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ABSTRACT

Score-distribution models are used for various practical pur-
poses in search, for example for results merging and thresh-
old setting. In this paper, the basic ideas of the score-
distributional approach to viewing and analysing the ef-
fectiveness of search systems are re-examined. All recent
score-distribution modelling work depends on the availabil-
ity of actual scores generated by systems, and makes as-
sumptions about these scores. Such work is therefore not
applicable to systems which do not generate or reveal such
scores, or whose scoring/ranking approach violates the as-
sumptions. We demonstrate that it is possible to apply at
least some score-distributional ideas without access to real
scores, knowing only the rankings produced (together with
a single effectiveness metric based on relevance judgements).
This new basic insight is illustrated by means of simulation
experiments, on a range of TREC runs, some of whose re-
ported scores are clearly unsuitable for existing methods.

Categories and Subject Descriptors
H.3.4 [Inf Storage & Retrieval]: Systems and Software
Keywords

effectiveness, models, score distributions

1. INTRODUCTION

Models of the output of information retrieval systems based
on the notion of scoring and ranking, combined with the
evaluation notion of relevance, and treating the scores of
relevant /non-relevant documents as arising from statistical
distributions (one for each class), have been around for half
a century [22]. Such models can potentially explain aspects
of the behaviour of systems, in particular the shape of ef-
fectiveness curves such as recall-precision curves (e.g. [8]).
Purely as abstract models of system behaviour they may
help to explain and understand aspects of effectiveness (such
as the effect of test collection size on effectiveness metrics,
[12]). They make it possible to do certain kinds of simulation
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experiment (for example to improve understanding of sys-
tem behaviour or that of effectiveness metrics under different
conditions — e.g. [17]). They also have potential application,
and indeed have been applied, directly to various practical
tasks in information retrieval, most obviously to threshold
setting and to merging results lists from different systems
(e.g. [7, 15, 1]).

This paper is not about any of these practical applications,
but about the models themselves. We develop a fundamen-
tal aspect of this approach, implicit in the original work in
the 1960s but ignored in all subsequent work. We make the
approach much more robust, by removing its dependence on
essentially arbitrary aspects of any scoring formula which do
not affect the ranking. Even better, we make it possible to
apply score-distribution models to systems which rank docu-
ments without producing or revealing scores at all, or whose
scores are unsuitable for distributional modelling. Thus we
achieve a considerable extension of both the scope and the
robustness of this modelling approach to IR systems.

2. BACKGROUND

Many systems rank search results by means of some form
of scoring: each candidate item is given a score measuring in
some sense how closely it fits with the query, and the items
are ranked in descending score order. A significant litera-
ture has built up around the analysis of scores, in particular
on modelling score distributions, from Swets in the 1960s
[22, 23]. It is generally assumed in this work that these
scores are available, and actual numerical scores are usually
used. This is somewhat problematic, because the relation-
ship between scoring and ranking has a lot of redundancy.
Given a scoring method which produces a certain ranking,
we could derive any number of different scoring functions
which produce exactly the same ranking: any monotonic
transformation of the original score will have this property.
Even if a system does actually reveal a numerical score, we
often have no knowledge of what transformations may have
been applied before the score reached us.

An example is provided in the files recording submissions
to TREC. Generally these include for each topic a ranked
list of items and a score for each one. The only requirement
from the TREC side on this score is that it should be con-
sistent with the ranking.® In some cases it looks like a score
which might have been generated by one of the familiar scor-
ing algorithms (e.g. BM25 or the query-likelihood language
model), but in others it looks quite different. Sometimes it

Ltrec_eval actually ignores the presented ranking and uses
the ranking implied by the scores instead.



is clear that system output was just the ranking of the top
1000 items, and a score has been generated by subtracting
the rank-position from 1001 (entirely acceptable by TREC
rules). If indeed such a system ranks on the basis of an
internal scoring function, then this rank-based score is actu-
ally a monotonic transformation of the internal score — but
of a very peculiar kind, and making any kind of inference
about the characteristics of the internal scoring, or any kind
of distributional analysis, impossible.

Further, there are systems (particularly web search en-
gines) which make an initial Boolean selection and then ap-
ply a scoring function within the selected set. The scoring
function is often undefinable for items outside the selected
set, using features of the documents which can be derived
only for those satisfying the Boolean requirement. There
are other possible configurations — for example, a system
which performs some initial retrieval, perhaps with a stan-
dard type of scoring, and then re-ranks the top-ranked doc-
uments based on some criterion which only applies to these
documents; or a system which fuses the top-ranked items
from multiple searches; or a system which computes a score
for every document, chooses the single top-ranked item, and
then recomputes the score for each successive choice. Thus
the notion of a single scoring function applicable (in prin-
ciple) to all documents in the collection, which defines the
final ranking, may be quite far from the truth.

