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Abstract—Prediction of host load in Cloud systems is crit-
ical for achieving service-level agreements. However, accurate
prediction of host load in Clouds is extremely challenging
because it fluctuates drastically at small timescales. We design
a prediction method based on Bayes model to predict the mean
load over a long-term time interval, as well as the mean load in
consecutive future time intervals. We identify novel predictive
features of host load that capture the expectation, predictabil-
ity, trends and patterns of host load. We also determine the
most effective combinations of these features for prediction.
We evaluate our method using a detailed one-month trace of a
Google data center with thousands of machines. Experiments
show that the Bayes method achieves high accuracy with a
mean squared error of 0.0014. Moreover, the Bayes method
improves the load prediction accuracy by 5.6-50% compared
to other state-of-the-art methods based on moving averages,
auto-regression, and/or noise filters.

I. INTRODUCTION

Accurate prediction of host load in a Cloud computing
data center is essential for achieving service-level agree-
ments (SLA’s). In particular, effective prediction of host load
can facilitate proactive job scheduling or host load balancing
decisions. This, in turn, can improve resource utilization,
lower data center costs (if idle machines are shutdown), and
improve job performance.

Compared with traditional Grids and HPC systems, host
load prediction in Cloud data centers is arguably more
challenging as it has higher variance. This stems from
differences in the workloads run on top of such platforms.
Unlike the scientific applications commonly used in Grid or
HPC platforms, Cloud tasks tend to be shorter and more
interactive, including (instant) keyword, image, or email
search. In fact, by comparing the load traces of a Google
data center [9], [10], [11] and the AuverGrid cluster [12], we
observe that Cloud task lengths are only [ 1

20 , 12 ] of Grid task
lengths. We find that this difference leads to more drastic and
short-term load fluctuations in Clouds compared to Grids.

Most prior work in Cloud Computing has focused pri-
marily on application workload characterization versus long-
term host load prediction. For instance, there are several
work on characterizing task placement constraints [13], task
usage shape [14], and its impact on host load [11].

Most prior prediction work in Grid Computing or HPC
systems [1], [2], [3], [4], [5], [6], [7], [8] has focused mainly
on using moving averages, auto-regression, and noise filters.
These prediction methods have been evaluated with traces

of load in Grids or HPC systems. When applied to bursty
Cloud workloads, they have limited accuracy. Moreover,
these works do not attempt to predict long-term future load
over consecutive time intervals.

In this paper, we design an effective Cloud load prediction
method that can accurately predict host load over a long-
term period up to 16 hours in length. We focus on two
critical metrics, CPU and memory, highlighted in [11]. Our
approach is to use a Bayesian model for prediction as
it effectively retains the important information about load
fluctuation and noise. We evaluate our prediction method
using a detailed 1-month load trace of a Google data center
with thousands of machines.

In particular, our contributions are as follows:

• What we predict. We accurately predict both mean load
over a future time interval (up to 16 hours), and also
mean load over consecutive future time intervals (which
we refer to as a pattern).

• How we predict. We craft novel features used for
Bayesian prediction that capture important and predic-
tive statistical properties of host load. These proper-
ties include the expectation, predictability, trends, and
patterns of host load. We determine which of these
features are complementary to one another and improve
the predictive power of the Bayesian model. To the
best of our knowledge, this is one of the first works
to show the effectiveness of a Bayesian model for host
load prediction in the context of Cloud Computing.

• How we evaluate and compare. Our evaluation is done
using a 1-month load trace of a Google data center
with over 10,000 thousand machines. We compare
comprehensively our Bayesian prediction methods with
7 other baseline and state-of-the-art methods that use
a variety of techniques, including moving averages,
noise filters, and auto-regression. Our Bayesian method
outperforms others by 5.6-50%. In absolute terms, the
mean-squared error (MSE) of the Bayesian method for
a single interval is 0.0014, and for a pattern is less than
or equal to 10−5.

For the remainder of the paper, we use the terms host
load, cloud load and load interchangeably. In Section
III, we formulate the Cloud load prediction problem. In
Section II, we carefully analyze the prediction problem
from two perspectives, characterizing Cloud host load for
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the succeeding prediction work and simplifying the pattern
prediction model to a set of more straight-forward mean load
prediction steps. In Section IV, we present the overall design
of the Bayes classifier and propose 9 candidate features to
be used as the evidence for prediction, and we analyze their
correlation. In addition to our Bayes method, we rigorously
implement many other solutions (including models based
on moving averages, auto-regression, and noise filters) for
comparison. We present the experimental results based on
Google’s load trace data in Section V and discuss related
work in Section VI. Finally, we conclude the paper with the
future work in Section VII.

II. GOOGLE LOAD MEASUREMENTS AND
CHARACTERIZATION

Our predictive study is based on load measurements of
a Google data center. Google [9] traced over 670,000 jobs
and over 40 million task events at minute resolution across
about 12,000 machines in a production system in 2011 over
a one-month period. Users submit jobs to a batch scheduler,
where each job consists of a set of tasks and a set of resource
constraints (on CPU and memory, for example). The batch
scheduler in turn allocates those tasks to hosts. Load on the
hosts is a function of the incoming workload at the batch
scheduler, and its scheduling strategy.

Host load at a given time point is the total load of all
running tasks on that particular machine. By leveraging
Google’s machine event trace, which contains each host’s
(re-scaled) capacity, we calculate the relative load values
by dividing the absolute load values by the corresponding
capacities. Thus, the load values range between 0 and 1
for each resource (such as memory and CPU). Then, we
discretize all the load values by recomputing each host’s
relative load over consecutive fixed-length periods, each
having length on the order of a few minutes. This discretized
load trace is the basis of this work.

