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ABSTRACT
The largest publicly available knowledge repositories, such as
Wikipedia and Freebase, owe their existence and growth to
volunteer contributors around the globe. While the majority
of contributions are correct, errors can still creep in, due to
editors’ carelessness, misunderstanding of the schema, malice,
or even lack of accepted ground truth. If left undetected,
inaccuracies often degrade the experience of users and the
performance of applications that rely on these knowledge
repositories. We present a new method, CQUAL, for auto-
matically predicting the quality of contributions submitted
to a knowledge base. Significantly expanding upon previous
work, our method holistically exploits a variety of signals,
including the user’s domains of expertise as reflected in her
prior contribution history, and the historical accuracy rates
of different types of facts. In a large-scale human evaluation,
our method exhibits precision of 91% at 80% recall. Our
model verifies whether a contribution is correct immediately
after it is submitted, significantly alleviating the need for
post-submission human reviewing.

Keywords
Crowdsourcing, knowledge base construction, predicting con-
tribution quality

Categories and Subject Descriptors
H2.8 [Database Management]: Database Applications

1. INTRODUCTION
The last decade has witnessed an unprecedented growth of

publicly available knowledge repositories such as the Open
Directory, Wikipedia, and Freebase (and incidentally other
repositories that build upon these, including YAGO, DBpe-
dia, and Google’s Knowledge Graph). These knowledge repos-
itories thrive thanks to millions of volunteer contributors,
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who add new information and keep the existing knowledge up
to date. All of these repositories employ the post-moderation
approach, where the contributions go live immediately, but
can later be edited or reverted by other users. This approach
has obvious benefits, as it facilitates rapid dissemination of
updated information and allows legitimate contributors to
get immediate gratification from seeing their contributions
online. Alas, this approach is also prone to spamming. In the
largest communities, such as Wikipedia, changes on virtually
any topic are often reviewed promptly [33]. However, in
smaller user communities, such as Freebase, inaccurate con-
tributions can persist for much longer periods of time until
they are detected and fixed. Such errors can have significant
consequences because these knowledge repositories (notably,
Freebase) often serve as data sources for third-party applica-
tions, such as Google’s Knowledge Graph, Bing’s Satori, and
Facebook’s Entity Graph. Hence, it is important to maintain
the knowledge repository at high accuracy level.

There are various ways to maintain high levels of accu-
racy. One option is to use pre-moderation, which requires
all changes to be approved prior to being allowed to go live.
Unfortunately, pre-moderation removes the incentive of im-
mediate gratification and negatively affects users’ propensity
to contribute: in smaller communities facts can remain pend-
ing for extended periods of time until they are reviewed and
approved. As an alternative to pre-moderation, new submis-
sions can go live immediately, but be considered unverified
until they stand the test of time; then, if they have not
been deleted, by moderators or other users, after a number
of weeks they are assumed to be correct and are released
to third party applications. Both options have their short-
comings: the former allows introduction of erroneous facts,
while the latter delays the inclusion of valid facts into the
knowledge base.

We propose an automatic moderation technique for verify-
ing users’ contributions in real time. This approach allows a
large fraction of contributions to be automatically approved
instantaneously, without the need to subject them to a sec-
ondary review or let them stand the test of time. Several
earlier studies have examined the quality of Wikipedia con-
tributions based on the quality of contributor’s prior work
(e.g., [2, 17, 27]), however, we show that these findings do
not necessarily apply in the case when contributions are
structured, such as SPO triples1 in Freebase. In this case,

1SPO stands for a triple of 〈subject , predicate, object〉, where
two entities are connected by a relation predicate.



we observed that naively using the contributors’ history to
compute their prior accuracy rates, yields results that are
barely above the majority class baseline. Instead of using just
the past rate of correctness in one’s contribution history, we
treat the problem of classifying user contributions holistically.
We model the contributors’ domain of expertise based on
their past contributions, as well as the inherent “difficulty” in
correctly contributing different types of information. To this
end, we use a very large-scale unsupervised topic model to
align the users’ domains of expertise with the topics of their
contributions. To infer the inherent difficulty of a contribu-
tion, we track long-term accuracy rates of contributions of
different types of facts (and thus compute the prior likelihood
of a contribution to be correct).