Score distribution modelling is nevertheless a potentially
useful device in a number of contexts, as discussed above.
But the dependence of explicit score distribution modelling
on specifically reported numerical scores, and the likely sen-
sitivity to perhaps grossly non-linear transformations of these
scores, limits its usefulness. It may, however, be possible
to tap into the abstract theoretical model of IR embedded
in the score-distribution notion, without actually using ex-
plicit scores. The present paper develops this notion. In the
next section, we develop a theoretical analysis of the kind of
smooth models of effectiveness which the score-distribution
models attempt to supply, and how such models might be
fitted to real data in the absence of scores. This leads to the
main conclusions of the paper (Section 4). Some limited,
initial experimental results using simulations follow (Section
5). As well as providing some empirical support for the the-
ory, these serve to illustrate one way in which the models
might be used.

3. SMOOTH MODELS

3.1 Swets re-examined

A half-century ago, Swets [22] proposed a way of look-
ing at the results of a traditional Cranfield-style IR test,
inspired by work on signal detection theory. The elements
of this model, slightly re-interpreted for the present paper,
were: 1. The system produces in response to a query a
full or partial ordering of documents, which we can model
as resulting from a scoring-and-ranking process; 2. We can
then model the effectiveness curve as deriving from the dis-
tributions of scores of relevant and non-relevant documents
respectively; 3. One hypothesis concerning these distribu-
tions is that both are Gaussian, with the same variance.

By effectiveness curve, we might mean for example a recall-
precision graph showing effectiveness over the ranking. What
Swets used was a recall-fallout graph, because this is easier
to tie to the distributional model. Although in his second
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paper he made an empirical analysis using real test data,
he did not use real scores. Instead, he drew inferences from
his model about the shape of the recall-fallout curve, and
tested these inferences — specifically that the recall-fallout
graph, after suitable transformation of both metrics, would
be a straight line.

We might see his model as follows: that systems actu-
ally generate scores, and that these scores actually follow
a Gaussian distribution. However, given the redundancy
between scoring and ranking, we can make a slightly more
sophisticated version of the hypothesis as follows:

Swets hypothesis revised: If system scores are trans-
formed so that the distribution of non-relevant scores
is Gaussian, then the distribution of relevant scores
will also be Gaussian, with the same variance.

This is as a much weaker hypothesis. Given a distribution
of non-relevant scores, it takes only very weak assumptions
to ensure that the scores can be monotonically transformed
so that the distribution is Gaussian (see the Appendix). So
the only remaining question is, what does this same trans-
formation do to the relevant score distribution?

This version is effectively independent of actual scores:
given some real system scores, we are free to transform them
in any monotonic way (linear or not) to fit the hypothe-
sis. Given a system which ranks without generating explicit
scores, we can in principle assign our own scores consistent
with the ranking, so as to fit the hypothesis. We could even
throw away any explicit system scores and infer our own,
again consistent with the ranking. As will be seen below,
we can do without scores altogether.

Most work on score-distribution models (e.g. [9, 8, 7, 4,
15, 10, 1, 3, 2]) has used explicit scores provided by systems
and fitted distributions to these scores. Some of this work
has performed some form of (usually linear) score normali-
sation. To our knowledge, none has tried to improve the fit
of any particular distributional model with any non-linear
transformation of the scores, and none is able to work with-
out scores.

3.2 Theoretical basis

Actual distributions of scores are messy, being both dis-
crete and unsmooth in various ways. This is not only be-
cause we only ever observe a finite number of documents and
their scores, but also because of how the scores are derived
(e.g. a weighting scheme based on tf and idf has a discrete
range of actual values, since both tf and df must be inte-
gers). The observed samples are usually small because for
a given query, the total number of relevant documents in a
collection is often small; and in the case of non-relevant doc-
uments, we are interested only in the extreme outliers, which
also behave like a small sample (see [14]). Nevertheless, we
are interested in models which smooth over this messiness.
What might be the theoretical basis for introducing such a
smooth model?

We might for example [17] regard the test collection as
having been sampled from a large or infinite population
of possible documents. In this view, the smooth model is
assumed to apply to the infinite population; all messiness
arises from the sampling. This is only a partial explanation:
it deals with the messiness that arises from small-sample
causes, but not with any that might arise from the actual
scoring formula. We have also to assume that the actual
scoring formula provides only an approximation to some no-



tional, truly continuous measure. For practical purposes,
this assumption is probably not very onerous.