To motivate host load prediction in Clouds, we compare
the characteristics of the load fluctuation in Cloud data
centers with that in Grids. For comparison with the Google
trace, we use a one-year load trace from the Grid called
AuverGrid [12]. For this platform, we also compute the
relative host load at each period, using the same method
applied to the Google trace.
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Figure 1. Load Comparison between Google & AuverGrid

In Figure 1, we show CPU and memory load for one
Google host (left), and one AuverGrid host (right). Clearly,
Google load exhibits higher noise compared with Auver-
Grid. In particular, the minimum/mean/maximum noise of
AuverGrid’s CPU load over all hosts computed using a mean
filter [18] are 0.00008, 0.0011, 0.0026 respectively. For
Google, the minimum/mean/maximum noise are 0.00024,
0.028, 0.081 respectively.

We also compare the distributions of host load us-
ing a quantile-quantile plot [19] (see Figure 2). We
split the range of load values into five sub-ranges
([0,20%],[20%,40%],· · · ,[80%,1]). A load duration is de-
fined to be the length of time where load on a host constantly
stays within a single sub-range. We compare the distribution
of these load durations between Google and AuverGrid
in Figure 2. The figure shows the points at which the
load durations from AuverGrid and Google have the same
probability. It is clear that Google’s host load changes much
more frequently than that of AuverGrid, which is consistent
with Figure 1.

 0

 5

 10

 15

 20

 0  5  10  15  20

G
ri
d
’s

 U
n
c
h
a
n
g
e
d
 L

o
a
d
 D

u
ra

ti
o
n
 (

H
r)

Cloud’s Unchanged Load Duration (Hr)

CPU
memory

(a) QQPlot of Unchanged Duration

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  4  8  12  16  20  24

G
ri
d
 T

a
s
k
 L

e
n
g
th

 (
D

a
y
)

Cloud Task Length (Day)

(24,24)

(b) QQplot of Task Length

Figure 2. Quantile-Quantile Plot of Continuous Duration and Task Length

Such a drastic load fluctuation in Google’s trace is mainly
due to the fact that Google’s tasks are much shorter than
AuverGrid’s. Figure 2 (b) shows the QQ-Plot of task length
between the two platforms. It is observed that with the
same probability, the ratio of the Google’s task size to
AuverGrid’s task size is usually [ 1

20 , 12 ], which leads to much
finer resource allocation on Google’s data centers.

The differences in load fluctuation between Cloud and
Grid systems introduces new challenges for accurate load
prediction, especially for long-term intervals. Curve-fitting
solutions [5], [20] or auto-regression methods [4], [8] may
not be as effective in Clouds (versus Grids) due to the drastic
fluctuations of host load. Also, filtering the noise of host
load in Clouds may remove important and real fluctuations,
required for accurate prediction. So conventional load pre-
diction solutions that use noise filtering [8], which have been
effective for Grid systems, cannot be directly used in the
Cloud data centers. For the reasons, we have to take a new
(Bayesian) approach for prediction.

III. PREDICTION FORMULATION

Our objective is to predict the fluctuation of host load
over a long-term period, and our aim is two-fold. First, at



a current time point t0, we would like to predict the mean
load over a single interval, starting from t0.

Second, we would like to predict, the mean load over
consecutive time intervals. We propose a new metric, namely
exponentially segmented pattern (ESP), to characterize
the host load fluctuation over a some time period. For
any specified prediction interval, we split it into a set of
consecutive segments, whose lengths increase exponentially.
We predict the mean load over each time segment.

We show in Figure 3 an example of ESP. We denote
the total prediction interval length as s. The first segment
(denoted by s1) is called baseline segment with length b,
starts from the current time point t0 and ends at t0+ b. The
length of each following segment (denoted by si) is b ·2i−2,
where i = 2, 3, 4, · · · .

For example, if b is set to 1 hour, the entire prediction
interval length s could be equal to 16 (=1+1+2+4+8) hours.
For each segment, we predict the mean host load. The mean
values are denoted by li, where i = 1, 2, 3, · · · .

From this example, it is clear that the prediction granu-
larity is finer in the short-term than in the long-term. This is
useful for two reasons. In general, short-term load is easier
to predict precisely than the long-term load. This is because
of the higher correlation of host load found among short
consecutive time segments. Also, tasks in Cloud systems
are typically short (the majority being less than 1 hour) in
length. So, users or schedulers would value prediction of
short-term load fluctuations more than long-term ones.

Current moment
History Period to predict

Predicted Exponentially Segmented Pattern

baseline
segment
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Figure 3. Illustration of Exponentially Segmented Pattern

As illustrated above, our aim is to predict the vector of
load values (denoted by l=(l1,l2,· · · ,ln)T ), where each value
represents the mean load value over a particular segment.

To predict load, a predictor often uses recent load samples.
The interval that encloses the recent samples used in the
prediction is called evidence interval or evidence window.

Transformation of Pattern Prediction

According to our prediction model formulated previously,
the prediction of each segmented mean load is the key step of
the whole process. Since the host load always appears with
high correlation between adjacent short-term intervals but
not for the non-adjacent ones, it is straight-forward to predict
the load in the successive intervals based on the evidence
window. Without loss of generality, we convert the segment
representation formulated in Section III into another one,

in which each interval to be predicted is adjacent to the
evidence window.

