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Abstract. In modern data centers and cloud computing systems, jobs
often require resources distributed across nodes providing a wide variety
of services. Motivated by this, we study the Coupled Placement problem,
in which we place jobs into computation and storage nodes with capac-
ity constraints, so as to optimize some costs or profits associated with
the placement. The coupled placement problem is a natural generaliza-
tion of the widely-studied generalized assignment problem (GAP), which
concerns the placement of jobs into single nodes providing one kind of
service. We also study a further generalization, the k-Sided Placement
problem, in which we place jobs into k-tuples of nodes, each node in a
tuple offering one of k services.

For both the coupled and k-sided placement problems, we consider mini-
mization and maximization versions. In the minimization versions (MINCP
and MINESP), the goal is to achieve minimum placement cost, while in-
curring a minimum blowup in the capacity of the individual nodes. Our
first main result is an algorithm for MINESP that achieves optimal cost
while increasing capacities by at most a factor of k + 1, also yielding the
first constant-factor approximation for MINCP. In the maximization ver-
sions (MAXCP and MAxkSP), the goal is to maximize the total weight
of the jobs that are placed under hard capacity constraints. MAXkKSP
can be expressed as a k-column sparse integer program, and can be ap-
proximated to within a factor of O(k) factor using randomized rounding
of a linear program relaxation. We consider alternative combinatorial
algorithms that are much more efficient in practice. Our second main
result is a local search based approximation algorithm that yields a 15-
approximation and O(k®)-approximation for MAXCP and MAXkSP re-
spectively. Finally, we consider an online version of MAXkSP and present
algorithms that achieve logarithmic competitive ratio under certain nec-
essary technical assumptions.

1 Introduction

The data center has become one of the most important assets of a modern busi-
ness. Whether it is a private data center for exclusive use or a shared public cloud
data center, the size and scale of the data center continues to rise. As a company



grows, so too must its data center to accommodate growing computational, stor-
age and networking demand. However, the new components purchased for this
expansion need not be the same as the components already in place. Over time,
the data center becomes quite heterogeneous [1]. This complicates the problem
of placing jobs within the data center so as to maximize performance.

Jobs often require resources of more than one type: for example, compute and
storage. Modern data centers typically separate computation from storage and
interconnect the two using a network of switches. As such, when placing a job
within a data center, we must decide which computation node and which storage
node will serve the job. If we pick nodes that are far apart, then communication
latency may become too prohibitive. On the other hand, nodes are capacitated,
so picking nodes close together may not always be possible.

Most prior work in data center resource management is focussed on placing
one type of resource at a time: e.g., placing storage requirements assuming job
compute location is fixed [2,3] or placing compute requirements assuming job
storage location is fixed [4,5]. One sided placement methods cannot suitably
take advantage of the proximities and heterogeneities that exist in modern data
centers. For example, a database analytics application requiring high throughput
between its compute and storage elements can benefit by being placed on a
storage node that has a nearby available compute node.

In this paper, we study Coupled Placement (CP), which is the problem of
placing jobs into computation and storage nodes with capacity constraints, so as
to optimize costs or profits associated with the placement. Coupled placement
was first addressed in [6] in a setting where we are required to place all jobs
and we wish to minimize the communication latency over all jobs. They show
that this problem, which we call MINCP, is NP-hard and investigate the per-
formance of heuristic solutions. Another natural formulation is where the goal
is to maximize the total number of jobs or revenue generated by the placement,
subject to capacity constraints. We refer to this problem as MAXCP. We also
study a generalization of Coupled Placement, the k-Sided Placement Problem
(kSP), which considers k > 2 kinds of resources.

1.1 Problem definition

In the coupled placement problem, we are given a bipartite graph G = (U, V, E)
where U is a set of compute nodes and V is a set of storage nodes. We have
capacity functions C' : U — R and S : V — R for the compute and storage
nodes, respectively. We are also given a set T of jobs, each of which needs to be
allocated to one compute node and one storage node. Each job may prefer some
compute-storage node pairs more than others, and may also consume different
resources at different nodes. To capture these heterogeneities, we have for each
job j a function f; : E — R, a processing requirement p; : £ — R and a
storage requirement s; : £ — R. We note that without loss of generality, we
can assume that the capacities are unit, since we can scale the processing and
storage requirements of individual nodes accordingly.



We consider two versions of the coupled placement problems. For the max-
imization version MAXCP, we view f; as a payment function. Our goal is to
select a subset A C T of jobs and an assignment o : A — E such that all ca-
pacities are observed and our total profit >, 4 fj(0(j)) is maximized. For the
minimization version MINCP, we view f; as a cost function. Our goal is to find
an assignment o : T — FE such that all capacities are observed and our total
cost Y ie 4 fi(0(4)) is minimized.

A generalization of the coupled placement problem is k-sided placement
(kSP), in which we have k different sets of nodes, S, ..., Sk, each set of nodes
providing a distinct service. For each i, we have a capacity function C; : S; = R
that gives the capacity of a node in S; to provide the ith service. We are given
a set T of jobs, each of which needs each kind of service; the exact resource
needs may depend on the particular k-tuple of nodes from [, S; to which it is
assigned. That is, for each job j, we have a demand function d; : [[, S; — RE.
We also have another function f; : [], S; = R. As for coupled placement, we can
assume that the capacities are unit, since we can scale the demands of individ-
ual nodes accordingly. Similar to coupled placement, we consider two versions of
kSP, MINESP and MAXESP.

