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Abstract. Entity linking involves labeling phrases in text with their
referent entities, such as Wikipedia or Freebase entries. This task is chal-
lenging due to the large number of possible entities, in the millions, and
heavy-tailed mention ambiguity. We formulate the problem in terms of
probabilistic inference within a topic model, where each topic is associ-
ated with a Wikipedia article. To deal with the large number of topics
we propose a novel efficient Gibbs sampling scheme which can also incor-
porate side information, such as the Wikipedia graph. This conceptually
simple probabilistic approach achieves state-of-the-art performance in
entity-linking on the Aida-CoNLL dataset.

1 Introduction

Much recent work has focused on the ‘entity-linking’ task which involves anno-
tating phrases, also known as mentions, with unambiguous identifiers, referring
to topics, concepts or entities, drawn from large repositories such as Wikipedia
or Freebase. Mapping text to unambiguous references provides a first scalable
handle on long-standing problems such as language polysemy and synonymy, and
more generally on the task of semantic grounding for language understanding.

Most current approaches use heuristic scoring rules or machine-learned mod-
els to rank candidate entities. In contrast, we cast the entity-linking problem as
inference in a probabilistic model. This probabilistic interpretation has a number
of advantages: (i) The model provides a principled interpretation of the objec-
tive function used to rank candidate entities. (ii) One gets automatic confidence
estimates in the predictions returned by the algorithm. (iii) Additional informa-
tion can be incorporated into the algorithm in a principled manner by extending
the underlying model rather than hand tuning the scoring rule. (iv) In prac-
tice, probabilistic inference is often found to be less sensitive to the auxiliary
parameters of the algorithm. Finally, our method has the advantage of being
conceptually simple compared to many state-of-the-art entity-linking systems,
but still achieves comparable, or better, performance.

The model underlying the linking algorithm presented here is based upon La-
tent Dirichlet Allocation (LDA) [1]. In a traditional LDA model, the topics have
no inherent interpretation; they are simply collections of related words. Here
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Fig. 1. Example of document-Wikipedia graph.

we construct an LDA model in which each topic is associated with a Wikipedia
article. Using this ‘Wikipedia-interpretable’ LDA model we can use the topic-
word assignments discovered during inference directly for entity linking. The
topics are constructed using Wikipedia, and the corresponding parameters re-
main fixed. This model has one topic per Wikipedia article, resulting in over
4 million topics. Furthermore, the vocabulary size, including mention unigrams
and phrases, is also in the order of millions.To ensure efficient inference we pro-
pose a novel Gibbs sampling scheme that exploits sparsity in the Wikipedia-LDA
model. To better identify document-level consistent topic assignments, we intro-
duce a ‘sampler-memory’ heuristic and propose a simple method to incorporate
information from the Wikipedia in-link graph in the sampler. Our model achieves
the best performance in entity-linking to date on the Aida-CoNLL dataset [2].

2 Background and Related Work

Much recent work has focused on associating textual mentions with Wikipedia
topics [2–9]. The task is known as topic annotation, entity linking or entity
disambiguation. Most of the proposed solutions exploit sources of information
compiled from Wikipedia: the link graph, used to infer similarity measures be-
tween topics, anchor text, to estimate how likely a string is to refer to a given
topic, and finally, to a lesser extent so far, local textual content.

Figure 1 illustrates the main intuitions behind most annotators’ designs. The
figure depicts a few words and names from a news article about cricket. Connec-
tions between strings and Wikipedia topics are represented by arrows whose line



weight represents the likelihood of that string mentioning the connected topic.
In this example, a priori, it is more likely that “Croft” refers to the fictional
character rather than the cricket player. However, a similarity graph induced
from Wikipedia3 would reveal that the cricket player topic is actually densely
connected to several of the candidate topics on the page, those related to cricket
(again line weight represents the connection strength). Virtually all topic anno-
tators propose different ways of exploiting these ingredients.