In the new representation, we only need to predict a set
of mean host loads for different lengths of future intervals,
each starting from the current time t0. We denote the mean
load levels of the prediction intervals as η1, η2, · · · , ηn,
where ηi+1 = 2 · ηi. The target is to predict such a vector,
ηηη=(η1, η2, · · · , ηn)T , rather than the vector l. In fact, the
vector l can be converted from ηηη through the following
induction. We use an example to show the idea, as shown
in Figure 4.

ηi-1

ηi

Current moment

t0 ti-1 ti

S1

S2

(t0,ηi-1)

(t0,ηi)

(ti-1,ηi-1)

(ti,ηi)

(ti,li)

Figure 4. Induction of Segmented Host Load

Suppose the current moment is t0, and we have already
predicted two mean load values (ηi−1 and ηi, the blue
dotted-line segment) over two different intervals, [t0, ti−1]
and [t0, ti], respectively. Then, by making the areas of
the two shaded squares (S1 and S2) equal to each other,
we can easily derive the mean load value in [ti−1, ti].
The transformation is shown in Formula (1), where li is
the predicted mean load in the new segment [ti−1, ti],
corresponding to the red solid-line segment in Figure 4.

li = ηi +
ti−1 − t0
ti − ti−1

(ηi − ηi−1) (1)

Taking into account ti=2ti−1 and t0=0, we can further
simplify the Formula (1) as Equation (2).

li = 2ηi − ηi−1 (2)

This new representation is useful for two reasons. First,
it simplifies and generalizes predictor implementation; any
predictor that can predict load over a single load interval can
be converted to predict a load pattern. Second, it gives the
resource or job management system the option of predicting
different load intervals starting at the current time point, or
consecutive load intervals, without any additional overheads.
Transforming from one representation to another is trivial in
terms of complexity.

We show the pseudo-code of our Cloud load pattern
prediction method in Algorithm 1.

Basically, there are two key steps in the Pattern Prediction
algorithm, namely, mean load prediction (lines 1∼5) and
segment transformation (line 6). Note that each prediction
interval always starts from the current moment, unlike the
segments defined in the first representation l (Figure 3).

Given the prediction problem, one approach for prediction
is to use feedback control. One could dynamically validate
the prediction accuracy at runtime, adjusting the predicted



Algorithm 1 PATTERN PREDICTION ALGORITHM

Input: baseline interval (b); length of prediction interval (s = b · 2n−1,
where n is the number of segments to be split in the pattern prediction);
Output: mean load vector l of Exponentially Segmented Pattern (ESP)
1: for (i = 0 → n−1) do
2: zi = b · 2i;
3: �i = zi

2
; /*�i is the length of the evidence window*/

4: Predict the mean load ηi, whose prediction length is equal to zi,
based on a predictor - PREDICTOR(�i,zi);

5: end for
6: Segment transformation based on Equation (2): ηηη → l ;

values in the next interval by the error in the previous one.
Then, prediction error could converge to a low level. This
idea is based on the feed-back control model, which is
often used in the one-step look-ahead prediction scenario.
For example, a Kalman filter [21] can produce relatively
precise estimates of unknown variables, using the recursive
one-step process on the current estimates and the validated
errors of the previous estimates. However, such an approach
is infeasible in our situation in that the validation of the
previous estimates always suffers significant lag compared to
the current time point. For example, if the prediction interval
is set to 16 hours, the current prediction for the mean load
value of the future period cannot be validated until 16 hours
later. Such a high lag makes the feed-back control hard to
apply in a timely manner.

Another approach is to use error of short-interval predic-
tion to tune the long-term prediction. For instance, using
the prediction error in a 4-hour interval may forecast the
prediction error in the 8-hour interval, such that the predicted
values could be tuned accordingly. However, this idea is
also inapplicable to Cloud load prediction in that short-
term prediction error always lags behind long-term error
(see Figure 5). In this figure, we present the error (true
mean load − predicted mean load) of the simple moving
average prediction method (to be described in Section V)
with different prediction lengths, over one-day of one host
of a Google trace. We observe that the short-term prediction
error almost always lags behind the long-length prediction
error, and the lag time is close to the interval length. So, most
of the prediction errors cannot be detected in time because
the drastic fluctuation of the host load.
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Figure 5. Prediction Errors in Different Prediction Lengths

As we believe feedback control is not effective for long-

term prediction, we investigate other methods based on
Bayes Model in the following section.

IV. MEAN LOAD PREDICTION BASED ON BAYES MODEL

The fundamental idea is to generate the posterior proba-
bility from the prior probability distribution and the run-time
evidence of the recent load fluctuations, according to a Bayes
Classifier. We first describe how we construct the Bayes
model and then intensely discuss 9 key features designed.

A. Bayes Classifier

The Bayes Classifier [15], [22], [16] is a classic su-
pervised learning classifier used in data mining [23].
Bayesian classification consists of five main steps: (1)
determine the set of target states (denoted as the vector
W=(ω1,ω2,· · · ,ωm)T , where m is the number of states), and
the evidence vector with h mutually-independent features
(denoted as χ=(x1,x2,· · · ,xh)T ); (2) compute the prior prob-
ability distribution for the target states, P (ωi), based on
the samples; (3) compute the joint probability distribution
p(χ|ωi) for each state ωi; (4) compute the posterior prob-
ability based on some evidence, according to Formula (3);
(5) make the decision based on a risk function λ(ω̂i, ω̇i),
where ω̂i and ω̇i indicate the true value and predicted value
of the state, respectively.