1.2 Owur Results

All of the variants of CP and kSP are NP-hard, so our focus is on approximation
algorithms. Our first set of results consist of the first non-trivial approximation
algorithms for MINCP and MINkKSP. Under hard capacity constraints, it is easy
to see that it is NP-hard to achieve any bounded approximation ratio to cost
minimization. So we consider approximation algorithms that incur a blowup in
capacity. We say that an algorithm is a-approximate for the minimization version
if its cost is at most that of an optimal solution, while incurring a blowup factor
of at most « in the capacity of any node.

— We present a (k + 1)-approximation algorithm for MINASP using iterative
rounding, yielding a 3-approximation for MINCP.

We next consider the maximization version. MAXkSP can be expressed as a
k-column sparse integer packing program (k-CSP). From this, it is immediate
that MAXkSP can be approximated to within an O(k) approximation factor
by applying randomized rounding to a linear programming relaxation [7]. An
£2(k/ log k)-inapproximability result for k-set packing due to [16] implies the
same hardness result for MAXkASP. Our second main result is a simpler approx-
imation algorithm for MAXCP and MAXkSP based on local search.

— We present a local search based 15-approximation algorithm for MAxCP.
We extend it to MAXASP and obtain an O(k?)-approximation.

The local search result applies directly to a version where we can assign tasks
fractionally but only to a single pair of machines (this is like assigning a task
with lower priority and may have additional applications). We then describe a



simple rounding scheme to obtain an integral version. The rounding technique
involves establishing a one-to-one correspondence between fractional assignments
and machines. This is much like the cycle-removing rounding for GAP; there is
a crucial difference, however, since coupled and k-sided placements assign jobs
to tuples of machines.

Finally, we study the online version of MAXCP, in which tasks arrive online
and must be irrevocably assigned or rejected immediately upon arrival.

— We extend the techniques of [8] to the case where the capacity require-
ment for a job is arbitrarily machine-dependent. This enables us to achieve
competitive ratio logarithmic in the ratio of best to worst value-per-capacity
density, under necessary technical assumptions about the maximum job size.

1.3 Related Work

The coupled and k-sided placement problems are natural generalizations of the
Generalized Assignment Problem (GAP), which can be viewed as a 1-sided place-
ment problem. In GAP, which was first introduced by Shmoys and Tardos [9],
the goal is assign items of various sizes to bins of various capacities. A subset of
items is feasible for a bin if their total size is no more than the bin’s capacity.
If we are required to assign all items and minimize our cost (MinGAP), Shmoys
and Tardos [9] give an algorithm for computing an assignment that achieves op-
timal cost while doubling the capacities of each bin. A previous result by Lenstra
et al. [10] for scheduling on unrelated machines show it is NP-hard to achieve
optimal cost without incurring a capacity blowup of at least 3/2. On the other
hand, if we wish to maximize our profit and are allowed to leave items unassigned
(MaxGAP), Chekuri and Khanna [11] observe that the (1,2)-approximation for
MinGAP implies a 2-approximation for MaxGAP. This can be improved to a
(%5 )-approximation using LP-based techniques [12]. It is known that MaxGAP
is APX-hard [11], though no specific constant of hardness is shown.

On the experimental side, most prior work in data center resource manage-
ment focusses on placing one type of resource at a time: for example, placing
storage requirements assuming job compute location is fixed (file allocation prob-
lem [2], [13,14, 3]) or placing compute requirements assuming job storage loca-
tion is fixed [4,5]. These in a sense are variants of GAP. The only prior work
on Coupled Placement is [6], where they show that MINCP is NP-hard and ex-
perimentally evaluate heuristics: in particular, a fast approach based on stable
marriage and knapsacks is shown to do well in practice, close to the LP optimal.

The MAXESP problem is related to the recently studied hypermatching as-
signment problem (HAP) [15], and special cases, including k-set packing, and a
uniform version of the problem. A (k4 1+ ¢)-approximation is given for HAP
in [15], where other variants of HAP are also studied. While the MAXESP prob-
lem can be viewed as a variant of HAP, there are critical differences. For instance,
in MAXkSP, each task is assigned at most one tuple, while in the hypermatching
problem each client (or task) is assigned a subset of the hyperedges. Hence, the
MaxkSP and HAP problems are not directly comparable. The k-set packing can




be captured as a special case of MAXKSP, and hence the 2(k/log k)-hardness
due to [16] applies to MAXASP as well.

2 The minimization version

Next, we consider the minimization version of the Coupled Placement problem,
MINCP. We write the following integer linear program for MINCP, where 4y,
is the indicator variable for the assignment of ¢ to pair (u,v), u € U, v € V.

Minimize: Z LT [t (U, )

t,u,v

Subject to: thuv > 1, VteT,
u,v
Zpt(u, V)T < Cy, Yu € U,
t,v
Zst(u,v)xtw <d,,YwevV,
tu
Teuw € {0, 1}, Vte T,ueUveV.

We refer the first set of constraints as satisfaction constraints, the second and
third set as capacity constraints (processing and storage). We consider the linear
relaxation of this program which replaces the integrality constraints above with
0< x4 <L, WVteT,uclUwveV.

2.1 A 3-approximation algorithm for MiNCP

We now present algorithm ITERROUND, based on iterative rounding [21], which
achieves a 3-approximation for MINCP. We start with a basic algorithm that
achieves a 5-approximation by identifying tight constraints with a small number
of variables. Each iteration of this algorithm repeats the following round until
all variables have been rounded.