Extensions to LDA for modeling both words and observed entities have been
proposed [10, 11]. However, these methods treat entities as strings, not linked to
a knowledge base. [5, 12, 13] propose LDA-inspired models for documents con-
sisting of words and mentions being generated from distributions identified with
Wikipedia articles. Only Kataria et al. investigate use of the Wikipedia category
graph as well [12]. These works focus on both training the model and infer-
ence using Gibbs sampling, but do not exploit model sparsity in the sampler to
achieve fast inference. Sen limits the topic space to 17k Wikipedia articles [13].
Kataria et al. propose a heuristic topic-pruning procedure for the sampler, but
they still consider only a restricted space of 60k entities. Han and Sun propose a
more complex hierarchical model and perform inference using incremental Gibbs
sampling rather than with pre-constructed topics [5]. Porteous et al. speed up
LDA Gibbs sampling by bounding on the normalizing constant of the sampling
distribution [14]. They report up to 8 times speedup on a few thousand topics.
Our approach exploits sparsity in the sampling distribution more directly and
can handle millions of topics. Hansen et al. perform inference with, fewer, fixed
topics [15]. We focus upon fast inference in this regime. Our algorithm exploits
model sparsity without the need for pruning of topics. A preliminary investiga-
tion of a full distributed framework that includes re-estimation of the topics for
the Wikipedia-LDA model is presented in [16].

3 Entity Linking with LDA

We follow the task formulation and evaluation framework of [2]. Given an input
text where entity mentions have been identified by a pre-processor, e.g. a named
entity tagger, the goal of a system is to disambiguate (link) the entity mentions
with respect to a Wikipedia page. Thus, given a snippet of text such as “[Moin
Khan] returns to lead [Pakistan]” where the NER tagger has identified entity
mentions “Moin Kahn” and “Pakistan”, the goal is to assign the cricketer id to
the former, and the national cricket team id to the latter.

We are given a collection of D documents to be annotated, wd for d =
1, . . . , D. Each document is represented by a bag of Ld words, taken from a
vocabulary of size V . The entity-linking task requires annotating only the men-
tions, and not the other words in the document (content words). Our model does
not distinguish these, and will annotate both. As well as single words, mentions
can be N-gram phrases as in the example “Moin Kahn” above. We assume the

3 The similarity measure is typically symmetric.
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Fig. 2. Graphical model for LDA.

segmentation has already been performed using an NER tagger. Because the
model treats mentions and content words equally, we use the term ‘word’ to
refer to either type, and it includes phrases.

The underlying modeling framework is based upon LDA, a Bayesian model,
commonly used for text collections [1]. We review the generative process of LDA
below, the corresponding graphical model is given in Figure 2.

1. For each topic k, sample a distribution over the words φk ∼ Dir(β).
2. For each document d sample a distribution over the topics θd ∼ Dir(α).
3. For each content word i in the document:

(a) Sample a topic assignment: zi ∼ Multi(θd).
(b) Sample the word from topic zi: wj ∼ Multi(φzi).

The key modeling extension that allows LDA to be used for entity-linking is
to associate each topic k directly with a single Wikipedia article. Thus the topic
assignments zi can be used directly to annotate entity mentions. Topic identifi-
ability is achieved via the model construction; the model is built directly from
Wikipedia such that each topic corresponds to an article (details in Section 5.1).
After construction the parameters are not updated, only inference is performed.

Inference in LDA involves computing the topic assignments for each word
in the document zd = {z1, . . . , zLd

}. Each zi indicates which topic (entity) is
assigned to the word wi. For example, if wi = “Bush”, then zi could label
this word with the topic “George Bush Sn.”, “George Bush Jn.”, or “bush (the
shrub)” etc. The model must decide on the assignment based upon the context in
which wi is observed. LDA models are parametrized by their topic distributions.
Each topic k is a multinomial distribution over words with parameter vector φk.
This distribution puts high mass on words associated with the entity represented
by topic k. In our model each topic corresponds to a Wikipedia entity, therefore
the number of topic-word distributions, K, is large (≈ 4M).