P (ωi|xj) =
p(xj |ωi)P (ωi)∑m

k=1 p(xj |ωk)P (ωk)
(3)

Based on different risk functions, there are two main
ways for making decisions, namely Naı̈ve Bayes Classifier
(abbreviated as N-BC) [16], [22] and Minimized MSE
(MMSE) based Bayes Classifier (abbreviated as MMSE-
BC) [15]. Their corresponding risk functions are shown in
Formula (4) and Formula (5) respectively.

λ(ω̇i, ω̂i) =

{
0 |ω̇i − ω̂i| < δ
1 |ω̇i − ω̂i| ≥ δ

(4)

λ(ω̇i, ω̂i) = (ω̇i − ω̂i)
2 (5)

According to the different risk functions, the predicted
value of the state (ω̂i) is determined by Formula (6) and
Formula (7) respectively. It is easy to prove that the former
leads to the minimal error rate and the latter results in the
minimal MSE [15], where the error rate is defined as the
number of wrong decisions over the total number of tries.

ω̂i = argmax p(ωi|xj) (6)

ω̂i = E(ωi|xj) =
∑m

i=1
ωip(ωi|xj) (7)

Based on the above analysis, the target state vector and
the evidence feature vector are the most critical for accurate
prediction. In our design, we split the range of host load
values into small intervals, and each interval corresponds to a
usage level. The number of intervals in the load range [0,1] is
denoted by r, which is set to 50 in our experiment. So there
are 50 load states in total, [0,0.02), [0.02,0.04), · · · , [0.98,1].
As shown in Algorithm 1, the length of the evidence window



is set equal to half of the prediction interval length, which
maximizes accuracy, based on our experimental results. The
whole evidence window will also be split into a set of
equally-size segments. If the prediction interval length is
8 hours, the evidence window length will be set to the
recent past 4 hours. 48 (= 4×60

5 ) successive load values (if the
sample interval is 5 minutes) in this period will serve as the
fundamental evidence, based on which we can extract many
interesting features for the Bayes prediction. We use Figure
6 to illustrate the discretized evidence window and target
load states. In this example, the prediction interval length is
assumed to be 4 hours, so the evidence window length is 2
hours and there are 24 load values in the evidence window.
In next section, we will present how to extract the features
from the load values in the evidence window.
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Figure 6. Illustration of Evidence Window and Target Load States

B. Features of Load Fluctuation

Through the analysis of Google’s one-month trace, we
extract 9 candidate features to be used as the evidence in
Bayes model, each of which can partially reflect recent load
fluctuation. In this section, we first present these features,
and then discuss their mutual correlation.

We denote the load vector in the evidence window as
e=(e1,e2,· · · ,ed)T , where d is the number of the samples
in the evidence window, also known as window size. The
elements in the vector are organized from the most recent
one to the oldest one. For example, e1 indicates the newest
sample that is closest to the current moment. We summarize
the 9 features as follows.

• mean load (Fml(e)): The mean load is the mean value
of the load vector e, as shown in Equation (8).

Fml(e) =
1

d

∑d

i=1
ei (8)

The value range of the mean load is [0,1] in principle,
hence, we split such a range into r even fractions, each
corresponding to a load level (or type). For instance, r
is set to 50 in our experiment, so there are 50 levels
(or types) to characterize the recent mean load level,
[0,0.02), [0.02,0.04),· · · ,[0.98,1]. For this feature, its
value must be one of the 50 levels, constructing partial
evidence for the Bayes Classifier.

• weighted mean load (Fwml(e)): Weighted mean load
refers to the linear weighted mean value of the load
vector e, as shown in Equation (9).

Fwml(e)=
∑d

i=1 (d−i+1)ei∑d
i=1 i

= 2
d(d+1)

∑d
i=1 (d−i+1)ei (9)

Rather than the mean load feature, the weighted mean
load weights the recent load values more heavily than
older ones. Similar to the mean load feature, the value
range of this feature is also within [0,1], which will
also be split into 50 levels to choose, serving as the
partial evidence for the succeeding Bayes prediction.

• fairness index (Ffi(e)): The fairness index [24] (a.k.a.,
Jain’s fairness index) is used to characterize the degree
of the load fluctuation in the evidence window. The
fairness index is defined in Formula (10).

Ffi(e) =
(
∑d

i=1 ei)
2

d
∑d

i=1 e
2
i

(10)

Its value is normalized in [0,1], and a higher value
indicates more stable load fluctuation. Its value is equal
to 1 if and only if all the load values are equal to each
other. Since the target state in our model is the mean
load value of the future prediction interval, the mean
load feature seems more important than the fairness
index, which will also be confirmed in our experiment.
However, in some situations, e.g., when the load in the
prediction interval changes with the similar fluctuation
rule to the statistics, fairness index could effectively
improve the prediction effect, to be confirmed later.

• noise-decreased fairness index (Fndfi(e)): The noise-
decreased fairness index is also computed using the
fairness index formula. But, if there exist one or two
load values (a.k.a. load outliers) that may significantly
degrade the whole fairness index, they would not be
counted in. That is, such load outliers are likely sup-
posed to be considered noise or irregular jitters, which
is independent of the load levels.