1 Extreme point: Compute an extreme point solution x to the current LP.
2 Eliminate variable or constraint: Execute one of these two steps. By
Lemma 3, one of these steps can always be executed if the LP is nonempty.

a Remove from the LP all variables x4, that take the value 0 or 1 in . If x4y,
is 1, then assign job ¢ to the pair (u,v), remove the job ¢ and its associated
variables from the LP, and reduce ¢, by p:(u,v) and d, by s¢(u,v).

b Remove from the LP any tight capacity constraint with at most 4 variables.

Fix an iteration of the algorithm, and an extreme point . Let ny, n., and ng de-
note the number of tight task satisfaction constraints, computation constraints,
and storage constraints, respectively, in x. Note that every task satisfaction con-
straint can be assumed to be tight, without loss of generality. Let N denote the
number of variables in the LP. Since z is an extreme point, if all variables in x
take values in (0,1), then we have N = ny + n. + ns.



Lemma 1. If all variables in = take values in (0,1), then ny < N/2.

Proof. Since a variable only occurs once over all satisfaction constraints, if n; >
N/2, there exists a satisfaction constraint that has exactly one variable. But
then, this variable needs to take value 1, a contradiction.

Lemma 2. Ifn; < N/2, then there exists a tight capacity constraint that has at
most 4 variables.

Proof. If ny < N/2, then ng +n. = N —n; > N/2. Since each variable occurs
in at most one computation constraint and at most one storage constraint, the
total number of variable occurrences over all tight storage and computation
constraints is at most 2N, which is at most 4(ns 4 n.). This implies that at least
one of these tight capacity constraints has at most 4 variables.

Using Lemmas 1 and 2, we can argue that the above algorithm yields a 5-
approximation. Step 2a does not cause any increase in cost or capacity. Step 2b
removes a constraint, hence cannot increase cost; since the removed constraint
has at most 4 variables, the total demand allocated on the relevant node is at
most the demand of four tasks plus the capacity already used in earlier iterations.
Since each task demand is at most the capacity of the node, we obtain a 5-
approximation with respect to capacity.

Studying the proof of Lemma 2 more closely, one can separate the case n; <
N/2 from the n; = N/2; in the former case, one can, in fact, show that there
exists a tight capacity constraint with at most 3 variables. Together with a
careful consideration of the ny = N/2 case, one can improve the approximation
factor to 4. We now present an alternative selection of tight capacity constraint
that leads to a 3-approximation. One interesting aspect of this step is that the
constraint being selected may not have a small number of variables. We replace
step 2b by the following.

2b Remove from the LP any tight capacity constraint in which the number of
variables is at most two more than the sum of the values of the variables.

Lemma 3. If all variables in x take values in (0,1), then there exists a tight
capacity constraint in which the number of variables is at most two more than
the sum of the values of the variables.

Proof. Since each variable occurs in at most two tight capacity constraints, the
total number of occurrences of all variables across the tight capacity constraints
is 2N — s for some nonnegative integer s. Since each satisfaction constraint is
tight, each variable appears in 2 capacity constraints, and each variable takes on
value less than 1, the sum of all the variables over the tight capacity constraints
is at least 2n; — s. Therefore, the sum, over all tight capacity constraints, of
the difference between the number of variables and their sum is at most 2(N —
ng). Since there are N — n; tight capacity constraints, for at least one of these
constraints, the difference between the number of variables and their sum is at
most 2.



Lemma 4. Let u be a node with a tight capacity constraint, in which the number
of variables is at most 2 more than the sum of the variables. Then, the sum of the
capacity requirements of the tasks partially assigned to u is a most the current
available capacity of u plus twice the capacity of u.

Proof. Let ¢ be the number of variables in the constraint for u, and let the
associated tasks be numbered 1 through ¢. Let the demand of task j for the
capacity of node u be d;. Then, the capacity constraint for u is > jdjzy = c(u),
where ¢(u) is the available capacity of u in the current LP.

We know that £ — >, z; < 2. Since d; < C(u), the capacity of u:

14 m

S dy=ew + 3 (1= ap)dy <EAw) + (= Y 2,)C(u) < &u) +2C(w).

Jj=1 J=t

Theorem 1. ITERROUND is a polynomial-time 3-approximation algorithm for
MINCP.

Proof. By Lemma 3, each iteration of the algorithm removes either a variable or a
constraint from the LP. Hence the algorithm is polynomial time. The elimination
of a variable that takes value 0 or 1 does not change the cost. The elimination
of a constraint can only decrease cost, so the final solution has cost no more
than the value achieved by the original LP. Finally, when a capacity constraint
is eliminated, by Lemma 4, we incur a blowup of at most 3 in capacity.

2.2 A (k 4+ 1)-approximation algorithm for MINkSP

It is straightforward to generalize the the algorithm of the preceding section to
obtain a k + l-approximation to MINESP. We first set up the integer LP for
MINESP. For a given element e € [, S;, we use e; to denote the ith coordinate
of e. Let x4, be the indicator variable that ¢ is assigned to e € [], S;.

Minimize: Z Ze ft(€)
t,e

Subject to: the >1, VteT,
Z (di(e))ime < Ci(u),V1 <i<k,uel,
tere;=u
Zie € {0,1}, VieT,ec FE

The algorithm, which we call ITERROUND(k), is identical to ITERROUND of
Section 2.1 except that step 2b is replaced by the following.

2b Remove from the LP any tight capacity constraint in which the number of
variables is at most & more than the sum of the values of the variables.

The claims and proofs are almost identical to the k& = 2 case and are moved to
Appendix A. A natural question to ask is whether a linear approximation factor
of MINESP is unavoidable for polynomial time algorithms. Unfortunately, we do



not have any non-trivial results in this direction. We have been able to show that
the MINASP linear program has an integrality that grows as {2(log &/ loglog k)
(see Appendix A).