There may be other ways in which we could see our ob-
servations as arising from a smooth model. For example, we
could see each document text as noisy, arising from language-
model-style choices of words by the author, with a random
element. Another possible source of noise lies in the rel-
evance judgement — we may assume that the judgement,
and therefore the resulting assignment of a score to one or
other distribution, has a random element. Both of these may
provide additional explanations for observed messiness, but
neither (on its own or in combination) can fully bridge the
gap between messy observations and a smooth model.

3.3 Smoothness assumptions

The usual kind of a smoothness assumption is to assume
that each score distribution follows some known continuous
form. But Swets does not attempt to fit the distributions
to actual scores: he first infers a smooth effectiveness curve,
and then observes empirical curves. As discusssed above,
almost all later work (from Brookes [9]) uses scores directly.
Here we follow Swets’ example. (But we note a further dif-
ference, that Swets’ curves are summaries over sets of topics,
while the distribution-fitting approach is applied topic-by-
topic. Swets’ accumulation over topics is problematic; we
follow the topic-by-topic approach.)

Effectiveness curves reflect the ranking rather than the
actual scores — any transformation of the scores that pre-
serves ranks also preserves the effectiveness curve. Thus a
smoothness assumption might be expressed in terms of the
effectiveness curve rather than the actual scores. Following
previous work, we define recall and fallout as the cumulative
distribution functions for the relevant and non-relevant score
distributions at a score threshold (actually reverse cumula-
tive functions, starting from the high-score end). Precision
at a score threshold is a function of recall, fallout and gener-
ality. A recall-fallout or recall-precision effectiveness curve
results from varying the score threshold. The curves are
invariant under all monotonic transformations of the scores.

A smooth distribution hypothesis will necessarily lead to a
smooth effectiveness curve hypothesis (SECH), but we may
also formulate a SECH directly. We note two recent uses of
something like a direct SECH. The first is the maximum en-
tropy approach [6]. Here, a recall-precision curve is derived
from a single per-query measurement of average precision,
and an assumption that the curve is the one which max-
imises the entropy. The second [5] explicitly assumes that
the R-P curve is one of a family of curves controlled by a
single parameter, which is fitted again by means of a single
per-query measurement, this time of R-Precision. (This is
the AY family, below.)

These arguments suggest three possible ways to approach
smoothness, apart from the usual score-distribution-fitting;:
1. We use a distributional model to derive a SECH (e.g. the
Swets two-Gaussian-equal-variance model); 2. we come up
with a SECH directly (e.g. the AY family of R-P curves); 3.
we use a principle which allows us to infer a smooth model
(e.g. the maximum entropy principle). In any of these cases,
we can then investigate the SECH empirically, including fit-
ting any necessary parameters and testing goodness of fit,
without making any use of the scores themselves. We note
further that [13] takes a step in the reverse direction, by
assuming a SECH and a distribution of non-relevant scores,
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and inferring the score distribution for relevant documents.
This step is central to the arguments and to the simulation
experiments described below.

3.3.1 Model parameters

One consequence of moving from explicit scores to SECHs
is a reduction in the number of parameters that we need to
estimate. For example, in the original Swets model (two
Gaussian distributions of equal variance) we need three pa-
rameters (two means pg, un, for relevant and non-relevant
respectively, and one variance o). However, the effectiveness
curve is fully determined by a single parameter which can
be expressed as (”R%'”N) [20]. The redundancy in the actual
scoring allows us to throw away two parameters (scale and
absolute location). (We note also that some inferences from
the orginal Swets hypothesis require a fourth paramer, gen-
erality (= prior probability of relevance). The SECH version
may still require this parameter, see below.)

The two papers which use something like a direct SECH fit
a single measurement of retrieval effectiveness with a smooth
model. In [6] this measurement is average precision; in [5,
13] it is R-Precision. In principle, a single measurement
should be enough to fit any single parameter model. As
pointed out in [5], if the smooth model takes the form of a
single-parameter family of recall-precision curves, then it is
easy to fit the parameter from R-Precision, which defines a
specific R-P point on the positive diagonal through which
the curve must pass. In principle it should be possible to
fit a single parameter to average precision (interpreted as
the area under the R-P curve), but it may be intractable to
express this in analytical form.