• type state (Fts(e)): The type state feature is used
to characterize the load range in the evidence win-
dow and the degree of jitter. Specifically, as afore-
mentioned, there are r=50 types split in the load
range. The type state feature is defined as a two-
tuple, denoted by {α,β}, where α and β refer to
the number of types involved and the number of
state changes respectively. For example, if the win-
dow vector is (0.023,0.042,0.032,0.045,0.056,0.036),
then there are only two types (or levels) involved,
[0.02,0.04) and [0.04,0.06), yet there are four state
changes: 0.023→0.042, 0.042→0.032, 0.032→0.045,
0.056→0.036. Note that 0.056 is not a state change
since its preceding state is at the same level.

• first-last load (Ffll(e)): The first-last load feature is
used to roughly characterize the changing trend of the
host load in the recent past. It is also a two-tuple,
denoted as {τ ,ι}, indicating the first load value and the
last one recorded in the evidence window. Obviously,
this is just a rough feature which needs to be combined
with other features in practice.

• N-segment pattern (FN -sp(e)): We also characterize the



segment patterns based on the evidence window. The
evidence window is evenly split into several segments,
each of which is reflected by the mean load value.
For example, if the window length is 4 hours (i.e., the
window size is 48), then the 4-segment pattern is a four-
tuple, whose elements are the means of the following
load values respectively, [e1,e12], [e13,e24], [e25,e36],
and [e37,e48]. In our experiment, N is set to 2, 3, and
4 respectively. Hence, there are actually three features
w.r.t the N -segment pattern in our experiment.

So far, we have presented 9 features to be used in the
Bayes model. Some of them, however, are mutually corre-
lated, which violates the assumption of feature independence
in Bayes’ theorem. The features used in Formula (3) should
be mutually independent. For example, the fairness index
feature and the noise-decreased fairness index feature could
be closely correlated, implying that they cannot be used
meanwhile. We list the linear correlation coefficients and
Spearman’s rank correlation coefficients [25] in Table I. We
observe that some correlation coefficients (such as Ffi &
Fndfi) can be as high as 0.99, while those of the intuitively
non-correlated features (such as Fts & Ffll) are below 0.85
and even down to 0.15. In addition, among F2-sp, F3-sp, and
F4-sp, the correlation coefficients are always close to 0.999,
implying that they are extremely correlated to each other.

Table I
CORRELATION OF THE FEATURES (LINEAR CORR/RANK CORR)

Fml Fwml Ffi Fndfi Fts Ffll FN -sp
Fml 1/1 0.98/0.97 0.46/0.51 0.46/0.51 0.15/0.21 0.82/0.78 0.99/0.99
Fwml 0.98/0.97 1/1 0.45/0.5 0.45/0.5 0.15/0.2 0.81/0.76 0.97/0.96
Ffi 0.46/0.51 0.45/0.5 1/1 0.99/0.99 0.3/0.43 0.36/0.4 0.47/0.51
Fndfi 0.46/0.51 0.45/0.5 0.99/0.99 1/1 0.3/0.43 0.36/0.4 0.46/0.51
Fts 0.15/0.21 0.15/0.2 0.3/0.43 0.3/0.43 1/1 0.17/0.19 0.17/0.21
Ffll 0.82/0.78 0.81/0.76 0.36/0.4 0.36/0.4 0.17/0.19 1/1 0.83/0.79
FN -sp 0.99/0.99 0.97/0.96 0.46/0.51 0.46/0.51 0.17/0.21 0.83/0.79 1/1

Much research on the independence constraint of Bayes
Classifier [26], [22], [16] shows that the optimal situation
might still happen when a few features are correlated to a
certain extent. Hence, we set the compatibility of the features
in Table II, based on the Formula (11), where Comp(Fx,Fy)
and Corr(Fx,Fy) refer to the compatibility and correlation
coefficient of two features respectively.

Comp(Fx(e),Fy(e))=
{
Y Corr(Fx(e),Fy(e))≤0.83
N Corr(Fx(e),Fy(e))≥0.96

(11)

Two features are considered incompatible iff their correlation
coefficients are greater than 0.96, and compatible iff their
coefficients are less than 0.83.

Table II
COMPATIBILITY OF THE FEATURES

Fml Fwml Ffi Fndfi Fts Ffll FN -sp
Fml N N Y Y Y Y N
Fwml N N Y Y Y Y N
Ffi Y Y N N Y Y Y
Fndfi Y Y N N Y Y Y
Fts Y Y Y Y N Y Y
Ffll Y Y Y Y Y N Y
FN -sp N N Y Y Y Y N

There are only 71 viable combinations of the features,
based on the following analysis in terms of the compatibility
table. Since there are 9 features (Fml, Fwml, Ffi, Fndfi,
Fts, Ffll, F2-sp, F3-sp, F4-sp) in total, the number of their
combinations is at most 29. Yet, many of the combinations
are not viable according to the Table II. For instance, Fml

and Fwml should not be used together. By observing this
table, all 9 features can be classified into 4 groups, {Fml,
Fwml, F2-sp, F3-sp, F4-sp}, {Fndfi, Fts}, {Fts}, and {Ffll}.
The elements in the same group cannot be used meanwhile
in one combination. So, the numbers of compatible com-
binations (denoted by NCC) for the three groups are 6, 3,
and 4 respectively. Hence, the total number of compatible
combinations can be computed as follows.
NCC(9 features) = NCC(Group 1) · NCC(Group 2) ·
NCC(Group 3) · NCC(Group 4) = 6× 3× 2× 2 = 72

By excluding the case where no feature is selected, there
are 71 viable combinations of the features, all of which will
be evaluated in our experiment under the Bayes model.