3 The maximization problems

We present, approximation algorithms for the maximization versions of coupled
placement and k-sided placement problems. We first observe, in Section 3.1,
that these problems reduce to column sparse integer packing. We next present,
in Section 3.2, an alternative combinatorial approach based on local search.

3.1 An LP-based approximation algorithm

One can write a positive integer linear program for MAXCP. Let x4, denote
the indicator variable for the the assignment of job ¢ to the pair (u,v), u € U,
v € V. The goal is then to

Maximize: Z LTt [t (U, V)
t,u,v

Subject to: thuv <1, vVteT,
u,v

Zpt(ua U)xtuv < Cuy Yu € []7
t,v

Zst(u7v)xtuv S dm Vv € Vva
tu

Teuw € {0, 1}, Vte T,ueUywveV.

Note that we can deal with capacities on u, v by scaling the p;(u,v) and s¢(u, v)
values appropriately. The above LP can be easily extended to MAXASP (see
Appendix B). These linear programs are 3- and k-column sparse packing pro-
grams, respectively, and can be approximated to within a factor of 15.74 and
ek + o(k), respectively using a clever randomized rounding approach. We next
give a combinatorial approach based on local search which is likely to be much
more efficient in practice.

3.2 Approximation algorithms based on local search

Before giving the details, we start with a few helpful definitions. For any u € U,
F, = %4 yTup ft(u,v). Similarly, for any v € V., F, = X} Ty fr(u, v). We set
w= %maxt,uyv fi(u,v). It follows that the optimum solution is at least ny and
at most nQ,u.

The local search algorithm will maintain the following two invariants: (1)
For each t, there is at most one pair (u,v) for which 2, > 0; (2) All the linear
program inequalities hold. It’s easy to set an initial state where the invariant

holds (all x4, = 0). The local search algorithm proceeds in the following steps:
While 3t,u, v ¢ fy(u,v) > F,2A8) 4 o) 45 fy(u! 0') + ep:




1. Set @4y = 1 and set x4y = 0 for all (v, v") # (u,v).

2. While Xy ,pi(u, 0)Ztyn > cy, reduce xyy, for the job with minimum e, f; (u, v) /pe(u, v)
such that x4, > 0.

3. While X, s (0, v)Tiue > dy, reduce zyy, for the job with minimum d,, f;(u, v) /s (u, v)
such that x4, >0

Theorem 2. The local search algorithm maintains the two stated invariants.

Proof. The first invariant is straightforward, because the only time we increase
an Ty, value we simultaneously set all other values for the same ¢ to zero. The
only time the linear program inequalities can be violated is immediately after
setting @1, = 1. However, the two steps immediately after this operation will
reduce the values of other jobs so as to satisfy the inequalities (and this is done
without increasing any xt,, so no new constraint can be violated).

Theorem 3. The local search algorithm produces a 3+ € approximate fractional
solution satisfying the invariants.

Proof. When the algorithm terminates, we have for all ¢, u, v: fi(u,v) < F, M—&—

Fv¥ + X o o fr(W,v")ep. We sum this over ¢, u, v representing the op-
timum integer assignments: OPT < X, F,, + X, Fy, + Xy oy o Zuw fi (4, v) + €OPT.
Each summation simplifies to the algorithm’s objective value, giving the result.

Theorem 4. The local search algorithm runs in polynomial time.

Proof. Setting 1, = 1 and setting all other z4y,r = 0 adds fi(u, v)— Xy Tpyror fr (v, ")
to the algorithm’s objective. The next two steps of the algorithm (making sure

the LP inequalities hold) reduce the objective by at most F, p‘(“ vy F, st(“ V),

It follows that each iteration of the main loop increases the solutlon value by at

least eu. By definition of u, this can happen at most n?/e times. Each selection

of (t,u,v) can be done in polynomial time (at worst, by simply trying all tuples).

Rounding Phase: When the local search algorithm terminates, we have a
fractional solution with the additional guarantee from the first invariant. Note
that we can extend this to the k-sided version if we increase the approximation
factor to k+1+e€. Below, we give two different rounding schemes. The first works
for general values of k and loses an O(k?) factor, for an overall approximation
factor of O(k?). The second is specific to the k = 2 case and obtains a better
approximation.

1. We randomly make each assignment with probability p times the fractional
value (80 pxty, for Coupled Placement), for some p to be defined later.

2. For each assigned job ¢, if the other jobs ¢ # t assigned to any one of its
assigned machines violate the corresponding linear program constraint, we im-
mediately drop job t. For Coupled Placement this means if Et,#’v D (U )Xoy >
1 for any t,u we set x4y, = 0.



3. Note that we may still violate linear program constraints, but for any partic-
ular machine the constraint would be satisfied if we dropped any one of its
assigned jobs. We divide the assigned jobs into k£ + 1 groups. These groups
should guarantee that for any machine with at least two assigned jobs, not all
its jobs are members of the same group. We then select the group with largest
total objective value as our final solution.

Theorem 5. For the k-sided version, the rounding scheme runs in poly-time
and achieves an O(k?)-approzimation over the fractional approzimation factor
(so an overall factor of O(k3) using local search) for appropriate choice of p.