To characterize uncertainty in the choice of parameters most LDA models
work with distributions over topics. Therefore, instead of storing topic multino-
mials φk (as in EDA [15]) we use Dirichlet distributions over the multinomial
topics. That is, φk ∼ Dir(λk), where λk are V -dimensional Dirichlet parameter
vectors. The set of all vectors λ1, . . . , λK represents the model. These Dirich-
let distributions capture both the average behavior and the uncertainty in each
topic. Intuitively, each element λkv governs the prevalence of vocabulary word v
in topic k. For example, for the topic “Apple Inc.” λkv will be large for words such
as “Apple” and “Cupertino”. The parameters need not sum to one, ||λk||1 6= 1,



but the greater the values, the lower the variance of the distribution, that is, the
more it concentrates around its mean topic.

Most topics will only have a small subset of words from the large vocabulary
associated with them, that is, topic distributions are sparse. However, the model
would not be robust if we were to rule out all possibility of assigning a particular
topic to a new word – this would correspond to setting λkv = 0. Thus, each
parameter takes at least a small minimum value β. Due to the sparsity, most
λkv will take value β. To save memory we represent the model using ‘centered’
parameters, λ̂kv = λkv−β, most of which take value zero, and need not be stored
explicitly. Formally, α, β are scalar hyper-parameters for the symmetric Dirichlet
priors; they may be interpreted as topic and word ‘pseudo-counts’ respectively.

4 Efficient Inference with a Sparse Gibbs Sampler

The English Wikipedia contains around 4M articles (topics). The vocabulary
size is around 11M. To cope with this vast parameter space we build a highly
sparse model, where each topic only explicitly contains parameters for a small
subset of words. Remember, during inference any topic could be associated with
a word due to the residual probability mass from the hyper-parameter β.

The goal of probabilistic entity disambiguation is to infer the distribution
over topics for each word, that is, compute p(z|w, λ̂1, . . . , λ̂K). This distribu-
tion is intractable, therefore, one must perform approximate Bayesian inference.
Two popular approaches are to use Gibbs sampling [17] or variational Bayes [1].
We use Gibbs sampling, firstly, because it allows us to exploit model sparsity,
and secondly, it provides a simple framework into which we may incorporate
side information in a scalable manner. During inference, we wish to compute
the topic assignments. To do this, Gibbs sampling involves sampling each as-
signment in turn conditioned on the other current assignments and the model,
zi ∼ p(zi|z\i, wi, λ̂1, . . . λ̂K) =

∫
p(zi|wi, θd, λ̂1, . . . λ̂K)p(θd|z\i)dθd. Here, we in-

tegrate (collapse) out θd, rather than sample this variable in turn. Collapsed
inference is found to yield faster mixing in practice for LDA [17, 18].

We adopt the sampling distribution that results from performing variational
inference over all of the variables and parameters of the model. Although we only
consider inference of the assignments with fixed topics here, this sampler can be
incorporated into a scalable full variational Bayesian learning framework [16], a
hybrid variational Bayes – Gibbs sampling approach originally proposed in [19].
Following [1, 16, 19], the sampling distribution for zi is:

p(zi = k|z\i, wiλ1, . . . , λK) ∝ (α+N
\i
k ) exp{Ψ(β + λ̂kwi)−Ψ(V β +

∑
v

λ̂kv)} , (1)

where N
\i
k =

∑
j 6=i I[zj = k] counts the number of times topic k has been as-

signed in the document, not including the current word wi. Ψ() denotes the
Digamma function. The sampling distribution is dependent upon both the cur-

rent word wi and the current topic counts N
\i
k , therefore, näıvely one must



re-compute its normalizing constant for every Gibbs sample. The distribution
has K terms, and so this would be very expensive in this model. We therefore
propose using the following rearrangement of Eqn. (1) that exploits the model
and topic-count sparsity to avoid performing O(K) operations per sample:

p(zi = k|z\i, wi, λ̂1, . . . , λ̂K) ∝ α exp{Ψ(β)}
κ′k︸ ︷︷ ︸
µ
(d)
k

+
ακkwi

κ′k︸ ︷︷ ︸
µ
(v)
k

+
N
\i
k exp{Ψ(β)}

κ′k︸ ︷︷ ︸
µ
(c)
k

+
N
\i
k κkwi

κ′k︸ ︷︷ ︸
µ
(c,v)
k

,

(2)

where κkw = exp{Ψ(β + λ̂kw)} − exp{Ψ(β)} and κ′k = exp{Ψ(V β +
∑

v λ̂kv)}
are transformed versions of the parameters. Clearly λ̂kv = 0 implies κkv = 0.
κ′k is dense. The distribution is now decomposed into four additive components:

µ
(d)
k , µ

(v)
k , µ

(c)
k , µ

(c,v)
k , whose normalizing constants can be computed indepen-

dently. µ
(d)
k is dense, but it can be pre-computed once before sampling. For each

word we have a term µ
(v)
k which only has mass on the topics for which κkv 6= 0;

this can be pre-computed for each unique word v in the document, again just

once before sampling. µ
(c)
k only has mass on the topics currently observed in the

document, i.e. those for which N
\i
k 6= 0. This term must be updated at every

sampling iteration, but this can be done incrementally. µ
(c,v)
k is non-zero only for

topics which have non-zero parameters and counts. It is the only term that must
be fully recomputed at every iteration. To compute the normalizing constant of
the Eqn. (2), the normalizer of each component is computed when the component
is constructed, and so all O(K) sums are performed in the initialization.

Algorithm 1 summarizes the sampling procedure. The algorithm is passed

the document wd, initial topic assignment vector z
(0)
d , and transformed param-

eters κ′k, κkv. Firstly, the components of the sampling distribution in (2) that
are independent of the topic counts (µ(d), µ(v)) and their normalizing constants
(Z(d),Z(v)) are pre-computed (lines 2-3). This is the only stage at which the
full dense K–dimensional vector µ(d) needs to be computed. Note that one only

computes µ
(v)
k for the words in the current document, not for the entire vocab-

ulary. In lines 4-5, two counts are initialized from z(0). Nki contains the number
of times topic k is assigned to word wi, and Nk counts total number of occur-
rences of each topic in the current assignment. Both counts will be sparse as
most topics are not sampled in a particular document. While sampling, the first
operation is to subtract the current topic from Nk in line 8. Now that the topic
count has changed, the two components of Eqn. (2) that are dependent on this

count (µ
(c)
k , µ

(c,v)
k ) are computed. µ

(c)
k can be updated incrementally, but µ

(c,v)
k

must be re-computed as it is word-dependent. The four components and their
normalizing constants are summed in lines 13-14, and a new topic assignment
to wi is sampled in line 15. Nki is incremented in line 17 if burn-in is complete
(due to the heuristic initialization we find B = 0 works well). If the topic has
changed since the previous sweep then Nk is updated accordingly (line 20).



The key to efficient sampling from the multinomial in line 15 is to visit µk

in order {k ∈ µ
(c,v)
k , k ∈ µ

(c)
k , k ∈ µ

(v)
k , k ∈ µ

(d)
k }. A random schedule would

require on average K/2 evaluations of µk. However, if the distribution is skewed,
with most of the mass on the topics contained in the sparse components, then
much fewer evaluations are required if these topics are visited first. The degree of
skewness is governed by the initialization of the parameters, and the priors α, β.
In our experiments (see Section 6) we found that we visited on average 4-5 topics
per iteration. Note that we perform no approximation or pruning, we still sample
from the exact distribution Multi(µ/Z). After completion of the Gibbs sweeps,
the distribution of the topic assignments to each word is computed empirically
from the sample counts in line 24.

Algorithm 1 Efficient Gibbs Sampling

1: input: (wd, z
(0)
d , {κkv}, {κ′k})

2: µ
(d)
k ← αeΨ(β)/κ′k, Z(d) ←

∑
k µ

(d)
k . Pre-compute dense component of Eqn. (2).