V. PERFORMANCE EVALUATION

A. Algorithms for Comparison

In addition to our Bayes estimator, we also rigorously and
comprehensively implemented seven other load prediction
methods. These baseline solutions (listed below) are exten-
sively studied in the load prediction domain, and some of
them have been shown to be effective in Grid environments.
Under our formulated prediction model, we make them
uniformly aim to predict the mean load of the future interval,
based on the evidence window.

• Last-State based method (last-state): The last recorded
load value in the evidence window will be used as the
predicted mean load for the future period.

• Simple Moving Average method (SMA): The mean
value of the evidence window will serve as the pre-
diction for the future mean load.

• Linear Weighted Moving Average method (Lin-
ear WMA): The linear weighted mean load (based
on Formula (9)) will be considered as the mean load
prediction for the future.

• Exponential Moving Average method (EMA): This pre-
dicted value (denoted S(t) at time t) is calculated based
on the Formula (12), where e1 is the last load value and
α is tuned empirically to optimize accuracy.

S(t) = α · e1 + (1− α) · S(t− 1) (12)
• Prior Probability based method (PriorPr): This

method uses the load value with highest prior probabil-
ity as the prediction for the future mean load, regardless
of the evidence window.

• Auto-Regression method (AR): The classic AR method
is performed according to Formula (13), where X(t),
p and εt refer to the predicted value, the order and the
white noise at time point t respectively.



X(t) =
∑p

i=1
ϕiei + εt (13)

In general, the AR method can only predict the load
value for the next moment, while previous works [27],
[8] extended it to long-term point prediction by apply-
ing the AR method recursively on the predicted values.
Based on our prediction model, the mean value of the
AR-based predicted values at different time points in
the prediction interval will serve as the prediction value.

• Hybrid Model proposed in [27] (HModel): This method
integrates the Kalman filter [21] and Savitzky-Golay
smoothing filter [28] with auto-regression. There are
four steps in the load prediction: (1) Use the Kalman
filter to eliminate noise in the evidence window; (2)
Smoothen the curve by using a Savitzky-Golay filter;
(3) Compute AR coefficients and predict the usage
values for future time points, by recursively calling
the AR method. (4) Smoothen the AR-predicted values
by a Savitzky-Golay filter and estimate the confidence
window. In our experiment, we also calculate the mean
load of the predicted values as the prediction result.

B. Method of Training and Evaluation
We split Google’s one-month trace data into two dura-

tions, a training period (from the beginning to the 25th
day unless stated otherwise) and the test period (always
from the 26th day to the end). The training period is
used to fit the models, for instance, for computing the
prior probability (P (ωi) in Formula (3)) and the conditional
probability (p(xj |ωk) in Formula (3)) and estimating auto-
regressive coefficients and noise covariance for the auto-
regression method and HModel. The test period is used to
validate the prediction effect of different methods.

During the test period, the length of the evidence interval
(or the evidence window length) is always set to the half of
the prediction interval length. We found empirically via the
Google trace that this maximizes prediction accuracy.

In addition, we optimize the coefficients for the baseline
algorithms in Table III. The window length is always set
to the half of the prediction length, because often leads to
the highest accuracy based on our experiments. This setting
is in stark contrast to the conclusion in the study based on
Grid traces [8], where using a large window size may lead to
higher accuracy. This is mainly due to the fact that Google
host load fluctuates much more drastically with higher noise,
such that successive load values have a weaker relationship.

Table III
OPTIMIZED PARAMETERS FOR THE BASELINE METHODS

Key Parameters Values
EMA α 0.95
AR Order of AR 7

Order of AR 4
Hybrid Degree of SGFilter 4
Model Covariance of Kalman Filter’s process-noise (Q) 0.00001

Covariance of Kalman Filter’s measurement noise 0.0282

The experiments can be split into two situations. They
differ depending on whether the load values in the test period

are exhibited in the training period. In the first situation
(referred to as evaluation type A), we set the training period
to be [day 1, day 25] and test period to be [day 26, day 29].
We found that the distribution of features of host load in
the training period are probably different from those in the
test period. We believe this is due to the lack of enough
training data. In reality, we would have more than 25 days
of training data, and this in turn would improve accuracy.

So, in the second situation (referred to as evaluation type
B), we emulate the scenario where we have enough training
data to observe repeated load fluctuations. In this case, the
distribution of features between the training and test periods
are more similar. The training period is changed to be [day
1, day 29] accordingly. Note that the load forecasting is
still performed based on the posterior probability calculated
under our Bayes predictor.

C. Metrics for Accuracy

In terms of evaluating prediction accuracy, we use two
metrics. We desire to minimize the mean squared error
(MSE) between the predicted load values and the true values
in the prediction interval. We denote the true mean values
in the segments by L1, L2, · · · , Ln. Then, the value of
MSE can be calculated with Formula (14), where s1=b,
si = b ·2i−2 ∀ i≥2, s =

∑n
i=1 si, and n is the total number

of the segments in the prediction interval.

mse(s) =
1

s

∑n

i=1
si(li − Li)

2 (14)

Second, we measure success rate, which is defined as the
ratio of the number of accurate predictions to total number
of predictions. A prediction is deemed accurate if it falls
within some delta of the real value. We use a delta of 10%.
In general, the higher the success rate, the better, and the
lower the MSE.

D. Experimental Results

We evaluate the mean load prediction before evaluating
the pattern prediction, because the latter can be derived from
the former.