Proof. The first two steps finish with a solution of value at least p(1 — p)* times
the optimum in expectation. This is because for any job ¢, the probability of
placing this job in step one is exactly p times its fractional value. Consider any
machine m where the job is assigned; the expected total size of the other jobs
t' # t assigned to this machine is at most pc,,, and thus the probability that these
other jobs exceed c¢,, is at most p. The probability that none of the & machines
where t is assigned exceed capacity from other jobs will be at most (1 — p)*.

We may still violate constraints. Dividing into k£ + 1 groups and picking the
best gives a result which is at least %_Hp( 1—p)* times optimum without violating
constraints. Selecting p = % gives the desired approximation factor.

It remains to show that the division into groups can be performed in poly-
time. We start with all machines unmarked. For each group, we select a maximal
set of jobs no two of which are assigned the same unmarked machine. We then
mark all machines to which one of our current group of jobs is assigned. Note
that immediately before we select group ¢, each remaining job is assigned to at
most k— i+ 1 unmarked machines. For ¢ = 1 this is obvious. Inductively, suppose
that job j is assigned to more than k£ —¢ unmarked machines immediately before
selecting group ¢ + 1. Before selecting group ¢, job j was assigned to at most
k — i+ 1 unmarked machines, and since we never “unmark” a machine it follows
that job j was assigned to exactly k — i+ 1 unmarked machines both before and
after the selection of group i. But then none of the jobs selected in group i are
assigned to any of the unmarked machines assigned to job j (else they would
have become marked after selection of group ¢). So we can augment group 7 with
job j without violating the constraint that no two jobs of group i are on the
same unmarked machine. This contradicts the maximality of group 1.

We thus conclude that immediately before we select group k + 1, each re-
maining job is assigned only to marked machines. Thus group k + 1 selects all
remaining jobs (maximality) and the jobs are divided into k+1 groups. Consider
any machine m with at least two assigned jobs. Let group 7 be the first group to
contain a job from m. Thus prior to selection of group ¢, we had not selected any
job which was assigned to m and m was unmarked. So group ¢ cannot include
more than one job from machine m without violating the condition that no two
jobs share an unmarked machine. It follows that there are at least two distinct
groups which contain jobs from machine m (group 4 and also some later group).



For MAXCP, we can improve the approximation factor. We refer the reader
to Appendix B for details.

Theorem 6. For MAXCP, there exists a polynomial-time algorithm based on
local search that achieves a 15 + € approzimation for MAXCP.

4 Online MAXCP and MaAxkSP

We now study the online version of MAXCP, in which jobs arrive in an online
fashion. When a job arrives we must irrevocably assign it or reject it. Our goal is
to maximize our total value at the end of the instance. We apply the techniques
of [8] to obtain a logarithmic competitive online algorithm under certain assump-
tions. We first note that online MAXCP differs from the model considered in [8]
in that a job’s computation/storage requirements need not be the same.

As demonstrated in [8] certain assumptions have to be made to achieve com-
petitive ratios of any interest. We extend these assumptions for the MAXCP
model as follows:

Assumption 1 There exists F' such that for all t,u,v either fi(u,v) = 0 or
1< fi(u,v) < Fmin(w, W)

Assumption 2 For ¢ = min(
st(u,v) < ed,.

;ﬁ), for all t,u,v: pi(u,v) < ec, and

It is not hard to show that they (or some similar flavor of these assump-
tions) are in fact necessary to obtain any interesting competitive ratios (proof
in Appendix C).

Theorem 7. No deterministic online algorithm can be competitive over classes
of instances where either one of the following is true: (i) job size is allowed to be
arbitrarily large relative to capacities, or (ii) job values and resource requirements
are completely uncorrelated.

A small modification to the algorithm of [8] gives an O(log F')-competitive al-
gorithm. Moreover, the lower bound of £2(log F') shown in [8] applies to online
MAaXCP as well. (See Appendix D for proof.)

Theorem 8. There exists a deterministic O(log F')-competitive algorithm for
online MAXCP wunder Assumptions 1 and 2. For MAXEkSP, this can be ex-
tended to a O(log kF')-competitive algorithm. Moreover, any online determinis-
tic algorithm for online MAXCP has competitive ratio 2(log F), and for online
MaxkSP has competitive ratio 2(logkF).

Theorem 9. There exist a randomized O(log F')-competitive algorithm (in ex-
pectation) for online MAXCP under assumption 1 even if we weaken assump-
tion 2 to require only that € = % No deterministic online algorithm for the
problem can accomplish such a result.
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A Proofs for MINESP

Fix an iteration of the algorithm, and an extreme point z. Let n; denote the
number of tight satisfaction constraints, and n; denote the number of tight ca-
pacity constraints on the ith side. Since z is an extreme point, if all variables in
x take values in (0,1), then we have N =n; + Y, n;.

Lemma 5. If all variables in x take values in (0,1), then there exists a tight
capacity constraint in which the number of variables is at most k more than the
sum of the variables.

Proof. Since each variable occurs in at most k tight capacity constraints, the
total number of occurrences of all variables across the tight capacity constraints
is kN — s for some nonnegative integer s. Since each satisfaction constraint is
tight, each variable appears in k capacity constraints, and each variable takes on
value at most 1, the sum of all the variables over the tight capacity constraints
is at least kn; — s. Therefore, the sum, over all tight capacity constraints, of the
difference between the number of variables and their sum is at most k(N — n;).
Since the number of tight capacity constraints is N — n, for at least one of these
constraints, the difference between the number of variables and their sum is at
most k.

Lemma 6. Let u be a side-i node with a tight capacity constraint, in which the
number of variables is at most k more than the sum of the variables. Then, the
sum of the capacity requirements of the tasks partially assigned to u is at most
the available capacity of u plus kC;(u).