Some further distributional models reduce to single-parameter

families of R-P curves, and can therefore be treated in a
similar way; two examples are given below. Other distri-
butional models require more parameters: for example, the
Swets unequal-variance-Gaussians model has four parame-
ters, which should reduce to two for a SECH. We do not
pursue any such models here. The maximum entropy prin-
ciple is more flexible: we can (in principle, again) introduce
any number of constraints within which the entropy has to
be maximised. Thus we can require it to fit average preci-
sion only, or include some other parameter(s) as constraints.
The use of this principle requires further exploration, not at-
tempted in this paper. Here we discuss some possible SECHs
and the estimation of parameters. In section 5 we report on
some experiments, illustrating the estimation process and
also one example of a use to which these models might be
put.

3.4 Some SECHs

Given (a) a distribution of non-relevant scores, and (b)
a SECH with estimated parameter values, we can infer the
distribution of relevant scores, as shown in [13]. We can
now take this principle a stage further. We ignore actual
scores, and rely on the SECH to give us all the information
that we need to know about the ranking effectiveness of the
system. Now we are at liberty to choose any reasonable
non-relevant distribution and infer the corresponding rele-
vant distribution. In effect we infer the behaviour of some
scoring function which would be consistent with what we
know about the ranking. The scoring function whose be-
haviour we infer could be any monotonic transformation of



the original scores — it matters not what this transformation
is, nor does it need to be made explicit.

But we do need a good SECH for this purpose. Here
we discuss three smooth models for recall-precision curves.
The first is based on a simple, direct assumption about the
curves themselves; the other two derive from assumptions
about score distributions. However, we need first to intro-
duce some useful relationships. The basic ideas are taken
from [18], with some development from [13]. Given a pair of
score distributions, fr(z) and fn(z), for relevant and non-
relevant documents respectively, and given a score threshold
t, we identify recall and fallout with the cumulative distri-
bution functions (cumulated from the right) as follows:

0= [ falspas )= [ tsras

Now we can derive a formula for precision at t, p(t) =
r(t)
OEFIOE
the collection (that is, another way of expressing generality,

see section 3.3.1).

3.4.1 Family 1: the AY family

A single-parameter family of smooth recall-precision curves
is defined in [5] by the equation p(r) = 11_'__7’"” This curve
starts at (0,1) and ends at (1,0), and is symmetrical about
the line y = x. We can estimate an appropriate o, for a par-
ticular outcome (ranked and relevance-assessed documents
for a given system and topic) by fitting the curve using the
value of R-Precision, rp. This metric defines a point (rp, rp)
through which the curve should pass; solving for a; we get

L& (Lrp—1)° =1 (1)

We note, however, that this is not the only way to estimate
ai to fit a particular outcome; it may suffer from the fact
that it tries to fit only a single point on the curve. Be-
low we discuss a different method using average precision.
Nevertheless, this method fits actual recall-precision curves
surprisingly well [5].

and n(t

where O is the prior odds of non-relevance in

3.4.2 Family 2: an exponential family, E

If we assume (one of the possible models originally dis-
cussed by Swets) that both distributions are exponential,
we can derive a simple relationship between recall and fall-
out: if the exponential rates (inverse of mean) are Ar and

A

AN
An respectively, then n(t) = r(t) *k . Now we obtain p(r) =

where as = i—g — 1, normally positive. This curve

1), but ends at (1, ﬁ), which is actually the

1-&-0%7
starts at (0,
correct place (precision is then equal to generality, the prior
probability of relevance in the collection, rather than zero).
Again, we can estimate az from rp:

log(;5; — 1) — logO

~ 2
o2 log rp (2)

3.4.3 Family 3: a logistic family, L
If we assume two logistic distributions of equal variance,
we have a simple linear relationship between logitr and
r(t)
ag—r(t)(az—1)
which will normally be greater than 1. From this, p(r) =

%. This curve does not start at (0,1), but at

(0 — somewhere between 0 and 1 on the precision

logit n. This translates to n(t) = for some s,

? (a3+0)
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axis. This is consistent with theoretical results reported in
[14]. Again, we can estimate as from rp:

o Nrp(rp—l—O—l)
T -2

Graphs of all three families are shown in Figure 1. We note
also that the score-distribution models on which the E and
L families are based both satisfy the convexity hypothesis
[18].

®3)

Figure 1: R-P graphs for three families of SECHs:
AY, E and L. x = Recall, y = Precision.