We conduct an empirical evaluation using a subset of Free-
base contributions, which have been re-judged for accuracy
by multiple judges to ascertain their quality. Our findings
indicate that the prior correctness rate of a user (inferred
from his contribution history) only has a slight predictive
power with respect to the quality of his future contributions,
and the prediction accuracy based on this information alone
is not significantly better than that of a simple baseline that
always predicts the majority class. However, we measured
a significant improvement due to modeling the difficulty
of facts, and a further improvement due to modeling the
contributor’s expertise based on her past contributions.

The contributions of this paper are fourfold. First, we
propose an approach for targeted crowdsourcing, where we
predict the quality of users’ work by inferring their domain ex-
pertise through their past contribution history. Our approach
offers a paradigm shift compared to conventional crowdsourc-
ing techniques (e.g., the Amazon Mechanical Turk), where
little prior information is available about the users, and
qualification tests (even paired with their prior contribution
history, if any) shed little light on the quality of their subse-
quent contributions. Second, our method can do well in the
case of a “cold start” when the user has made no prior con-
tributions to the knowledge base, by falling back to the prior
difficulty of the type of information being contributed. Third,
our empirical evaluation shows that the proposed method can
instantaneously vet a very large portion (at least 80%) of the
users’ contributions, while offering a significant reduction in
error compared to the simple test of time heuristic, as well as
to the previous state of the art based on users’ prior success
rates. Finally, as opposed to quality control through redun-
dancy, or via having all contributions explicitly reviewed by
humans, or by letting the new contributions stand the test
of time, our method offers a continuous tradeoff between the
prediction accuracy and the fraction of contributions that
can be approved automatically.

2. METHODOLOGY
In Section 2.1, we illustrate the contribution process in

Freebase, a popular knowledge base, and formally define
the problem of evaluating contribution quality. We then
describe the signals used for estimating contribution quality
in Section 2.2.

2.1 Life of a Freebase Contribution
Freebase2 is one of the most popular knowledge bases (as

evident by its use by major commercial search engines such

2http://www.freebase.com/

Figure 1: An example Freebase triple contribution
screen, where the user adds a new valid instance of
a recurring event, namely the 2013 New York City
Marathon.

as Google and Bing) and serves as a concrete case study in
the remainder of the paper. Freebase is primarily updated
and expanded by volunteers and“data enthusiasts.” User con-
tributions are immediately visible, but may not be promoted
(i.e., considered correct) until some time later. In Freebase,
as in many other knowledge bases (e.g., DBpedia [7]), facts
are stored as triples of the form 〈subject , predicate, object〉.

It should be emphasized, however, that this paper does
not make any assumptions about the nature of the contri-
butions that are peculiar to Freebase, beyond assuming the
information is stored as triples (see the problem statement
below). Consequently, the methodology proposed herein can
be applied to verify the validity of contributed facts in other
similarly-structured knowledge repositories. In our future
work, we plan to extend our methodology to judging con-
tributions with a more elaborate structure, such as SPOTL
tuples used in YAGO [18], where each SPO triple is further
annotated with Time and Location.

The example in Figure 1 illustrates the process of con-
tributing a new triple to Freebase. A user can contribute
a new triple, choosing from a rich schema of many possible
predicates. For example, a user may creare a new instance of
a type (as illustrated in the figure, adding the 2013 instance
of the annual New York City Marathon event), or new at-
tributes of an entity (e.g., the date of the event). While most
of these contributions are valid, errors occur. Common types
of errors include schema errors such as choosing a wrong
type for an entity, or a wrong predicate for a relationship,
entity reconciliation issues, incorrect facts, and so on. Over
time, changes to the knowledge base may be reviewed, and
facts can be updated or deleted (or re-added, in a case of
deletion). Unfortunately, this process is time-consuming,
labor-intensive, and, with existing techniques, tedious for
the human reviewers. For instance, Figure 2 illustrates re-
moving an incorrect fact for the birthplace of actor Bruce
Lee, which was erroneously stated as “Chinatown,” which
remained unnoticed for some time, whereas the correct value

http://www.freebase.com/


Figure 2: An example deletion of a Freebase triple:
removing incorrect birthplace value “Chinatown.”

should have been “Hong Kong.” Thus, it is possible that
erroneous contributions may remain unnoticed for some time,
or, conversely, that good (and important) database additions
may not be promoted or used by applications until they are
reviewed or until they pass the test of time. For example, the
contribution related to the 2013 NYC Marathon in Figure 1
is time-sensitive, since the event is scheduled to occur soon,
and hence would be an ideal candidate for timely verification.
Our aim is to automatically vet the contributions for correct-
ness as soon as they are submitted. Formally, we state the
problem as follows:

Problem Statement 1. We are given a contribution of
a triple t = 〈s, p, o〉 by a user u. The goal is to predict
whether t is a correct contribution (as judged later by a
human review process). The problem is thus formulated as
a standard supervised binary classification. 2

2.2 Contribution Quality Signals
Our approach is based on the idea that not all users are

equally reliable, and that some predicates are inherently more
difficult than others. These differences can be captured by
various signals that correlate with the validity of the contri-
bution. The signals we consider include user contribution
history, user contribution expertise, and triple features (as a
proxy for historical predicate difficulty).

2.2.1 User Contribution History
For each contribution submitted to Freebase, we use the

prior contribution history of the contributing user, to es-
timate the validity of the contribution. Of all the sets of
signals that we use, this one is the closest to previous work
on estimating users’ reputation (e.g., [2, 27, 22]), and we
adapt the ideas from that line of research as a state of the
art baseline. Specifically, we characterize user’s prior contri-
bution history using the features shown in Table 1. It should
be noted that when modeling the user’s domains of expertise

Feature Description Scaling

Total number of prior contributions log
Total number of prior correct contribu-
tions

log

Total number of prior incorrect contribu-
tions

log

Fraction of correct contribution –
Total number of deleted (possibly incor-
rect) contributions

log

Fraction of contributions that are deleted –
Total number of prior deletion actions log
Number of bad (reverted) deletions –
Fraction of bad deletions –

Membership lifetime of user (in days) –
Number of seconds since last user action log

Table 1: User contribution history features

Figure 3: Historical deletion statistics of Freebase
predicates

(cf. Section 2.2.3) we also use the set of the user’s prior contri-
butions. However, to be compatible with prior work, we only
use the term “contribution history” to collectively refer to the
features described in Table 1, which characterize the number
and the correctness rate of the user’s prior contributions.

2.2.2 Triple Features
Figure 3 reports the historical deletion statistics of Free-

base triples, contributed by the community, for different
predicates 3. The horizontal axis is a proxy for “predicate
difficulty”: it is the fraction of triples, with a given predicate,
that remain undeleted by the community, and are hence
considered correct. A high value means that the predicate
is “easy” while a low value indicates that the predicate is
“difficult.” The vertical axis reports the number of predicates
in the Freebase schema, that have this “difficulty” value, as
computed over all triple submissions with this predicate.

For example, there is a large number of predicates that
historically do not contain correct values when contributed
by public users (as opposed to Freebase staff, who are more
knowledgeable and do not normally spam the knowledge

3Freebase data available at https://developers.google.
com/freebase/data
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Feature Name Dimensionality

Topics ∼ 1, 000, 000
Taxonomy ∼ 5, 000
Predicates ∼ 3, 000

Table 2: Representation spaces of contributor exper-
tise.

base). For example, all 120 attribute instances of the predi-
cate /martial arts/martial art/well known practitioner, which
is supposed to contain references to well-known martial
artists, submitted by public users, have been deleted by the
community; examples of the deleted values include names
such as “This is Elvis” and “Theseus”, suggesting a strong
prior that new values contributed for this predicate are likely
to be incorrect. In contrast, values submitted for the predi-
cate “/biology/genomic locus/strand” are consistently pre-
served by the community (not deleted), providing a strong
prior on accuracy. Finally, a number of predicates such
as “/medicine/medical treatment/side effects”, have roughly
equal chances of being correct or incorrect.

As different predicates exhibit different historical deletion
rate, the classifier can use this information as a proxy for
estimating the prior likelihood of the predicate to be con-
tributed correctly. We capture this information as a vector
of features, each corresponding to a fully-specified predicate.

Generalization over predicates.
In Freebase, each predicate is of the form of“/Domain/Type/

Property”. Examples of top-level domains include “/biology”
and “/music”. For each domain, there are types associated
with it such as “/music/album” and “/music/artist” for the
“/music” domain. Finally, for each type, there are proper-
ties associated with it such as “/music/album/artist” and
“/music/album/genre” for the “/music/album” type. In an
attempt to generalize over leaf predicates, we have experi-
mented with introducing additional features corresponding
to these domains and types, but found these additional fea-
tures not to be helpful. One possible explanation is that the
information reflected in these features is implicitly captured
through the plurality of the leaf-level features, which results
in double counting. Experimenting with further refining the
prior triple difficulty could be a subject of future refinements
of our work.