3: µ
(v)
k ← ακkv/κ

′
k, Z(v) ←

∑
k µ

(v)
k ∀v ∈ wd

4: Nki ← I
z
(0)
i =k

. Initial counts.

5: Nk ←
∑Ld
i=1Nki

6: for s ∈ 1, . . . , S do . Perform S Gibbs sweeps.
7: for i ∈ 1, . . . , Ld do . Loop over words in document.
8: N

\i
k ← Nk − Izi=k . Remove topic zi from counts.

9: µ
(c)
k ← N

\i
k e

Ψ(β)/κ′k . Compute sparse components of Eqn. (2).

10: µ
(c,v)
k ← N

\i
k κkwi/κ

′
k

11: Z(c) ←
∑
k µ

(c)
k . Compute corresponding normalizing constants.

12: Z(c,v) ←
∑
k µ

(c,v)
k

13: µk ← µ
(d)
k + µ

(v)
k + µ

(c)
k + µ

(c,v)
k

14: Z ← Z(d) + Z(v) + Z(c) + Z(c,v)

15: z
(s)
i ∼ Multi({µk/Z}Kk=1) . Sample topic.

16: if s > B then . Discard burn in.
17: N

z
(s)
i i
← N

z
(s)
i i

+ 1 . Update counts.

18: end if
19: if z

(s)
i 6= z

(s−1)
i then

20: update Nk for k ∈ {z(s)i , z
(s−1)
i } . Update incrementally.

21: end if
22: end for
23: end for
24: p(zi = k|wi)← 1

S−BNki
25: return: p(zi = k|wi) . Return empirical distribution over topics.

4.1 Incorporating Memory and the Wikipedia Graph

When working with very large topic spaces, the sampler will take a long time
to explore the full topic space and an impractical number of samples will be



required to achieve convergence. To address this issue we augment the sampler
with a ‘sampler memory’ heuristic and information from the Wikipedia graph.

After a good initialization (see Section 5.2), to help the sampler stay on track
we include the current sample in the topic counts when evaluating (2). Allowing
the sampler to ‘remember’ the current assignment assists it in remaining in re-
gions of good solutions. With memory the current effective topic-count is given

by N
\i
k ← Nkcoh(zk|wi). An even better solution might be to include here an ap-

propriate temporal decaying function, but we found this simple implementation
yields strong empirical performance already.

We also exploit the Wikipedia-interpretability of the topics to readily include
the graph into our sampler to further improve performance. Intuitively, we would
like to weight the probability of a topic by a measure of its consistency with the
other topics in the document. This is in line with the Gibbs sampling approach
where, by construction, all other topic assignments are known. For this purpose
we use the following coherence score [4] for the word at location i:

coh(zk|i) =
1

|{zd}| − 1

∑
k′∈{zd}\i

sim(zk, zk′) . (3)

where {zd} is the set of topics in the assignment zd, and sim(zk, zk′) is the
‘Google similarity’ [20] between two Wikipedia pages. We include the coherence

score by augmenting N
\i
k in Eqn. 2 with this weighting function, i.e. line 8 in

Algorithm 1 becomes N
\i
k ← (Nk − Izi=k)coh(zk|wi).

Notice that the contributions of the graph-coherence and memory compo-
nents are incorporated into the computation of the normalizing constant. In-
corporating the graph and memory directly into the sampler provides cheap
and scalable extensions which yield improved performance. However, it would
be desirable to include such features more formally in the model, for example,
by including the graph via hierarchical formulations, or appropriate document-
specific priors α in stead of the memory. We leave this to future research.