3.5 Estimation of alpha

For all the families described, the suggested estimation of
the relevant o parameter from rp is based on ensuring that
the fitted curve passes through the single point (rp,rp). It
might be better to fit the curve parameter « to the observed
average precision, avp, rather than to the observed rp, be-
cause avp is based on the entire curve. We note that aver-
age precision is the area under the recall-precision curve. In
principle we could integrate over the theoretical curve and
fit the parameter by equating this area with the observed
avp. However, none of the three families discussed above
results in a tractable analytical formula for the integral, to
allow us to express the a parameter in terms of observed
avp. We present an alternative method, based on numerical
integration

The principle of the method is to compute upfront the
avp values associated with a grid of a values, and then,
for each system-topic pair, to find the nearest avp in the
resulting table. This would give us an estimated « for this
case. However, the method needs to take into account two
more factors: 1. We have already seen that the odds O is
involved in the relationship, so we need to include O in the
analysis. 2. Observed avp is calculated to some threshold
recall, namely the recall attained by the system at whatever
rank threshold is used (as opposed to recall=1); we therefore
need some way to deal with this incompleteness.

Another aspect that we need to think about, specifically
for simulation, is whether we attempt to model the entire
collection of documents (with a corresponding extremely
large O value), or whether we attempt to limit to some set of
top-ranked documents. Most work on explicit score distribu-
tion modelling tries to model only the retrieved set, though
it is also possible [1] to regard the retrieved set as a sample
from a true distribution that has been truncated. Simulation
of the entire collection is probably intractable on any scale.
However, the method suggested here allows an intermedi-
ate approach. We assume an arbitrary threshold some way
down the ranking (which we would never normally reach),
by which point it is likely that all relevant documents would
have been retrieved — in the simulations reported below, this



limit is set at 5000. This defines the full length of the recall-
precision curve. Then we estimate the curve parameter a by
fitting avp, observed at an earlier threshold, in an appropri-
ate way. This gives us a model which extends (courtesy of
the smooth curve assumption) well beyond where we have
observed it. We can now construct two different ways of fit-
ting observed avp. One is to make use of the observed value
of recall at rank 1000. We tabulate the values of the area
under the R-P curve for a grid of the following, each divided
into bins: a x OXx recall. That is, we numerically integrate
the assumed smooth R-P curve for the given combination
of a and O, from zero to the given recall value. Then, for
each topic (with its odds O and its observed avp and recall
at rank 1000), we can find the a value that gives the closest
match. The second method is to project a corrected avp
value for the whole curve, and then use an o x O grid. In
the experiments reported below, this method was used, and
a heuristic correction was found to give reasonable results.

4. INSIGHTS

The core of the present paper is a theoretical insight into
modelling effectiveness data: that the use of score distri-
bution models need not be dependent on the availability of
actual scores, or on any assumptions about actual scores if
they are available. We have seen that we can in principle
set up a smooth model such as a SECH, and fit it to data
arising from a conventional IR experiment (i.e. estimate the
parameters of the model for each system-topic pair). The
smooth model may or may not derive from score-distribution
assumptions, but in either case we can interpret the model
as a score-distribution model. This is the primary conclusion
of this paper.

We report some very limited experimental results in sup-
port of this insight, based on simulation, and using the re-
sults of a set of TREC runs as detailed below. Here we spec-
ify the purpose of the experiments. Simulations are based
on models of the score distributions, but do not use actual
scores. Instead, we

1. assume a one-parameter smooth effectiveness model;

2. fit this model using a single effectiveness measurement
for each system-topic pair;

3. assume a fixed non-relevant distribution, the same for
all topics and systems, with no estimated parameters;

4. infer from the fitted smooth model the corresponding

relevant distribution for each system-topic pair;

5. run a simulation by sampling from these distributions.
In the case of a SECH model, fitting the model means es-
timating the appropriate o parameter; in the case of maxi-
mum entropy, steps 2 and 4 go together: fitting the model
would be exactly inferring the relevant distribution. Our
theoretical insight implies that (a) using actual scores is un-
necessary, and (b) the results will be independent of the
particular assumption made at item 3. The object of the
experiments is to provide some preliminary empirical sup-
port for these assertions, and some comparison of the three
different SECH models.

5. EXPERIMENTS

In the immediately preceding section, we set out the aims
of the experiments. The basic method is to model (query-
by-query) the output of a range of TREC systems using the
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methods discussed above, to run a series of simulation exper-
iments based on the models, and to compare the simulated
results of different models with each other and with the real
results.

All data used in these experiments was taken from the
TREC 2004 Robust track: 249 topics and approximately
half a million documents, and also the reported run results
(ranked lists for each topic) submitted to TREC. 110 runs
were submitted, by 14 different research groups. In order to
test the ideas of this paper on as full a range as possible of
system types, without an explosion in the number of exper-
iments, we chose 14 runs, the single best (by MAP) run for
each group. In terms of the reported scores, these included a
full range from runs based on a single scoring function poten-
tially applied to every document, to those (two runs) where
the scores appeared to be reverse-engineered from ranks, as
discussed above.