2.2.3 User Contribution Expertise
For each user, we estimate the areas of her expertise based

on her previous contributions. To represent the contribution
expertise of a user, we use three different concept spaces:

• Topics: a large topic model trained in an unsupervised
manner using a large web corpus. The Topics space is
derived from a proprietary scalable implementation of
topic modeling very similar to LDA [8], with approxi-
mately one million topics.4

• Taxonomy : This space is based on an in-house tax-
onomy of approximately three thousand commercial
topics, arranged in a four-level hierarchy, and a hierar-
chical text classifier [23, 13, 26] built in a supervised

4More detailed description available at http://www.ipam.
ucla.edu/abstract.aspx?tid=10734.

Similarity Metric Space Feature Sets

Dot Product All All
Cosine Similarity All All
Num. of intersecting concepts All Positive, Negative
Jaccard Index All Positive, Negative

Table 3: Similarity Metrics for User Contribution
Expertise Features

manner, which classifies text fragments onto the nodes
of that taxonomy.

• Predicates: the union of all domains, types, and leaf
predicates in Freebase (cf. the last paragraph in Sec-
tion 2.2.2).

To represent user contributions, we map from the triple
contribution to the concept spaces described above. The
mapping to the Freebase predicate concept space is direct,
based on the predicate of the submitted triple. For the other
two concept spaces, we use the text properties, and Wikipedia
page of the subject and object of the triple, to construct a
pseudo-document that contains the textual representation
of the subject-object pair. We then process this pseudo-
document using the topic model and the taxonomy classifier.

Then, to represent each user, we aggregate the Topic-
, Taxonomy- and Predicate-representations of their prior
contributions. Finally, to model the actual expertise of the
user, we derive three feature sets based on the representations
above:

• The Positive set, which aggregates contributions judged
to be valid.

• The Negative set, which aggregates bad contributions.

• The Net set, which aggregates all contributions and is
computed as the difference of the corresponding features
in Positive and Negative.

That is, we explicitly model the user’s expertise in each
domain (represented by the different concept spaces), by
tracking the aggregated valid and invalid contributions within
each domain.

When a new triple is contributed, we first convert the
contribution into the concept spaces described above. Then,
to estimate the expertise of the user for each triple, we
derive similarity features between the contribution concept
distribution and the user contribution expertise distribution.
Specifically, we use the similarity metrics in Table 3. Note
that we compute similarity metrics involving the intersection
count only for the Positive and Negative sets, but not for
the Net set, as we just want to capture how similar is the
current contribution to the previously proposed good and
bad contributions.

While these results are not reported in the paper, during
development we examined which of the concept space and
expertise representation are most useful. Our analysis sug-
gests that the Taxonomy and the Predicates concept spaces
are more useful than the large Topics concept space. This is
because the Topics concept space has of order of millions of
topics, thus spreading the expertise distribution too sparse for
users contributing not a lot of triples. This is especially true
because the user contributions exhibit the familiar long-tail

http://www.ipam.ucla.edu/abstract.aspx?tid=10734
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distribution, where majority of the users contribute less than
hundred contributions and a small number of power users con-
tributing more than hundred of thousands of contributions.
In future works, we plan to consider smoothing/smearing the
Topics space to reduce the number of topics and use other
concept spaces. As for the various expertise representation,
we observe no significant benefit of using one or the other, but
the combination of all of them provide the best performance.
This agrees with our intuition since each of the expertise
representation intends to cover different facets of the user,
i.e., the good, the bad, and the whole.

3. EXPERIMENTAL SETUP
We now describe our methodology for comparing the dif-

ferent methods for predicting the quality of the user contri-
butions on Freebase.

3.1 Datasets
All experiments were performed on Freebase data, a pub-

licly available resource. Each Freebase triple is associated
with a timestamp, making it natural to split the data by
time. This also allows for easy simulation of an operational
environment, where we predict quality of new contributions
using only historical data. We focus on contributions from
non-whitelisted users, i.e., the majority of “regular” users in
Freebase, as opposed to white-listed users who are Freebase-
approved experts that “own” a particular topic and have the
final say on the data therein. The non-whitelisted users have
contributed almost 8 million triples to Freebase, so far. We
split the data by time, into disjoint training and test sets, as
described below.