5 Model and Algorithmic Details

5.1 Construction of the Model

We construct models from the English Wikipedia. An article is an admissible
topic if it is not a disambiguation, redirect, category or list page.This step selects
approximately 4M topics.Initial candidate word strings for a topic are generated
from its title, the titles of all Wikipedia pages that redirect to it, and the anchor
text of all its incoming links (within Wikipedia). All strings are lower-cased,
single-character mentions are ignored. This amounts to roughly 11M words and
13M parameters. Remember, ‘words’ also includes mention phrases. This ini-
tialization is highly sparse - for most word-topic pairs, λ̂kv is set to zero. The
parameters λ̂kv are initialized using the empirical distributions from Wikipedia

counts, that is, we set λ̂kv = P (k|v) − β = count(v,k)
count(v) − β. Counts are collected



from titles (including redirects) and anchors. We found that initializing the pa-
rameters using P (v|k), rather than P (k|v) yields poor performance because the
normalization by count(k) in this case penalizes popular entities too heavily.

5.2 Sampler initialization

A naive initialization of the Gibbs sampler could use the topic with the greatest

parameter value for a word z
(0)
i = arg maxk λkv, or even random assignments.

We find that these are not good solutions because the distribution of topics for
a word is typically long-tailed. If the true topic is not the most likely one, its
parameter value could be several orders of magnitude smaller than the primary
topic. Topics have extremely fine granularity and even with sparse priors it is
unlikely that the sampler will converge to the the right patterns of topic mix-
tures in reasonable time. We improve the initialization with a simpler, but fast,
heuristic disambiguation algorithm, TagMe [4]. We re-implement TagMe and run
it to initialize the sampler, thus providing a good set of initial assignments.

6 Experiments

We evaluate performance on the CoNLL-Aida dataset, a large public dataset for
evaluation of entity linking systems [2]. The data is divided in three partitions:
train (946 documents), test-a (216 documents, used for development) and test-
b (231 documents, used for blind evaluation). We report micro-accuracy : the
fraction of mentions whose predicted topic is the same as the gold-standard
annotation. There are 4,788 mentions in test-a and 4,483 in test-b. We also report
macro-accuracy, where document-level accuracy is averaged over the documents.

6.1 Algorithms

The baseline algorithm (Base) predicts for mention w the topic k maximiz-
ing P (k|w), that is, it uses only empirical mention statistics collected from
Wikipedia.This baseline is quite high due to the skewed distribution of top-
ics – which makes the problem challenging. TagMe* is our implementation of
TagMe, that we used to initialize the sampler. We also report the performance of
two state-of-the-art systems: the best of the Aida systems on test-a and test-b,
extensively benchmarked in [2] (Aida13)4, and finally the system described in
[9] (S&Y13) which reports the best micro precision on the CoNLL test-b set to
date. The latter reference reports superior performance to a number of modern
systems, including those in [21, 2, 3]. We also evaluate the contributions of the
components to our algorithm. WLDA-base uses just the sparse sampler pro-
posed in Section 4. WLDA-mem includes the sampler memory, and WLDA-full
incorporates both the memory and the graph.

4 We report figures for the latest best model (“r-prior sim-k r-coh”) from the Aida web
site, http://www.mpi-inf.mpg.de/yago-naga/aida/. We are grateful to Johannes
Hoffart for providing us with the development set results of the Aida system.



Table 1. Accuracy on the CoNLL-Aida corpus. In each row, the best performing
algorithm, and those whose performance is statistically indistinguishable from the best,
are highlighted in bold. Error bars indicate ±1 standard deviation. An empty cell
indicates that no results are reported.

test-a
Base TagMe* Aida13 S&Y13 WLDA-base WLDA-mem WLDA-full

Micro 70.76 76.89 79.29 - 75.21± 0.57 78.99± 0.50 79.65±0.52
Macro 69.58 74.57 77.00 - 74.51± 0.55 76.10±0.72 76.61±0.72

test-b

Micro 69.82 78.64 82.54 84.22 78.75± 0.54 84.88±0.47 84.89±0.43
Macro 72.74 78.21 81.66 - 79.18± 0.71 83.47±0.61 83.51±0.62

