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Abstract
We propose an algorithm that allows online training of a con-
text dependent DNN model. It designs a state inventory based
on DNN features and jointly optimizes the DNN parameters
and alignment of the training data. The process allows flat
starting a model from scratch and avoids any dependency on
a GMM/HMM model to bootstrap the training process. A 15k
state model trained with the proposed algorithm reduced the er-
ror rate on a mobile speech task with 24% compared to a system
bootstrapped from a CI HMM/GMM and with 16% compared
to a system bootstrapped from a CD HMM/GMM system.
Index Terms: Deep Neural Networks, online training

1. Introduction
The previously predominant approach to acoustic modeling for
speech recognition was based on the use of Hidden Markov
Models (HMMs) which modeled state emission probabilities
using Gaussian Mixture Models (GMMs). Nowadays, Deep
Neural Networks (DNNs) have become common place in the
acoustic model [1]. The application of such DNNs can be
grouped into two. In the bottleneck approach [2, 3, 4], the
neural network is used to extract features from the audio sig-
nal. Those features then serve as the input to a HMM/GMM
system. The other popular application type is the hybrid
model where the DNN provides probability estimates that sub-
stitute the state emission probabilities, previously modeled by
GMMs [5, 6, 7, 8].

For bottleneck approaches, the HMM/GMM remains an
integral part of the system as recognition relies on it. The
DNN only functions as a feature extractor. The benefit of this
approach is that the algorithms such as discriminative train-
ing and speaker adaptive techniques developed specifically for
HMM/GMM systems can be applied directly. In contrast, the
hybrid systems need new formulations for such algorithms. Se-
quence training to implement discriminative training for DNNs
recently received a lot of attention [9, 10, 11, 12]. Investiga-
tions into speaker adaptation for DNNs have also been studied
recently [].

Although in contrast to the bottlneck approach, the hybrid
system does not rely on the HMM/GMM as a core component,
the commonly used systems retain a large dependency on the
HMM/GMM. First, the DNN is trained to provide state prob-
ability estimates for a state inventory that is derived from an
HMM/GMM system. If the DNN is trained based on cross en-
tropy (CE), an additional HMM/GMM dependency is through
the initial alignment associating input features with state la-
bels. For sequence trained systems, the alignment is not a re-
quirement, but the dependency on the state inventory definition
remains and sequence training itself is generally bootstrapped

from an initial DNN that is commonly obtained from CE train-
ing.

In recent work, we investigated the possibility of training a
Context Independent (CI) DNN from scratch using a flat start
procedure. In that online approach, the DNN is initialized ran-
domly. Forced alignment of the input using the DNN then de-
fines associations of input data with CI labels providing the
DNN with training data. As DNN parameter estimates evolve
with training, the forced alignments based on the DNN parame-
ters change, which in turn provides altered training data for the
DNN training. In the work described in [13] we show that such
a procedure is viable for a CI system and leads to convergence.
However, this study did not extend to doing this type of online
training of a CD system due to issue related to the stability of
learning such large state inventory model.

In related recent work, we investigated the feasibility of
designing the Context Dependent (CD) state inventory based
on the activations obtained from a CI DNN. The advantage of
this approach is that the state inventory is matched to the DNN
model as opposed to the state inventory from the GMM which
is mismatched in terms of the features and model family used to
design it. However, this system still relied on a CI HMM/GMM
system to bootstrap the training procedure. Furthermore, the
poorly matched alignment has a negative impact on the result-
ing system accuracy.

In the work here, we describe a system that completely
avoids the use of a GMM/HMM system. It uses the flat start
procedure to train an initial CI system. It uses the activation
clustering approach to define a CD state inventory based on the
DNN activations. And it jointly optimizes the segmentation and
DNN network through online training. Furthermore, we imple-
ment this approach in our distributed asynchronous DNN train-
ing infrastructure to obtain an algorithm that allows scaling to
large data sets. Both asynchrony and a large tied-state inven-
tory make online training challening and a focus of this paper is
to provide an algorithm that provides stable learning of such a
system.