Proof. Let ¢ be the number of variables in the constraint for u, and let the
associated tasks be numbered 1 through ¢. Let the demand of task j for the
capacity of node u be d;. Then, the capacity constraint for u is ), d;z; = ¢(u).



We know that m — >, x; < k. We also have d; < C;(u). Letting ¢(u) denote
the current capacity of u, we now derive

Theorem 10. ITERROUND (k) is a polynomial-time k + 1-approximation algo-
rithm for MINEKSP.

Proof. By Lemma 5, each iteration of the algorithm removes either a variable or a
constraint from the LP. Hence the algorithm is polynomial time. The elimination
of a variable that takes value 0 or 1 neither changes cost nor incurs capacity
blowup. The elimination of a constraint can only decrease cost, so the final
solution has cost no more than the value achieved by the original LP. Finally,
by Lemma 6, we incur a blowup of at most 1 + k in capacity.

We now show that the MINASP LP has an integrality gap of £2(log k/ loglog k).
We recursively construct an integrality gap instance with ¢ sides, for parame-
ters £ and ¢, with two nodes per side one with infinite capacity and the other
with unit capacity, such that any integral solution has at least ¢ tasks on the
unit-capacity node on some side, while there is a fractional solution with load
of at most ¢/¢ on the unit-capacity node of each side. Setting t = ¢ and k = /¢,
we obtain an instance in which the capacity used by the fractional solution is 1,
while any integral solution has load ¢ = ©(log k/ loglog k).

Each task can be placed on one tuple from a subset of tuples; for a given
tuple, the demand of the task on each side of the tuple is one. We start with the
construction for ¢ = 1. We introduce a task that has ¢ choices, the ith choice
consisting of the unit-capacity node from side 7 and infinite capacity nodes on
all other sides. Clearly, any integral solution uses up unit capacity of one unit-
capacity node, while there is a fractional solution (1/¢ for each choice) that uses
only 1/¢ fraction of each unit capacity node.

Given a construction for ¢! sides, we show how to extend to ¢/*' sides. We
take ¢ identical copies of the instance with ¢! sides and combine the tuples for
each task in such a way that for any 4, any integral placement places exactly the
same task on side 7 of each copy. Now we add task ¢ + 1 which can be placed
in one of ¢ tuples: unit capacity node on all sides of copy ¢ and infinite capacity
node on all other sides, for each i. Clearly, any integral solution will have to add
one more task to a unit-capacity node of a side that already has load ¢, yielding
a load t + 1, while a fractional solution can assign load of at most 1/¢ to the
unit-capacity nodes of each side.



B Proofs for MaxkSP and MAXCP

We first present the linear program for MAXkSP (recall the definition in Sec-
tion 1.1). Let x4, denote the indicator variable for the assignment of job ¢ to the
k-tuple e.

Maximize: Z Ze fr(€)
t,e

Subject to: the <1, vteT,
e
Z(dt(e))imte < C’i(ei), Vi € {1, ey k},
t,e
Tie € {0,1}, vtET,GGHiSi.

We now present the improved approximation algorithm for MAXCP. The
idea is to obtain a one-to-one correspondance between fractional assignments
and machines. Essentially we view the machines as nodes of a graph where
the edges are the fractional assignments (this is similar to the rounding for
generalized assignment). If we have a cycle, the idea is to shift the fractions
around the cycle (i.e. increase one xt,, then decrease some x4, and increase
some Ty, and so forth). Applying this directly on a single cycle may violate
some constraints; while we try to increase and decrease the fractions in such a
way that constraints hold, since each job has different “size” on its two endpoints
we may wind up violating the constraint Zt,v ZiuoPt (U, v) at a single node u. This
prevents us from doing a simple cycle elimination as in generalized assignment.
However, if we have two adjoining (or connected) cycles the process can be made
to work. The remaining case is a single cycle, where we can assign each edge
to one of its endpoints. Generalized assignment rounding would now proceed to
integrally assign each job to its corresponding machine; we cannot do this because
each job requires two machines, and each machine thus has multiple fractional
assignments (all but one of which “correspond” to some other machine).

Lemma 7. Given any fractional solution which satisfies the local search invari-
ants, we can produce an alternative fractional solution (also satisfying the local
search invariants and with equal or greater value). This new fractional solution
labels each job t with 0 < T4y, < 1, with either u or v, guaranteeing that each u
is labeled with at most one job.

Proof. Consider a graph where the nodes are machines, and we have an edge
(u,v) for any fractional assignment 0 < x4, < 1. If any node has degree zero or
one, we remove that node and its assigned edge (if any), labeling the removed
edge with the node that removed it. We continue this process until all remaining
nodes have degree at least two. If there is a node of degree three, then there must
exist two (distinct but not necessarily edge-disjoint) cycles with a path between
them (possibly a path of length zero); since the graph is bipartite all cycles are
even in length. We can alternately increase and decrease the fractional assign-
ments of edges along a cycle such that the total load >, | ps(u, )21y, changes



only on a single node u where the path between cycles intersects this cycle. We
can do the same along the other cycle. We can then do the same thing along the
path, and equalize the changes (multiplicatively) such that there is no overall
change in load, but at least one edge has its fractional value changing. If this
process decreases the value, we can reverse it to increase the value. This allows us
to modify the fractional solution in a way that increases the number of integral
assignments without decreasing the value. After applying this repeatedly (and
repeating the node/edge removal process above where necessary), we are left
with a graph that consists only of node-disjoint cycles. Each of the remaining
edges will be labeled with one of its two endpoints (one to each). The overall
effect is that we have a one-to-one labeling correspondance between fractional
assignments and machines (each fractional edge to one of its two assigned ma-
chines). Note however that since each job is assigned to two machines and labeled
with only one of the two, this does not imply that each machine has only one
fractional assignment.