Test set, using human expert labels: The test set
is randomly sampled from the triples contributed by non-
whitelisted users between June 1st, 2013 and August 15th,
2013. In total, we obtained judgments from professionally
trained human experts for 3,975 triples 5.

Our human expert consists of paid contributors who are
trained to do judgment on Freebase and have a deep under-
standing of Freebase schema. For example, our contributor
can deal with intricacies of Freebase schema such as the
difference between /people/person and /fictional universe
/fictional character. All triples were judged by two experts.
In case of a disagreement, a third expert adjudicated after
a discussion with the original judges. As a result of this
procedure, 3,414 contributions were judged as “good,” and
561 as “bad.”

Training set, using heuristic, test-of-time labels: In
order to make use of the millions of historical contributions
for training, we had to resort to automatic, test-of-time
heuristic labeling (it would simply not be practical to man-
ually label a dataset of this size). Using this approach, we
assumed that all contributions that survived the “test of time”
(i.e., were not deleted) for over K weeks were correct. This
heuristic borrows ideas from research on Wikipedia’s edit
history [2]. Specifically, for heuristic labeling we used the
following criteria:

• All triples contributed and survive for older than K
weeks that are not deleted are considered good.

5Judgments can be found at http://goo.gl/0CXLYs

Contribution age in weeks Labeling accuracy

2 . . . 3 86.5%
3 . . . 4 87.5%
4 . . . 5 89.3%
5 . . . 6 88.8%
6 . . . 7 88.4%

Table 4: Testing different cutoff values for the heuris-
tic labeling of training examples.

• All triples that have been deleted are considered bad
unless the triple is reasserted and stays for more than
K weeks.

• The act of deleting an contribution is considered good
if and only if nobody reassert the same triple that
survives for more than K weeks.

• Everything else is labeled as unknown and dropped
from training set.

In order to choose a reasonable value of K, we experi-
mented with different cutoff levels for how long a triple needs
to “survive” in order to be considered correct. We sampled
about 200 triples submitted in each one week intervals, for
different K, (e.g., submitted less than k + 1 but more than k
weeks prior) and obtained manual judgments for them using
human experts similar to how we derive our test set. Note
that this human-judged data set is disjoint from the test set,
and was solely used for development experiments. Table 4
reports the resulting accuracy for different values of K. As
we can see, the accuracy increases initially, as we increase
K, and then flattens. Consequently, we chose K = 4 as a
default value for the rest of the experiments in this paper.6

The generated training set consists of all triples in Freebase,
contributed before June 1st, 2013. We assign labels following
the the heuristic “test-of-time” criteria listed above. In total,
we have 7,626,924 triples contributed by non-whitelisted
Freebase users. We labeled 7,280,900 triples as “good” and
346,024 triples as “bad”. The resulting training and test
datasets are highly skewed towards “good” contributions
(95.46% for training set and 85.9% for test set). The training
set is more skewed towards “good” contributions because
there might be contributions existing since the beginning of
Freebase that are never corrected or that are much higher
quality. This is consistent with the reputation of Freebase for
being a generally high-quality source of data. Nevertheless,
for many applications that rely on this data, accuracy of 86%
may not be sufficient, indicating the need for validation or
moderation for new contributions.

3.2 Methods Compared
We now summarize the different methods that we compare

empirically in Section 4:

6We note that the heuristic labels were only used for creating
the training set (in other words, we trained on data that
could be noisy, due to the heuristic nature of the labeling).
The experimental performance results are all reported on the
test set, which contains only triples that have been judged
for correctness by human experts.



• CQUAL:7 Our method, which uses all three feature
groups to estimate contribution quality, as described
in Section 2.

• Majority Class, Baseline: Almost 86% of Freebase
contributions are “good” (Section 3). Hence, we have a
strong class imbalance between positive and negative
examples. In this situation, it is a common practice
to use a majority class predictor as a baseline, which
predicts every contribution to be correct.

• Contrib History, current state-of-the-art: Adap-
tation of state-of-the-art approaches that predict qual-
ity of user contributions are using the prior contribution
of the user [2, 27]. We build a supervised classifier that
uses only the user contribution history features (Sec-
tion 2.2.1) and we use it as a more advanced baseline
to compare against.