In section 2 we describe the online training setup of the sys-
tem. In section 3 we describe experimental results and discuss
various choices for the parameter updates. Finally, in section 4
we discuss effectiveness of the prosed algorithm.

2. Model Training
In this section, we describe the training system used to optimize
the DNN and the tied-state inventory. A high level outline of
the training procedure is that we first train a CI system from a
random initialization by online training. That CI system is then
used to define a CD tied-state inventory and online training of
the CD system completes the system optimization. First, in sec-
tion 2.1 we describe the DNN topology. Then in section 2.2



we describe the distributed model trainer. In section 2.3 we de-
scribe how context dependent modeling is included in the sys-
tem.

2.1. DNN Model Topology

In all cases we use a DNN that consists of an input layer, a
number of hidden layers and a softmax output layer. We fix the
dimension of the hidden layers to be 2560 nodes using a ReLU
non-linearity [8]. We also fix the input layer to take 26 frames
(20 frames preceding the current input frame and 5 consecutive
frames) of 40-dimensional log-filterbank parameters. The soft-
max layer will have one output per state and hence its dimension
is defined by the clustering procedure that defines the tied-state
inventory.
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Figure 1: Online DNN training system overview.

2.2. Asynchronous Parallel DNN Trainer

The DNN parameters are trained with the online training system
depicted in figure 1. This system is based on our DistBelief dis-
tributed parallelized neural network optimization system [14].
The training process is driven by the training driver. This driver
controls a number of model replicas (in this study, we consis-
tently use 100). Each such model replica retains a complete
DNN model and has a special input layer which has the ability
to read an utterance from the training data and force align it us-
ing the Input Layer Pipeline. This pipeline retains model com-
ponents like the lexicon and context dependency transducer.
The state likelihood computations that it requires for the forced
alignment process are obtained from a DistBelief client. This
client is itself a complete DNN model allowing inference com-
putation. Given an input pattern, the client can compute DNN
layer outputs. The DNN parameters used for that inference
computation are periodically updated from a separate param-
eter server process. Another parametric model that is used in
the forced alignment computation is a state prior which will be
discussed in more detail in section 2.2.2. This prior distribution
parameter is similarly obtained from an online prior which pe-
riodically fetches its values from the parameter server process.

Once the input layer in a model replica completes a forced
alignment, the result associates input patterns (in the form of
26 frames of 40-dimensional log-filterbank parameters) with
state labels. These pairs are passed to the DNN training pro-
cess. Training uses Stochastic Gradient Descent (SGD) to up-
date the DNN parameters. For each mini-batch (in this study

200 samples), the model replica computes the inference of the
DNN given the current model parameters w, then back propa-
gates the cross entropy loss observed at the output softmax layer
providing the gradients ∇w of error with respect to the param-
eters. Right before starting this computation, the model replica
will query the parameter server to get the most recent parameter
estimates w and on completion of the computation, the model
replica will send the computed gradients ∇w back to the pa-
rameter server.

2.2.1. Gradient Based DNN Training

The parameter server retains the latest DNN parameter esti-
mates w and updates those parameters to w′ based on the gradi-
ent information ∇w it obtains from the model replicas by gra-
dient descent learning as w′ = w − λ∇w. The learning is
parameterized through the learning rate λ. In our study we used
a fixed learning rate of 0.003. Note that due to the distributed
nature, the learning process is inherently asynchronous. In the
time it takes a model replica to compute a batch update, other
model replicas will update the parameters. Hence the gradient
computation, based on the parameters fetched right before the
gradient computation are stale by the time the replica sends its
gradient information back to the parameter server.