5.1 A brief account of the simulation process

The purpose of the simulation, based on a model such as
a score-distribution model, is to obtain multiple measure-
ments of any particular evaluation metric, on each system-
topic pair, as if we had multiple test collections sampled
from a population whose characteristics are encapsulated in
the model. We can then assess whether the observed results
(one measurement for each system-topic pair) could plausi-
bly have arisen from the model that we used: a good model
is one from which the observed results could plausibly have
come. In these experiments, we consider the three models
arising from the three SECH families, together with (very
briefly) one bootstrap model and one model involving fitting
distributions in the conventional way. Plausibility is assessed
in terms of an informal goodness-of-fit analysis, using both
mean and variation. Similar simulation experiments are pre-
sented in [11, 17, 21]; the last citation discusses some of the
general issues involved.

Given relevant and non-relevant score distributions, we
draw a sample of appropriate size from each, jointly rank
the results, and evaluate each ranked list in the usual way,
using any of the usual metrics. As discussed in Section
3.5, we simulate the top 5000 ranked documents (1000 only
for bootstrap and GMG). This process is applied to each
system-topic pair, and repeated 1000 times. Thus for each
single metric M, defined for a single system-topic pair, we
have a single observation and 1000 simulated values. Each
simulated value represents what might have been the result
from a different sample of documents from the same popu-
lation.

The detail of the simulation process is somewhat complex,
and is not described here; there is some discussion in [21].
However, we need to discuss one issue, concerning the rele-
vant distribution. In the two cases of the bootstrap and the
directly fitted distributions, we have an explicit distribution
from which to sample. In the SECH-based models, we infer
the relevant distribution from a smooth model and an as-
sumed shape for the non-relevant distribution, following [13].
But inferring an analytical form of the density which allows
us to draw samples is not possible in all cases; instead, we
use a slice-sampling method [16]. Slice-sampling is a Markov
chain method; it depends on the principle that one can sam-
ple from a distribution by sampling uniformly from the re-
gion under the plot of the distribution’s density function.
This is achieved by alternating sampling in the vertical di-



rection with sampling from the horizontal "slice” defined by
the current vertical position. That is, starting from an initial
z value, the method evaluates p(x) and samples v uniformly
in the range [0, p(z)]. Then it samples = uniformly from the
slice through the distribution defined by z : p(z) > u. Given
that the method is a Markov chain method there are two im-
portant details using the method. First, the slice-sampling
algorithm discards a number of samples to allow the Markov
chain to approximately reach stationarity. Second, it con-
tinues discarding samples throughout the entire process so
that sample points are not serially correlated.

5.2 Reporting results

Simulation will deliver results for any chosen evaluation
metric, but the metric used here is yaAP, as discussed in [19].
This is a smoothed version of the logit transform of average
precision, and is chosen because of its good distributional
properties; it can be derived from average precision if the
total number of relevant is also known. We report results
in two main ways. In the first, we plot observed (x) against
mean simulated (y) values of yaAP for each system, one
point for each topic; in the y direction we also show a range,
representing one standard deviation of the simulated values.
Thus each plot shown represents a single system and all
the topics used in the evaluation. This form of plot reveals
obvious biases which may occur with a poor model. Some
examples may be seen in Fig 2.

Secondly, we compute for how many topics the observed
value is at an extreme of the empirical distribution of simu-
lated values: in the bottom or top 2.5% of the distribution,
or outside the range of the simulated values. Extreme values
are reported as counts in four categories: observed below all
simulated / in bottom 2.5% / in top 2.5% / above all sim-
ulated. We interpret the extreme values is as follows: if we
suppose that our simulated distributions represent correctly
the results of sampling from the hypothetical infinite docu-
ment population, and our actual test collection was indeed
sampled from this population, then among the 249 topics,
we might expect about 2.5% (= 6) to fall within each of
the 2.5% tails of their respective distributions, and none or
very few to give observations outside the range of their re-
spective distributions — thus we expect to see something like
0/6/6/0. Much larger numbers would suggest that our mod-
els are not good; zeros might suggest overfitting. We report
these results for some individual systems (all topics), and
also averaged over systems.

5.3 Use of the data

The SECH-based models have no access to the reported
scores of documents. For each simulation, each topic and
each run, we use a single metric (either RPrecision or av-
erage precision) to fit the smooth model. Some versions of
the average precision method require knowledge of the total
number retrieved (which may be less than the usual 1000),
in order to estimate a correction element to the observed
average precision. We obtain from the qrels file the total
number of relevant items for each topic, to get a measure
of the topic’s generality (= prior probability of relevance).
The actual simulation process requires similar data: the to-
tal relevant for the topic, and both the total retrieved and
the relevant retrieved in this run.