• Test of Time (Four Weeks): Unlike the first two
methods, which can be used in real-time, to predict
contribution quality as soon as they appear, the “test
of time” method can only be used retroactively. This
method considers the triples that survived four weeks
of Freebase users’ scrutiny, to be correct. This could
be the moderation approach used in practice, say, by
an application that uses data from Freebase: anything
contribution submitted less than four weeks ago is not
considered part of Freebase. While not truly compa-
rable to the other methods, comparing the accuracy
of our predictions to this approach provides a valuable
reference point.

3.3 Classification Algorithms
We experimented with commonly used classifiers that could

scale to the large number of examples and features.

• Logistic Regression

• Gradboost : The GradBoost algorithm by Duchi et
al., [12], is a generalization of gradient-based coordinate
descent methods, shown to be effective for multiclass
prediction.

• Perceptron: Freund et al. [15].

3.4 Evaluation metrics
We use standard information retrieval metrics of Precision

and Recall, defined respectively as fraction of predicted“good”
triples that are truly correct, and the fraction of all true“good”
triples identified. Precision is useful to report the rate of true
positives, whereas recall measures the coverage of the “good”
contributions identified by our method. We also compute the
standard classification metrics, namely the ROC curves and
the area under the curve (AUC), appropriate for evaluation of
classification methods when the class distribution is skewed,
as in our setting. We also measure Relative Error Reduction
(RER), defined as:

RER =
errorbaseline − errorCQUAL

errorbaseline
· 100%.

The RER metric is useful to put the differences between
system performance levels in perspective, by understanding
how much errors we can reduce in our knowledge base using
different method given the same recall level.
7CQUAL stands for Contribution QUALity predictor.

Method RER@25% RER@50% RER@75%

Majority 0% 0% 0%
Contr. History 44% 10% 0%
Test of Time 22% 22% 22%
CQUAL 65% 44% 39%

Table 5: Relative Error Reduction (RER) at 25%,
50%, and 75% Recall levels.

Method AUC

Majority 0.5
Contribution History 0.543
Test of Time 0.5
CQUAL 0.707

Table 6: The AUC values for the methods compared.

4. EXPERIMENTAL RESULTS
In this section we empirically evaluate our methods for

predicting the quality of the user contributions on Freebase.
First, we present the main results, comparing our approach to
various baselines (Section 4.1). We then analyze the results
in more depth, to compare the performance of varying the
underlying classification algorithms (Section 4.2) and feature
sets (Section 4.3). Finally, we conduct an error analysis
to provide insights into performance of our approach and
possible future improvements (Section 4.4).

4.1 Predicting Contribution Quality
Figure 4 compares the performance of CQUAL to that

of several baselines.8 For each method, we report the in-
terpolated precision values [34] (Y-axis) at each recall level
(X-axis). We also computed, at each recall level, a paired
t-test, to examine the statistical significance of the differ-
ences in performance between the different algorithms. We
found that CQUAL outperforms all the baselines, including
the retroactive “test of time” method, by a large margin.
Specifically, we found CQUAL performance to be signifi-
cantly superior to all other algorithms at recall levels ranging
from 0.25 to 0.85, with the differences being significant at
p < 0.001.

Table 5 reports the relative error reduction (RER) metric
at key recall cut-offs, namely 25%, 50% and 75%. Table 6
lists the AUC values for the different algorithms. CQUAL
provides consistent and substantial error reduction at all
Recall levels considered, from 65% to 39% relative to the
majority baseline, and a significantly higher AUC of 0.707
than competing methods.

4.2 Using different learning algorithms
We also experimented with three different learning algo-

rithms (using all features), namely, logistic regression, gradi-
ent boosted log-linear model, and perceptron. Figures 5(a)
and 5(b) show the results. Again, all three classifiers yield
a substantial improvement over the existing baselines, con-

8In this section, we report the performance of the classifier
trained using a logistic regression and using all the features
described in Section 2.2. We compare performance of different
classification algorithms in Section 4.2, and explore the utility
of different feature classes in Section 4.3.



Figure 4: Precision vs. Recall for CQUAL, User
Contribution History (Contrib History), the Major-
ity Class baseline, and the “Test of Time” approach.

firming the informativeness of our feature sets. Logistic
Regression consistently performs best, or nearly best, for all
levels of recall; the performance is confirmed when consider-
ing the ROC curves. Therefore, we chose logistic regression
for all our experiments and analyses.