2.2.2. Online State Prior Estimation

The forced alignment pipelines in the input layers of the model
replicas require an a priori estimate of the likelihood p(x | s)
of observing acoustic observation x given state s. However, the
estimates of the DNN provide p(s | x) instead. Hence, to ar-
rive at the desired probability estimate, the alignment pipeline
will in addition need an estimate of the state prior p(s) so that
the alignment process can use p(s | x)p(s)−1 in its computa-
tion. To learn this prior, we use an interpolation model sim-
ilar to what was used in out previous work in [13]. The re-
quired state prior probability estimate is learned similar to the
DNN parameters themselves in the sense that the estimate is
retained in the parameter server and that model replicas pro-
vide updates to the estimate by processing training data in par-
allel. But in contrast to the DNN SGD type learning, the prior
is updated by linear interpolation. More concisely, if a model
replica has estimated a new state prior estimate p̃(s) and sends
that prior distribution estimate to the parameter server, the new
prior estimate p′(s) is updated from its previous estimate p(s)
as p′(s) = (1−ν)p(s)+νp̃(s) with ν a parameterization of the
prior learning. Another contrast of this prior learning process
in comparison to the DNN parameter updates is that the prior
interpolation is not performed for each mini-batch but replicas
provide an update after a certain number of frames have been
counted. That update interval is a second parameterization of
the prior learning.

2.2.3. Asynchronous Online Learning

As discussed in the description of the trainer, the parallel nature
of the optimization system make asynchrony inherent. But a
number of training parameters control the level of asynchrony.
Specifically, the alignment pipeline in the input layer will peri-
odically fetch model parameters and prior parameters from the
parameter server. The periodicity of this update defines in part
the level of asynchrony of the training procedure. Staleness of
parameters can lead to optimization with a poor auxillary func-
tion which is discussed in more detail in light of sequence train-
ing in our recent work in [12].



For the prior, the asynchrony issue needs to balance the up-
date interval but also take into account the quality of the new
prior estimate obtained from counting. If few examples have
been seen due to a rapid update interval, the prior estimate p̃(s)
will be poor. Setting a longer period in between prior updates
will lead to a more accurate local estimate, but the prior used in
the alignment pipeline to compute training examples might be
very stale leading to incorrect learning.

For both the DNN parameter learning and the prior update,
the period between updates and the impact of those updates ex-
pressed by the learning rate λ and interpolation rate ν need to
be balanced. A poor balance might lead to unstable learning as
bad or stale parameter estimates cause the samples that guide
training (as computed from the forced alignment in the input
layer) to make the model estimates diverge. In our previous
work in [13], we empirically found that a prior interpolation
factor that performed well. In the work here, we investigate the
options a bit more, varying the update interval and interpolation
weight and observe the resulting learning behavior.

2.2.4. Training Metrics

Besides supervising the training process implemented by the
model replicas and parameter server, the training driver also
runs periodic evaluation pipelines. These evaluations are exe-
cuted on an evaluation set, not part of the training set. Two such
pipelines are used and both use the DNN and prior state distri-
bution that is being trained. At the start of a new evaluation run,
the pipelines will fetch the DNN and prior parameters from the
parameter server and then keep the estimates fixed through the
evaluation iteration.

One evaluation pipeline runs speech recognition and mea-
sures word error rates. The other runs forced alignment on the
evaluation data and computes frame-based statistics. In par-
ticular, we track frame accuracy by measuring the agreement
between the forced alignment frame state alignments and the
classification result of the DNN. If under the forced alignment
constraint a frame is aligned with a state s and if the DNN pro-
duces a likelihood for that state that exceeds the likelihood for
any other state, the frame is counted as correct. Another key
metric we observe from forced alignment is referred to as the
error cost, the likelihood gap between the best scoring state and
the correct state (where correctness is expressed based on the
state labeling found by forced alignment).

2.3. Context Clustering

For the construction of a CD system, the work here uses the CI
model obtained from the online training procedure described
above. Using the algorithm detailed in [15] we construct a
tied-state inventory from the activations of the last hidden layer
of the DNN (the input to the softmax layer). In contrast to
that previous work the DNN is used for alignment, not a CI
HMM/GMM. Like our previous work, we limit the scope to
modeling triphones and we implement the learned context de-
pendency model through the transducer construction detailed in
our previous work [15]. However, in contrast to our previous
work, we initialize the newly defined context dependent model
differently.