Once this is done, we consider three possible solutions. One consists of all
the integral assignments. The second considers only those assignments which are
fractional and labeled with nodes u. For each node v, we select a subset of its
fractional assignments to make integrally, so as to maximize the value without
violating capacity of v. We cannot violate capacity of u because we select at most
one job for each such machine. The result has at least % the value of assignments
labeled with nodes u. For the third solution, we do the same but with the roles
of u,v reversed. We select the best of these three solutions; our choice obtains
at least % of the overall value.

Proof of Theorem 6: The algorithm sketch contains most of the proof. We
need to establish that we can get at least % the fractional value on a single
machine integrally. This can be done by selecting jobs in decreasing order of
density (f:(u,v)/pi(u,v)) until we overflow the capacity. Including the job that
overflows capacity, this must be better than the fractional solution. Thus we can
select either everything but the job that overflows capacity, or that job by itself.

We also need to establish the % value claim. If we were to select the integral
assignments with probability % and each of the other two solutions with proba-
bility %, we would get an expected % of the fractional solution. Deterministially
selecting the best of the three solutions can only be better than this. a

C Proof of Theorem 7

We first show that if resource requirements are large compared to capacities,
payment functions f; are exactly equal to the total amount of resources and
each job requires the same amount over all resources/dimensions (but different
jobs can require different amounts), then no deterministic online algorithm can
be competitive.

Consider a graph G with a single compute node and a single data storage
node. Each node has one-dimensional compute/storage capacity of L. A job



arrives requesting 1 unit of computing and storage and will pay 2. Clearly, any
competitive deterministic algorithm must accept this job, in case this is the only
job. However, a second job arrives requesting L units of computing and storage
and will pay 2L. In this case, the algorithm is L-competitive, and L can be
arbitrarily large.

Next, we show that if resource requirements are small relative to capacities,
payment functions f; are arbitrary and resource requirements are identical, then
no deterministic online algorithm can be competitive. This instance satisfies
Assumption 2 but not Assumption 1.

Consider again a graph G with a single compute node and single data storage
node each with one-dimensional, unit capacities. We will use up to k + 1 jobs,
each requiring 1/k units of computing and storage. The i-th job, 0 < i < k, will
pay M for some large value M. Now, consider any deterministic algorithm. If
it fails to accept any job j < k, then if job j is the last job, it will be 2(M)-
competitive. If the algorithm accepts jobs 0 up through k£ — 1 then it will not be
able to accept job k and will be (M )-competitive. In all cases it has competitive
ratio at least £2(M) and M and k can be arbitrarily large.

Similarly, if resource requirements are small relative to capacities, payment
functions f; are exactly equal to the total amount of resources requested and
resource requirements are arbitrary, then no deterministic online algorithm can
be competitive.

Consider once more a graph G with a single compute node and single data
store node with one-dimensional compute/storage capacities. However, this time
the compute capacity will be 1 and the storage capacity will be some very large L.
We will use up to k+1 jobs, each requiring 1/k units of computing. The i-th job,
0 < i < k, will require the appropriate amount of storage so that its value is M?
for very large M. Assuming L = O(kM¥), all these storage requirements are at
most 1/k of L. Note that storage can accommodate all jobs, but computing can
accommodate at most k jobs. Any deterministic algorithm will have competitive
ratio 2(M) and k, M and L can be suitably large.

Thus, it follows that some flavor of Assumptions 1 and 2 are necessary to
achieve any interesting competitive result.

D Proof of Theorem 8

We adapt the framework of [8] to solve the online MaxCP problem. This frame-
work uses an exponential cost function to place a price on remaining capacity of
a node. If the value obtained from a task can cover the cost of the capacity it
consumes, we admit the task. In the algorithm below, e is the base of the natural
logarithm.

We first show that our algorithm will not exceed capacities. Essentially, this
occurs because the cost will always be sufficiently high.

Lemma 8. Capacity constraints are not violated at any time during this algo-
rithm.



Algorithm 1 Online algorithm for MaxCP.

1 A1)« 0, (1)« O0forallueUveV

2: for each new task j do
)\u(J)M

costy (j) < 3(e

—1)
n2F+1)

costy () %( Ao () -1)

For all uv let Ziyy = 22 S: U>costu(j) + %i’v)costv ()

3
4
5:
6:  Let uwv maximize f;(u,v) subject to Zjuv < fj(u,v)
7.
8
9

if such wv exist with f;(u,v) > 0 then
Assign j to uv
MG+ 1) = Au(j) + 28

10: Ao(f + 1) = () + 252

11: For all other u’ # u let Ay (5 + 1) < Auwr(J)
12: For all other v' # v let Ay (§ + 1) < A/ (j)
13:  else

14: Reject task j

15: For all u let Au (5 4+ 1) < Au(4)

16: For all v let Ay (j + 1) < A ()

17:  end if

18: end for

Proof. Note that A\, (n + 1) will be iﬂmpt(u, V)Ttup, Since any time we assign
a job j to uv we immediately increase A, (j+ 1) by the appopriate amount. Thus
if we can prove A\, (n + 1) < 1 we will not violate capacity of w.