4.3 Feature contribution analysis
Figure 6(a) reports the performance of classifiers using

different feature groups individually. A classifier using user
expertise features (Section 2.2.3) beats the baselines by a
large margin. Features based on the contribution history of
a user (Section 2.2.1) and those based on the prior difficulty
of the different contribution types (Section 2.2.2) seem some-
what complementary, as the performance peaks and drops in
different regions of the recall spectrum. Notably, the perfor-
mance of the classifier that uses all three classes of features
is significantly better, reaching 92.5% precision at 50% recall.
Thus, for as many as half of the contributions we can make a
highly accurate real-time decision whether the contribution is
correct. The Precision-Recall results are complemented with
analyzing the individual feature group performance through
ROC curves (Figure 6(b)). Interestingly, Contribution His-
tory features only provide a lift over the majority baseline
performance for low recall values (i.e., false positive ratio
below 0.2), whereas Triple features (i.e., prior difficulty) ac-
counts for a large lift for high recall levels (i.e., false positive
ratio over 0.2). The ROC analysis demonstrates that these
feature groups are somewhat complementary, and can be
combined effectively into a single classifier (All Features).
Interestingly, contribution history alone does not generate
a significant improvement in performance compared to the
naive “majority” baseline: The AUC value for the classifier
that uses only contribution history features is at 0.543, barely
above the random baseline of 0.5.

It is reasonable to anticipate that some of the feature
groups are correlated, and individual feature group perfor-
mance above may not contribute much to the final combined
classifier. Therefore, we performed feature ablation analy-
sis, by removing from the classifier one feature group at a
time. Figure 7(a) contains the results. Interestingly, remov-
ing Triple Features (All-Triple Features in the graph) hurts
performance the most, verifying that these features provide
a unique signal not captured by contributor history or ex-
pertise. Somewhat puzzling is that removing Contributor
History features actually improves performance slightly for
some of the Recall levels. We conjecture that this is due to
indiscriminately trusting a user who made correct contribu-
tions previously on one topic/domain to continue to make
correct contributions in other domains, whereas modeling
contributor expertise directly, as we do, does not suffer from
this problem. The ROC curve results in Figure 7(b) rein-
force this observation, indicating that occasionally ignoring
contributor history (All-Contrib History in the graph) could
improve performance. As expected, removing Triple and
Contributor Expertise features consistently degrades perfor-
mance. While some of the feature sets have very similar
curves, based on our analysis of AUC, having all feature
groups perform the best.

4.4 Analysis of Prediction Results
We now examine prediction results of each feature group

to understand their performance in different scenarios, in
order to provide more intuition about the contributions of
different feature groups.

For example, the incorrect SPO triple9 of </m/0kmyxvt,

/film/film/initial_release_date, "2013-11-15">, was
contributed by a user who exhibited historical accuracy of
0.88 prior to this contribution. If we had used merely the
contribution history as our feature, our classifier would assign
the confidence value of 0.8909 for this triple being correct,
corresponding to the 55th percentile (i.e., 55% of the triples
have lower classifier confidence), and would be predicted as
“good”. However, the other two feature groups perform better
in this case, as they take into account of other signals orthog-
onal to the user’s contribution history alone. For example, a
classifier trained on triple features produced a low classifier
confidence corresponding to 12th percentile (and thus would
be labeled correctly as “bad”). This is likely because histori-
cally this predicate was observed to be generally challenging
for “casual” Freebase users not intimately familiar with the
domain. Similarly, a classifier trained using contribution
expertise performs well, producing a relatively low classifier
confidence of this triple, corresponding to 14th percentile
(and thus would also be predicted as “bad”). This example il-
lustrates a frequent scenario where topic- or predicate-specific
features allow our classifier to outperform the contribution
history-only baseline, by considering the domains and topics
in which the user has previously demonstrated expertise.

Interestingly, contribution history does perform better than
the other two feature groups in come cases. For example,
for a correct SPO triple representing one of the Sea Otters
in the Monterey Bay Acquarium, </m/0m55h, /zoos/zoo/

9The triple is incorrect because the predicate
/film/film/initial release date corresponds to the earli-
est release date of the film in any country. While the release
date is 2013-11-15 in USA, this film will be released earlier
in Russia on 2013-11-14.



(a) Precision vs. Recall (b) ROC curves

Figure 5: Precision-recall and ROC curves for different learning algorithms.

(a) Precision vs. Recall (b) ROC curves

Figure 6: Precision-recall and ROC curves for individual feature sets.

