dev) (0.0101) (0.0120) (0.00876) (std dev) (0.00100) (0.00141) (0.000866)
Avg tree size 15 59.9 14.0 Avg tree size 15.0 7 22.1

Avg no. of trees 65.3 16.0 23.8 Avg no. of trees 75.3 53.8 25.8

ionosphere LogReg LogReg-L1 DeepBoost ocr49 LogReg LogReg-L1 DeepBoost
Error 0.074 0.060 0.043 Error 0.0205 0.0200 0.0170

(std dev) (0.0236) (0.0219) (0.0188) (std dev) (0.00654) (0.00245) (0.00361)
Avg tree size 7 30.0 18.4 Avg tree size 31.0 31.0 63.2

Avg no. of trees 44.7 25.3 29.5 Avg no. of trees 63.5 54.0 37.0

german LogReg LogReg-L1 DeepBoost ocr17-mnist LogReg LogReg-L1 DeepBoost
Error 0.233 0.232 0.225 Error 0.00422 0.00417 0.00399

(std dev) (0.0114) (0.0123) (0.0103) (std dev) (0.00191) (0.00188) (0.00211)
Avg tree size 7 7 14.4 Avg tree size 15 15 25.9

Avg no. of trees 72.8 66.8 67.8 Avg no. of trees 71.4 55.6 27.6

diabetes LogReg LogReg-L1 DeepBoost ocr49-mnist LogReg LogReg-L1 DeepBoost
Error 0.250 0.246 0.246 Error 0.0211 0.0201 0.0201

(std dev) (0.0374) (0.0356) (0.0356) (std dev) (0.00412) (0.00433) (0.00411)
Avg tree size 3 3 3 Avg tree size 28.7 33.5 72.8

Avg no. of trees 46.0 45.5 45.5 Avg no. of trees 79.3 61.7 41.9

for up to 1,000 iterations, but observed that the test errors
did not change significantly, and more importantly the or-
dering of the algorithms by their test errors was unchanged
from 100 iterations to 1,000 iterations.

Observe that with the exponential loss, DeepBoost has a
smaller test error than AdaBoost and AdaBoost-L1 on ev-
ery dataset and for every set of base hypotheses, except for
the ocr49-mnist dataset with decision trees where its per-
formance matches that of AdaBoost-L1. Similarly, with the
logistic loss, DeepBoost performs always at least as well as
LogReg or LogReg-L1. For the small-sized UCI datasets it
is difficult to obtain statistically significant results, but, for
the larger ocrXX-mnist datasets, our results with Deep-
Boost are statistically significantly better at the 2% level
using one-sided paired t-tests in all three sets of experi-
ments (three tables), except for ocr49-mnist in Table 3,

where this holds only for the comparison with LogReg.

This across-the-board improvement is the result of Deep-
Boost’s complexity-conscious ability to dynamically tune
the sizes of the decision trees selected in each boosting
round, trading off between training error and hypothesis
class complexity. The selected tree sizes should depend on
properties of the training set, and this is borne out by our
experiments: For some datasets, such as breastcancer,
DeepBoost selects trees that are smaller on average than
the trees selected by AdaBoost-L1 or LogReg-L1, while,
for other datasets, such as german, the average tree size
is larger. Note that AdaBoost and AdaBoost-L1 produce
ensembles of trees that have a constant depth since neither
algorithm penalizes tree size except for imposing a maxi-
mum tree depth K, while for DeepBoost the trees in one
ensemble typically vary in size. Figure 3 plots the distri-
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Ion: Histogram of tree sizes
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Figure 3. Distribution of tree sizes when DeepBoost is run on the
ionosphere dataset.

bution of tree sizes for one run of DeepBoost. It should
be noted that the columns for AdaBoost in Table 1 simply
list the number of stumps to be the same as the number of
boosting rounds; a careful examination of the ensembles
for 100 rounds of boosting typically reveals a 5% duplica-
tion of stumps in the ensembles.

Theorem 1 is a margin-based generalization guarantee, and
is also the basis for the derivation of DeepBoost, so we
should expect DeepBoost to induce large margins on the
training set. Figure 4 shows the margin distributions for
AdaBoost, AdaBoost-L1 and DeepBoost on the same sub-
set of the ionosphere dataset.

5. Conclusion
We presented a theoretical analysis of learning with a
base hypothesis set composed of increasingly complex sub-
families, including very deep or complex ones, and de-
rived an algorithm, DeepBoost, which is precisely based
on those guarantees. We also reported the results of exper-
iments with this algorithm and compared its performance
with that of AdaBoost and additive Logistic Regression,
and their L

1

-norm regularized counterparts in several tasks.
We have derived similar theoretical guarantees in the multi-
class setting and used them to derive a family of new multi-
class deep boosting algorithms that we will present and dis-
cuss elsewhere. Our theoretical analysis and algorithmic
design could also be extended to ranking and to a broad
class of loss functions. This should also lead to the gener-
alization of several existing algorithms and their use with a
richer hypothesis set structured as a union of families with
different Rademacher complexity. In particular, the broad
family of maximum entropy models and conditional max-
imum entropy models and their many variants, which in-
cludes the already discussed logistic regression, could all
be extended in a similar way. The resulting DeepMaxent
models (or their conditional versions) may admit an al-
ternative theoretical justification that we will discuss else-
where. Our algorithm can also be extended by consider-
ing non-differentiable convex surrogate losses such as the
hinge loss. When used with kernel base classifiers, this
leads to an algorithm we have named DeepSVM. The the-
ory we developed could perhaps be further generalized to
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Figure 4. Distribution of normalized margins for AdaBoost (up-
per right), AdaBoost-L1 (upper left) and DeepBoost (lower left)
on the same subset of ionosphere. The cumulative margin
distributions (lower right) illustrate that DeepBoost (red) induces
larger margins on the training set than either AdaBoost (black) or
AdaBoost-L1 (blue).

encompass the analysis of other learning techniques such
as multi-layer neural networks.

Our analysis and algorithm also shed some new light on
some remaining questions left about the theory underly-
ing AdaBoost. The primary theoretical justification for
AdaBoost is a margin guarantee (Schapire et al., 1997;
Koltchinskii & Panchenko, 2002). However, AdaBoost
does not precisely maximize the minimum margin, while
other algorithms such as arc-gv (Breiman, 1996) that are
designed to do so tend not to outperform AdaBoost (Reyzin
& Schapire, 2006). Two main reasons are suspected for this
observation: (1) in order to achieve a better margin, algo-
rithms such as arc-gv may tend to select deeper decision
trees or in general more complex hypotheses, which may
then affect their generalization; (2) while those algorithms
achieve a better margin, they do not achieve a better mar-
gin distribution. Our theory may help better understand and
evaluate the effect of factor (1) since our learning bounds
explicitly depend on the mixture weights and the contri-
bution of each hypothesis set Hk to the definition of the
ensemble function. However, our guarantees also suggest a
better algorithm, DeepBoost.
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