6.2 Hyper-parameters

We set hyper-parameters, α, β and S using a greedy search that optimizes the
sum of the micro and macro scores on both the train and test-a partitions.
Setting α, β is a trade-off between sparsity and exploration. Smaller values result
in sparser sampling distributions but larger α allows the model to visit topics
not currently sampled and larger β lets the model sample topics with parameter
values λ̂kv equal to zero. We found that comparable performance can be achieved
using a wide range of values: α ∈ [10−5, 10−1], β ∈ [10−7, 10−3). Regarding the
sweeps, performance starts to plateau at S = 50. The robustness of the model’s
performance to these wide ranges of hyper-parameter settings advocates the use
of this type of probabilistic approach. As for TagMe’s hyper-parameters, in our
experiments ε and τ values around 0.25 and 0.01 respectively worked best.

6.3 Results and Discussion

Table 1 summarizes the evaluation results. Confidence intervals are estimated
using bootstrap re-sampling, and statistical significance is assessed using a un-
paired t-test at the 5% significance level. Overall, WLDA-full, produces state-
of-the-art results on both development (test-a) and blind evaluation (test-b).
Table 1 shows that Base and Tagme*, used for model construction and sam-
pler initialization respectively, are significantly outperformed by the full system.
TagMe includes the information contained in Base and performs better, partic-
ularly on test-a. The gap between TagMe and WLDA-full is greatest on test-b.
This is probably because the parameters are tuned on test-a, and are kept fixed
for test-b and the proposed probabilistic method is more robust to the param-
eter values. The inclusion of memory produces a large performance gains and
inclusion of the graph adds some further improvements, particularly on test-a.

In all cases we perform as well as, or better than, the current best systems.
This result is particularly remarkable due to the simplicity of our approach. The
S&Y13 system addresses the broader task of entity linking and named entity
recognition. They train a supervised model from Freebase, using extensively en-
gineered feature vectors. The Aida systems incorporate a significant amount of



knowledge from the YAGO ontology, that is, they also know the type of the
entity being disambiguated. Our algorithm is conceptually simple and requires
no training or additional resources beyond Wikipedia, nor hand crafting of fea-
tures or scoring rules. Our approach is based upon Bayesian inference with a
model created from simple statistics taken from Wikipedia. It is therefore re-
markable that we are performing favorably against the best systems to date an
this provides strong motivation to extend this probabilistic approach further.

Inspection of errors on the development partitions reveals scenarios in which
further improvements can be made. In some documents, a mention can appear
multiple times with different gold annotations. E.g. in one article, ‘Washington’
appears multiple times, sometimes annotated as the city, and sometimes as USA
(country); in another, ‘Wigan’ is annotated both as the UK town and its rugby
club. Due to the ‘bag-of-words’ assumption, LDA is not able to discriminate such
cases and naturally tends to commit to one assignment for all occurrences of a
string in a document. Local context could help disambiguate these cases. Within
our sampling framework it would be straightforward to incorporate contextual
information e.g. via up-weighting of topics using a distance function.

7 Conclusion and Future Work

Topic models provide a principled, flexible framework for analyzing latent struc-
ture in text. These are desirable properties for a whole new area of work that is
beginning to systematically explore semantic grounding with respect to web-scale
knowledge bases such as Wikipedia and Freebase. We have proposed a Gibbs
sampling scheme for inference in a static Wikipedia-identifiable LDA model to
perform entity linking. This sampler exploits model sparsity to remain efficient
when confronted with millions of topics. Further, the sampler is able to incor-
porate side information from the Wikipedia in-link graph in a straightforward
manner. To achieve good performance it is important to construct a good model
and initialize the sampler sensibly. We provide algorithms to address both of
these issues and report state-of-the-art performance in entity-linking.

We are currently exploring two directions for future work. In the first, we
seek to further refine the parameters of the model λkv from data. This requires
training an LDA model on huge datasets, for which we must exploit parallel ar-
chitectures [16]. In the second, we wish to simultaneously infer the segmentation
of the document into words/mentions and the topic assignments through use of
techniques such as blocked Gibbs sampling,
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