We compare with a bootstrap simulation and with one
based on fitted distributions. In the bootstrap version, in-
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stead of sampling from smooth distributions, we sample
with replacement from observed ranked lists. This is simi-
lar to the method used in [11], which is claimed to provide
good confidence intervals for observed metric values. Clearly
the bootstrap method needs to be provided with the actual
ranked and labelled lists of items for each system-topic pair.
In the fitted distributions version, we use the GMG (Gaus-
sian Mixture and Gamma) model, developed by Kanoulas
et al [13] — relevant distribution as a mixture of Gaussians
and non-relevant as a Gamma. Estimated parameters pro-
vided by the fitting process are the means and variances of
the Gaussians, their relative preponderance, and the shape
and scale parameters of the Gamma. For this simulation,
we need not only the ranked lists but the actual scores of
ranked documents. It is not suitable for systems which do
not generate reasonable scores, and in particular, we cannot
use it for the two TREC runs where the reported scores are
apparently reverse-engineered from ranks.

6. RESULTS

First we consider the three SECHs discussed above, all
fitted with RPrecision, together with the assumption that
the non-relevant distribution is gamma with fixed shape (1)
and scale (0.2). All simulations here model the top 5000
documents, following the discussion above. The first three
plots in Fig 2 are for run 29. (Note that the choice of run
29 is arbitrary — except where we note otherwise, all the
characteristics which we note in the graphs are reproduced
remarkably closely in all runs analysed. We have no evi-
dence at all that different systems, or even different types of
system, produce different patterns reflected in these graphs.

We see that for family 1, AY, there appears to be a sub-
stantial bias among poorly-performing topics. For family 2,
E, there appears to be a small bias at the opposite end.

Family 3, L, looks better than either of the other fami-
lies for this run. On the whole these patterns apply to other
runs as well, although some of them seem less regular — fam-
ily 3, for example, seems to have a bit more difficulty with
run 17. Extreme values are broadly in line with these im-
pressions: family 1 has 14/35/0/0 on average; family 2 has
1/3/2/0, so the bias is insufficient to show up. Family 3 has
3/12/6/1 on average, showing too many low-end extremes,
apparently distributed over the range of the curve and there-
fore not quite so obvious from the plots. Note that this form
of simulation is surprisingly robust — with the exception of
the biases mentioned, all three SECHs seem to produce fair
models, despite the considerable difference in the shapes of
the three curve families, as shown in Figure 1.

The final graph of Fig 2 shows the family 3 results for run
88. This is one of the runs for which the reported scores
are reverse-engineered from ranks, and therefore cannot be
modelled using any of the standard score-distribution mod-
els. We see that while the fit is not perfect (with one obvious
outlying topic), it is still fairly good. Extreme values for this
run are 3/11/5/2, very close to the average over all runs re-
ported above.

Next we consider the same three SECHs and the same
non-relevant distribution assumption, but fitted with av-
erage precision, using the method described at the end of
section 3.5. Results are not shown for space reasons; they
look very similar to the ones shown for RPrecision fitting.
In particular, the same systematic biases produced by fam-
ilies 1 and 2 are still present. The extreme value analysis
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Figure 2: Three simulations of run 29, all based on SECH models fitted using RPrec, and showing yaAP: (a)
the AY family of smooth R-P curves; (b) the E family; (c) the L family. (d) shows the L family simulation
of run 88 (one of the two runs that does not have scores suitable for distributional analysis).

also looks similar: 14/30/0/0 (family 1), 0/0/5/3 (family
2), 0/8/2/0 (family 3); however, family 3 no longer seems to
have difficulty with run 17. We note that the exact proce-
dure for fitting curves to average precision is slightly more
complex, and involves a heuristic correction to the observed
average precision. The above results come after some fid-
dling with this heuristic correction. We conclude that the
average precision method may be worth further exploration,
but is not likely to result in substantially different results
from the RPrecision version. For the remaining results we
use family 3, the L family, as being marginally the best of
the three considered, together with fitting based on RPrec.

Figure 3: Simulations of run 109, comparing (a)
bootstrap, (b) GMG, and (c) the fitted GMG non-
relevant distribution, together with the L family
SECH model fitted using RPrec. The correspond-
ing simulation using a standard non-relevant distri-
bution instead of the fitted one is indistinguishable
from (c).