The transition from a CI to a CD system gives rise to a new
softmax layer. We first train this layer from a random initial-
ization keeping the hidden layer parameters fixed to the values
that were obtained from CI training. Training the new softmax
layer, we use the exact same forced alignments that were used
to define the context dependent state inventory. In other words,

we use CE training for the the softmax layer parameters alone.
In a second stage, we still use CE training but train the complete
model (softmax as well as hidden layer parameters). The DNN
parameters obtained from that initialization process serves as
the starting point for online training (as described above) of the
CD system.

To initialize the prior distribution for the newly defined tied-
state inventory, we use the tied state counts found in tree clus-
tering of the context dependent state inventory. Let the total
number of frames associated with CI state s be denoted as Ns

and let the prior probability of that state be denoted as p(s).
Then consider tied-state q that represents a set of context de-
pendent versions of state s and let Nq denote the frame count
for tied-state q. We then initialized the prior probability of the
tied state as p(q) =

Nq

Ns
p(s). In other words, we partition the

prior probability mass of the CI states among the tied CD states
in proportion to the frame counts assigned to those tied states.

3. Experimental Results
We evaluate the effectiveness of our training procedure on a
database of mobile speech recordings originating from a num-
ber of Android applications: voice search, translation and the
voice-based input method. These recordings are anonymized;
we only retain the speech recording but remove all informa-
tion indicating which device recorded the data. The training set
consists of a sampling of about 3 million utterances containing
about 2000 hours of speech. We obtained manual transcriptions
for these utterances. The evaluation pipelines process a test set
that contains data sampled uniformly from all applications em-
phasizing the use frequency of each application. This test set
contains about 23000 utterances or about 20 hours of speech.
This test set and the evaluation system is identical to the one
described in our previous work [15] and hence error rate num-
bers are comparable.

3.1. Flat Start Initialization

To build a 128 state CI model, we initialized a DNN with ran-
dom parameters and initialized with a uniform prior distribu-
tion. Figure 2 shows the training evolution of a network with
7 hidden layers of 2560 nodes each. It shows the cross en-
tropy loss, the word error rate from the recognition evaluation
pipeline, the frame classification rate and error cost from the
alignment evaluation pipeline over 10 million steps of SGD
training using 200 frame mini batches. The word error rate
steadily decreases with training down to 32.9%. This error rate
is 3.4% lower than the 36.3% reported in our previous work for
a DNN with the same topology trained on the alignments of a
CI HMM/GMM [15].

In additional experiments with flat starting CI systems,
where we varied the number of hidden layers from a one to eight
hidden layers, we observed the same convergence behavior as
shown in figure 2.

3.2. Context Dependent Models

In some initial experiments, we started with a CI system with
three hidden layers of 2560 nodes, trained them using the flat
start procedure and then constructed CD tied state inventories of
400, 800 and 2000 states. We then ran online training, randomly
initializing these networks. We ran three online training exper-
iments of this sort where we varied the update interval of the
DNN parameters in the input alignment layer inference client.
We set the fetch interval to 50, 2500 and 5000 mini-batches re-
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Figure 2: Training metrics during the flat start procedure run-
ning 10M steps of 200 frame mini-batch SGD training.

State Inventory Batch Update Interval
50 2500 5000

CI 35.9 35.5 35.3
400 24.4 24.4 24.3
800 21.5 22.0 21.5

2000 16.7 16.9 17.2

Table 1: WER performance of systems with three hidden layers,
obtained from 10M step training using various state inventory
sizes and parameter fetch update intervals.

spectively. In each of these experiments, we updated the prior
with an interpolation weight ν of 0.9 for every 10k frames seen.
We observed that all training runs converged and obtained the
error rate results after 10M steps of training as shown in table 1.