For evaluation type A, we first compare the prediction
effects when using different risk functions (either Formula
(4) or Formula (5)) and traversing all compatible combi-
nations of the evidence features, under our designed Bayes
Classifier model. Based on our previous analysis, there are
71 compatible combinations of our designed features. We
denote them via the binary numerical system according to
the following order, {Fml, Fwml, Ffi, Fndfi, Fts, Ffll,
F2-sp, F3-sp, F4-sp}. For example, 100000000 denotes the
single feature Fml, and 100111000 indicates the combina-
tion of the four features Fml, Ffi, Fts, and Ffll. Due to the
heavy computation in traversing all 71 combinations, we
sampled 2000 machines from among the 12000 machines
in Google’s trace. In this test, we discretize the host loads
using two-minute sample intervals.



We select top 5 and bottom 5 combinations based on the
success rate and MSE. In Figure 7, we present the range
of the evaluation results via rectangles, where the bottom-
edge, the middle black line, and the upper-edge refer to the
minimum, mean, and maximum values respectively. The top
5 (bottom 5) combinations are selected based on MMSE-BC,
with either the 5 highest (5 lowest) success rates or 5 lowest
(5 highest) MSEs respectively.
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Figure 7. Success Rate & MSE of Bayes Classifier

In Figure 7, we can see that the best feature combina-
tion is always 100000000, while the worst one is always
000010000, regardless of the prediction interval length.
We can also observe that the N -segment pattern feature
(N=2,3, or 4) is neither in the top five nor bottom five. In
addition, since most of the top five and bottom five feature
combinations almost always contain the feature Fml and fts
respectively, we can conclude Fml plays the greatest positive
effect while Fts plays the most significant negative effect.

Moreover, it is also observed that the prediction of
MMSE-BC is always more accurate (with higher success
rate or lower MSE) than that of N-BC. This can be explained

as follows: MMSE-BC adopts the mathematically expected
value of the predicted load, which has the highest probability
of being located in the real load level. In contrast, N-BC
selects the level with the highest posterior probability as
the prediction result, which may be significantly skewed
from the expected value. From the above analysis, we can
conclude the best strategy under the Bayes Classifier is using
MMSE-BC with the single feature Fml.

We comprehensively compare MMSE-BC to other 7 pre-
diction methods, with respect to the success rate and MSE
respectively, by using 11K hosts in the Google trace. Figure
8 shows the cumulative distribution function (CDF) of the
success rate and MSE for different prediction methods. It is
clear that MMSE-BC’s prediction effect on the CPU-load is
better than all the other 7 methods. Specifically, its advantage
becomes more prominent with the increase of prediction
length (See Figure 8 (a), (c), (e) or (b), (d), (f)). Our statistics
show that the MMSE-BC’s success rate is higher than the
second best solution (Linear-WMA) by 5.6% in the 6.4h
ahead mean load prediction and by about 7.8% in the 12.8h
ahead prediction, and also higher than others by up to 50%.
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Figure 8. CDF of Prediction (CPU Load with Evaluation Type A)

The reason why Bayesian prediction outperforms other
methods is its features, which capture more complex dynam-
ics (such as trends, predictability, and expectation). Last-
State performs poorly because of irregular fluctuations in



load. Prior-Probability performs poorly because the distri-
bution of load values is roughly uniform, and there is no
load value that is superior to others. While moving averages
perform well in general, they cannot capture features such as
predictability . The prediction effects of AR and HModel are
far worse than other moving average strategies (e.g., SMA
and Linear-WMA), because they both use recursive AR steps
that may cause cumulative prediction errors. Experiments
show a worse effect under HModel that uses filtering,
because it filters useful information about load dynamics.

We compare the CDFs of Prediction Methods w.r.t. mem-
ory host load in Figure 9. Since the memory load does
not fluctuate as drastically as CPU, the MMSE-BC and all
moving average solutions work very well, with the average
success rate up to 93% and the average MSE down to
0.004 respectively. Our experiment also confirms AR and
HModel still suffer with a low success rate and high MSE
in predicting the mean memory load of long-term intervals.
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Figure 9. CDF of Prediction (Memory Load with Evaluation Type B)

So far, we have evaluated our Bayes Classifier based on
the evaluation type A. We conclude that the MMSE-BC
with the single feature Fml performs the best among all
of strategies. Next, we emulate the evaluation type B, where
the load fluctuation in the test period is similar to that of
training period. The discretization interval of the host loads
is set to 5 minutes and the prediction length will be set to
8 hours and 16 hours respectively.

We traverse all 71 combinations and observe that the best
feature combination is {Fml,Ffi,Fts,Ffll} instead of just
the single feature Fml. Figure 10 presents the probability
density function (PDF) of three methods. (The other methods
perform significantly worse.) We observe that the MMSE-
BC under the four features (abbreviated as MMSE-BC(4F))
shows surprisingly high accuracy. Its mean success rate is up
to 0.975 and the average MSE is about 0.0014, significantly
outperforming Linear-WMA or the MMSE-BC based on the
single feature Fml, whose corresponding values are about
0.68 and 0.017 respectively.