Next, we provide a more direct comparison of three mod-
els: (a) the bootstrap (unsmoothed) model; (b) the GMG
model as described above; (c) the non-relevant distribution
as fitted for GMG, together with the SECH using family
3; (d) a standard gamma distribution for the non-relevants,
together with the SECH using family 3. These are shown in
Fig 3; however, we have not shown (d) because it is indis-
tinguishable from (c). In order to make these comparable,
all simulations are based on the retrieved set only, so the (d)
model differs slightly from that used for Figs 2, and on the
12 runs which appear to reveal suitable scores.

Extreme value counts for the bootstrap, for this run and
for all other runs tested, are a clean sweep of zeros — this
suggests strongly that the bootstrap simulation overfits the
observed data. Extreme value counts for the GMG model for
this run are good (0/3/4/0), so it seems that GMG is able

91

to fit the distributions well. However, the averages over the
12 runs are 1/9/37/21, indicating that GMG has difficulty
modelling at least some of the TREC runs. For (c) and
(d) the averages are both the same at 0/0/22/4. Given this
SECH, using the actual non-relevant distribution provides
absolutely no advantage over using a standard one. This
remains true even though the gamma distribution has two
parameters to fit. Furthermore, the model fit as revealed
by the simulation is as good as or better than with GMG.
With a good SECH assumption, the only datum we need to
simulate the full performance curve for a single topic is a
single effectiveness measurement such as RPrec.

We also note that the extreme value counts for (d) are dif-
ferent from (worse than) those reported above for family 3.
This is a function of the difference mentioned above, relating
to the model — the present results are based on simulating
the retrieved set only (normally 1000 documents), while the
former results were based on simulating the top 5000 docu-
ments. We conclude, at least provisionally, that extending
the simulation significantly further down the ranked list can
improve it, which appears to be an advantage of the mod-
elling approach of this paper — although the result needs
much more exploration.

Finally we have conducted many other experiments which
we have no room to discuss in full. Experiments using dif-
ferent shapes of non-relevant distribution confirm that the
shape is largely irrelevant to the results — mean results are
indistinguishable, variances sometimes differ slightly.

7. CONCLUSIONS

The primary focus of this paper is an insight about smooth
models of the ranking effectiveness of search systems. All
such models in current use are based on the scoring which
many systems use to produce a ranking. As such, they can
be used only with systems that reveal the actual scores of
documents, and they have to make assumptions about the
nature of these scores. We have now established that this
use of actual scores is not necessary, at least for some pur-
poses. Smooth models can be formulated, fitted and tested
on the basis of the ranking only. More specifically, model
fitting can be based on a single effectiveness parameter mea-
sured on each topic; this appears to be enough to provide an
adequately fitted model for each topic. Furthermore, even if
we abandon all use of actual scores, we can still make use of
many of the score-distribution ideas of modelling IR effec-



tiveness. The simulation approach used for the experiments
reported here is an example of such a use.

Experiments using these simulation models have provided
some empirical support for these insights. Of the three fam-
ilies tested, at least the L family appears to give reasonable
results over the range of TREC runs tested, despite the fact
that these runs vary hugely in respect of the nature of their
revealed scores, and include some that could not be modelled
by present score-distribution-modelling techniques.

In this theoretical paper we have not attempted to derive
any practical methods for the tasks to which score distri-
bution modelling has been applied — this challenge awaits.
There is much scope for development and potential use.
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APPENDIX
Distributions and monotonic transformations

Suppose we have relevant and non-relevant score distribu-
tions with densities fr(s) and fn(s), for some scoring func-
tion s. In the usual way, we define for any threshold ¢ on s,
recall r(t) and fallout n(t):

r(t) = /t " fa(s)ds and n(t) = /t 7 fa(s)ds

(i.e. the cumulative distributions from the right). We make
the following two assumptions: 1. The support for these two
distributions is exactly the range of the scoring function; 2.
the densities are non-zero over the full range. oo is shorthand
for the maximum of this range.

Following a similar argument used by [14], we transform
the scores in such a way as to make one of these distributions
uniform. Define a strictly monotonic transformation on s,
taking it exactly from its range to the interval (0,1),

¢:s€(—o0,00) >z € (0,1), where z=¢(s)=1-—n(s)

(again, —oo is just shorthand for the minimum of the range).
x = ¢(s) is just another version of the score, having exactly
the same ranking effect and therefore effectiveness as s it-
self. The non-relevant density on the transformed score z is
uniform on the range (0,1). We observe that 92 = fn(s)
The relevant density on x can be derived very simply, as

ds _ fr(s)
dz  fn(s)’

We note that this transformation is reversible. It follows
that any non-relevant distribution satisfying the assump-
tions can be transformed monotonically into any other, via
the uniform distribution on (0, 1).

gr(z) = fr(s) where = = ¢(s)
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