Initially we had A, (1) = 0 < 1, so suppose that the first time we exceed
capacity is after the placement of JOb j. Thus we have A\, (j) <1 < A\, (j +1).
By applying assumption 2 we have A,(j) > 1 — e. From this it follows that
costy (j) > 2 (eMPF+D — 1) = F, and since these costs are always non-negative

we must have had Zj,, > % (u ”)F > f;(u,v) by applying assumption 1. But
then we must have rejected JOb j and would have A\, (j + 1) = A, (j)
Identical reasoning applies to v € V.

Next, we bound the algorithms revenue from below using the sum of the node
costs.

Lemma 9. Let A(j) be the total objective value Xy oTiuy fr(u,v) obtained by
the algorithm immediately before job j arrives. Then (3eIn(2F + 1))A(j) >

Y wer Costy(§) + D ey costy(j).

Proof. The proof will be by induction on j; the base case where j = 1 is immedi-
ate since no jobs have yet arrived or been scheduled and cost,, (1) = cost,(1) =0
for all v and v.

Consider what happens when job j arrives. If this job is rejected, neither side
of the inequality changes and the induction holds. Otherwise, suppose job j is
assigned to uv. We have:

A +1) = AG) + fiu,v)



We can bound the new value of the righthand side by observing that since
cost,, has derivative increasing in the value of \,, the new value will be at most
the new derivative times the increase in \,. It follows that:

1 In(2F +1 w(G+D In
costy (5 + 1) < cost () + (i + 1) — A(5)) 5 (REET Ly 2utsspsss

pj(u,v)(ln(2F+1) 1 ruGmersy eln(2F+1))

)(Ge I (e

costy (j + 1) < costy(j) + 5

Cu 1—c¢

py(u,v) In(2F + 1)
Cu 1—c¢

1
costy, (j + 1) < cost,(j) + (costy(5) + 5)(eeln(2F+1))

Applying assumption 2 gives:

1
costy (5 + 1) < costy(5) + (2eIn(2F + 1))(Mcos j 1
Cy
Identical reasoning can be applied to cost,, allowing us to show that the

increase in the righthand side is at most:

j j 1
et (2F + 1)(ZL%Y st () + sﬂ(;’”) cost, (j) + 3)
Cu u
Since j was assigned to uv, we must have f;(u, v) > 2% ”)costu(j)+%v)cost (5);
from assumption 1 we also have f;(u,v) > 1 so we can conclude that the increase
in the righthand side is at most:

(Beln(2F + 1)) fj(u,v) < (3eln(2F +1))(A(j + 1) — A(j))

Now, we can bound the profit the optimum solution gets from tasks which
we either fail to assign, or assign with a lower value of fi(u,v). The reason we
did not assign these tasks was because the node costs were suitably high. Thus,
we can bound the profit of tasks using the node costs.

Lemma 10. Suppose the optimum solution assigned j to w,v, but the online
algorithm either rejected j or assigned it to some u’,v" with f;(u/,v") < f;(u,v).
Then %ﬁ’v)costu(n +1)+ 7(u ) costy(n + 1) > fi(u,v)

Proof. When the algorithm considered j, it would find the u,v with maximum
fi(u,v) satistying Zj.., < fj(u,v). Since the algortihm either could not find
such u, v or else selected v/, v" with f;(v/,v") < f;(u,v) it must be that Zj,, >
fj(u,v). The lemma then follows by inserting the definition of Z,,, and then
observing that cost, and cost, only increase as the algorithm continues.



Lemma 11. Let Q be the total value of tasks which the optimum offline algo-
rithm assigns, but which Algorithm 1 either rejects or assigns to a uv with lower
value of fi(u,v). Then Q < Xy cycosty(n+ 1) + Xyey cost,(n +1).

Proof. Consider any task ¢ as described above. Suppose offline optimum assigns
q to ug, vy. By applying lemma 10 we have:

Q=X,f.(ug,v4) < qucostuq (n+1)+ Wcos‘cq(n +1)
Cy v
The lemma then follows from the fact that the offline algorithm must obey
the capacity constraints.

Finally, we can combine Lemmas 9 and 11 to bound our total profit. In
particular, this shows that we are within a factor 3eln(2F + 1) of the optimum
offline solution, for an O(log F')-competitive algorithm.

Theorem 11. Algorithm 1 never violates capacity constraints and is O(log F)-
competitive.

We can extend the result to k-sided placement, and can get a slight improve-
ment in the required assumptions if we are willing to randomize. The results are
given below:

Theorem 12. For the k-sided placement problem, we can adapt algorithm 1
to be O(log kF)-competitive provided that assumption 2 is tightened to € =

(1 1
n’lln(g7 m)

Proof. We must modify the definition of cost to:

1 du (@) In(kF+1)

costy(7) = %(e -1

The rest of the proof will then go through. The intuition for the increase in
competitive ratio is that we need to assign the first task to arrive (otherwise
after this task our competitive ratio would be unbounded). This task potentially
uses up space on k machines while obtaining a value of only 1. So as the value
of k increases, the ratio of “best” to “worst” task effectively increases as well.

Theorem 13. If we select a random power of two z € [1, F| and then reject all
placements with fi(u,v) < z or fi(u,v) > 2z, then we can obtain a competitive
ratio of O(log F'log k) while weakening assumption 2 to ¢ = min(%7 m)
Note that in the specific case of two-sided placement this is O(log F')-competitive
requiring only that no single job consumes more than a constant fraction of any

machine.

Proof. Once we make our random selection of z, we effectively have F' = 2 and

can apply the algorithm and analysis above. The selection of z causes us to lose
(in expectation) all but @ of the possible profit, so we have to multiply this

into our competitive ratio.