The different prediction results between MMSE-BC(4F)
and MMSE-BC(Fml) across the two evaluation types is
mainly due to the different sets of samples. The host load
in one is dissimilar to that in the test period, while the other
one has the similar distribution. With more historical trace

data, the training period should be more consistent with the
test period. Hence, we believe MMSE-BC(4F) in reality has
the best accuracy when using load samples accumulated for
a longer period of time.
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Figure 10. PDF of Prediction (CPU Load with Evaluation Type B)

Finally, we evaluate the prediction effect of our pattern
prediction model (Algorithm 1), by performing the pattern
prediction every 2 minutes over Google’s trace. The total
number of pattern prediction events in the test period (day
26 - day 29) is about 11000× 4×86400

120 ≈31.7 million. We
present the PDF of the prediction error in Figure 11. Figure
11 (a) shows the mean error, which is computed by Formula
(15), where the notations are defined as the same as in
Formula (14). We observe that the mean errors on majority
of machines can be limited under 2 × 10−5. Figure 11 (b)
indicates that the MSE of MMSE-BC(Fml) is near to 10−5,
and MMSE-BC(4F)’s is about 10−6 with high probability.
All in all, Bayes Classifier outperforms other methods on
pattern prediction, in that the other methods suffer from
the remarkable errors in the mean load prediction and their
predicted mean loads are regardless of prediction length.

e(s) =
1

s

∑n

i=1
si |li − Li| (15)
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Figure 11. PDF of Pattern Prediction (about the CPU load)

We illustrate the pattern prediction of Algorithm 1, based



on Bayes method with the single feature Fml. The experi-
ment is performed using evaluation type A, with two hosts
that have different levels of load fluctuation. In Figure 12, we
show that the predicted segment load matches on average the
true load. In particular, the dark blue, jittery line represents
the true host load. The y-value of each horizontal line
represents the predicted load value over some segment. The
duration of this segment is given by the horizontal segment
length. The segment color gives the order of magnitude
of the MSE. For clarity, we randomly chose a subset of
segments to illustrate in the figure. We observe that the line
segments (black or red lines) with MSE of about 10−5 or
lower are quite close the the real fluctuation of the host
load (the dark blue curve). As illustrated in Figure 11 (b),
only a minor portion of pattern predictions have relatively
higher MSEs at 10−4. This means that our pattern prediction
method under the Bayes Model leads to quite satisfactory
accuracy with high probability.
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Figure 12. Snapshot of Pattern Prediction

VI. RELATED WORK

There exist many host load prediction methods [1], [2],
[3], [4], [5], [6], [7], [27], [8] designed for traditional
distributed systems such as Grid platforms. L. Carrington
et al. [1], for example, predict the load values based on
convolution that maps a scientific application’s signature (a
set of fundamental operations) onto a machine profile. C.
Dabrowski et al. [2] perform the host load prediction by
leveraging the Markov model via a simulated environment.
S. Akioka, et al. [3] combine the Markov model and seasonal
variance analysis to predict the host load values only for the
next moment (next discretized time point) on a computa-
tional Grid. There also exist some regression based methods
(such as polynomial fitting [5] or auto-regression [4]) in the
Grid host load prediction work. Moreover, such approaches
are proposed by different researchers using hybrid or mixed
models [6], [7], [27], [8], to suit different situations. How-
ever, as discussed in Section II, Cloud host load observed via
Google’s trace has more drastic fluctuation and higher noise
than that in Grid systems, which will impact the prediction
accuracy of these traditional methods significantly. Based
on our experiments, for example, the HModel [27] suffers
significant prediction errors in predicting the mean load
over Google’s trace, because its long-term prediction relies

heavily on the load values recursively predicted by the AR
method; prediction error can easily accumulate. Hence, it is
necessary to revisit host load prediction for Cloud systems
such as Google’s.

While other works [13], [14], [29] already characterized
workload features for Cloud systems, they mainly focus
on tasks’ placement constraints [13] or tasks’ usage shapes
[14]. Specifically, B. Sharma et al. [13] carefully studied
the performance impact of task placement constraints based
on the resource utilization from the view of tasks, while
Q. Zhang et al. [14] designed a model that can accurately
characterize task usage shapes in Google’s compute clusters.
A. Khan et al. [30] designed a model to capture the CPU
workload auto-correlation in Cloud data centers by leverag-
ing the Hidden Markov Model (HMM). B.J. Barnes et al.
[29] introduced a regression-based approach for predicting
parallel application’s workload, and the prediction errors
are between 6.2% and 17.3%. In comparison, we focus on
the effective host load prediction in Cloud environments.
Specifically, we designed a novel method based on the Bayes
model and 9 extracted features from the evidence window,
in order to predict the fluctuation patterns for the long-term
future period. Through Google’s trace, our Bayes method
significantly outperforms the related works (including auto-
regression, moving average, filter-based methods) from the
perspective of success rate and mean squared error (MSE).

VII. CONCLUSION AND FUTURE WORK

We design a Cloud load prediction method, and evaluate it
using Google’s one-month trace. Our objective is to predict
the load fluctuation patterns for a long-term prediction
interval. We first reduce pattern prediction to a set of mean
load predictions each starting from the current time. Then,
we design a mean load prediction approach by leveraging
the Bayes model with our novel 9 features. To the best
of our knowledge, this is the first attempt to make use of
Bayes model to predict the host load, especially for the
long prediction length in Cloud data centers. With Google’s
large-scale trace, our designed Bayes method outperforms
other solutions by 5.6-50% in the long-term prediction. In
addition, the posterior probability analysis shows that four
selective features (Fml, Ffi, Fts, and Ffll) can surprisingly
characterize the mean load for the future 16 hours with high
accuracy, regardless of how drastic it fluctuates. The MSE
of predicting the load fluctuation patterns for the long-term
period is usually low within the range [10−8,10−5].
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