Starting online training from a random initialization for
state inventories of 3000 states or larger, we observed diver-
gence of the training procedure. In those cases, we observed
the error cost go up 100 fold compared the the CI or small CD
state inventory runs. This indicates that some states have a like-
lihood far exceeding any other state. Closer inspection revealed
that this was caused by some states getting vanishingly small
prior state probabilities. The division of the a priori state prob-
ability by such small state prior probabilities leads to instability
of the estimates, which in turn throws off the alignment pro-
cess in the input layer. Even when using the careful initializa-
tion algorithm using CE training of the newly formed softmax
layer from context clustering, we observed divergence. How-
ever, with a careful choice of a prior update regimen we were
able to get stable learning. The parameters that define the prior
update are the update interval and the interpolation weight ν.
Figure 3 shows training of a 10k state system setting the prior
update interval to 100k, 300k or 3M frames respectively, but
keeping the interpolation weight constant at 0.9 It also plots the
performance of a 15k state model using a 10k frame update in-
terval, but using a 0.999 interpolation weight. The large interval
updates cause instability in early updates as the prior is poorly
matched, but training does not diverge. As the update interval
gets shorter, the prior estimate get poorer and learning is more
chaotic. The 15k state system using frequent updates but with a
large interpolation weight is better behaved. Note that training
with an interpolation weight of 0.99 as opposed to 0.999 lead
to divergence. The 15k system training converged to a 12.2%
WER. The equivalent system described in [15] trained from a CI
HMM/GMM alignment achieved a 16.0% WER, one that was
bootstrapped from a CD HMM/GMM achieved 14.5%. The on-

line trained system here provide a relative error rate reduction
of 24% or 15% respectively.
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Figure 3: WER performance of 10k and 15k systems trained
with different prior parameter update regimen.

4. Conclusions
This works shows the feasibility of online training of a CD DNN
with a large state inventory within an asynchronous parallelized
optimization framework. First the proposed algorithm provides
a mechanism to flat start a CI system from a random initial-
ization. We show that the proposed algorithm has stable con-
vergence. Experimental results showed resilience to network
depth (networks with one up to eight hidden layers showed sta-
ble convergence) as well as to a large range of DNN parameter
update regimens (fetching parameters every 50 to 5000 batch
computations made little impact on learning). The jointly opti-
mized alignment and DNN parameters lead to a more accurate
system than one trained from a CI HMM/GMM system, as ev-
ident from the 32.9% WER of the CI system trained here vs.
36.3% obtained in [15]. That performance gain persists when
comparing the CD systems of 15k states. The joint optimization
described here achieves a system reaching 12.2% WER com-
paring favorably with the 16.0% system (CE training from CI
HMM/GMM alignments) or 14.5% system (CE training from
CD HMM/GMM alignments) obtained in previous work.

The extension of the algorithm to a CD system with 15k
state shows that the online training of a large state inventory
system has stable convergence as long as the prior update regi-
men is well controlled. This is akin to choosing an appropriate
learning date for the DNN SGD training. Experiments showed
stable learning with a interpolation weight close to 1.0. Another
option, setting the prior update interval large enough to allow a
good prior estimate before interpolation also seems to lead to
stable learning. Although in such schemes, early parameter up-
dates seem less well behaved than the alternative of updating
the prior frequently but with a large interpolation weight.

Not only is the joint optimization of the DNN parame-
ters and alignment beneficial to the performance of the final
system it provides the additional benefit that the system train-
ing described here has no dependency on an HMM/GMM at
all. The optimization, matched to the model, leads to accuracy
gains and the complexity of the implementation is limited as an
HMM/GMM implementation no longer needs to be maintained.

The work here successfully extends our previous work on
GMM-free DNN optimization reported in [13]. It shows that
the proposed algorithm is feasible within asynchronous parallel
optimization making it more scalable and in addition shows it
allows online training of a large CD state inventory system.
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