(a) Precision vs. Recall (b) ROC curves

Figure 7: Precision-recall and ROC curves, removing one feature set at a time.



notable_animals, /m/0w4pq71>, the classifier trained us-
ing contribution history predicted a much higher confidence
score compared to the classifier trained using triple features
or contribution expertise alone – presumably as expertise in
Sea Otters is not common among Freebase contributors. As
different feature groups perform well in different scenarios,
it is not surprising that our classifier, trained holistically by
combining the signals from all three feature groups, consis-
tently exhibits superior performance.

5. RELATED WORK
Quality Control in Crowdsourcing: In crowdsourcing

settings, the typical way of inferring the quality of the contrib-
utors is either by using questions for which we already know
the answer (“gold” data) or through redundancy, or by com-
bining the two (see, for example, [31, 30, 35, 25, 19, 5, 16]).
The main disadvantage of gold data is that it requires the
user to go through a phase of contributing answers for top-
ics that we already know, effectively wasting resources and
preventing contributors from making original contributions.
With redundancy, this problem is avoided, but it is still not
possible to infer quickly the quality of the contributions,
without waiting for multiple workers to make a contribution
for the same topic. Our work sidesteps these problems by
using certain features derived based on prior belief on the
difficulties of the fact being contributed.

An orthogonal direction that also attempts to predict the
quality of the work in real-time is the work by Rzeszotarski
and Kittur [28] that use micro-behavioral signals, such as
mouse movements, to predict the quality of the user submis-
sion. Although we do not record such level of user behavior, it
is conceivable that such approaches could be seamlessly com-
bined with our approach to further enhance the predictive
power of our system.

Reputation systems: Reputation mechanisms [9, 10]
are also commonly used as predictors of contribution quality.
The most common form of reputation is to examine the
behavior of the user in similar tasks in the past and try to
predict future performance (e.g., [2, 27, 22]). In our work,
we use such an approach as a baseline, and show that the
incorporation of a wider set of features about the user can
improve significantly the predictive accuracy of our approach.

Community question answering: A lot of research has
been conducted in the past that aims to predict the quality of
online answers in “Community Question Answering” (CQA)
platforms [20, 24, 3, 1, 6, 32, 29]. The general setting there
is to predict the quality of a submitted answer. Our work
has three major conceptual and methodological differences:
First, we use as predictors a set of signals that captures
domain expertise of the user based on its prior contributions;
this allows us to have a much better understanding of the
knowledge that a user has about a topic, and indeed the
addition of these signals improve significantly the predictive
performance of our system. Second, we exploit the fact
that Freebase contributions happen within a schema, and we
generate estimates of difficulty of filling correctly a particular
triple; we are not aware of any wok that tries to estimate
the inherent difficulty of providing an answer to a question
in a CQA site. Third, we are predicting the quality of
short, factual, and structured contributions: Getting quality
signals from such contributions is inherently different and
more difficult than extracting quality signals from longer,
textual pieces of text, where a variety of other features (e.g.,

readability, spelling, grammar) are providing useful signals
for predicting the quality of the contribution.

Knowledge base construction: There is also work that
describes the challenges incorporating and evaluating the hu-
man contributions in a knowledge base [2, 17, 36, 11, 27, 21].
For sites like Wikipedia, a challenge is to even measure the
quality of contributions; longevity of the contributions is typ-
ically a good proxy for a high-quality contribution. Freebase
allows a similar model to judge correctness, (contributions
that survive for longer than a certain time threshold are con-
sidered correct). However, in our case we actually procured
third-party editors to verify the accuracy of the contributions
and did not assume that contributions that survived for long
are also de-facto correct; we are not aware of similar third-
party verification of KB facts in other work. In [36], Wick
et al. describe how they use human contributions as just a
piece of evidence, as opposed to considering the human edit
to be correct by default; our work dovetails nicely with such
efforts, as we are actively providing estimates of the trust
that we should place in any user contributions, therefore
facilitating the adoption of such KB construction schemes.

6. DISCUSSION
We presented a technique for real-time, automatic evalu-

ation of submissions in a structured knowledge repository.
Past techniques either operated on a time-delay basis (facts
are considered correct only after a certain time period has
passed and the fact has not been changed), or auto-approved
changes based on the prior history of the contributor. Our
technique operates in real-time, and examines contribution
history in a holistic fashion: we model both the inherent
difficulty of making contributions for specific types of facts
and we also model the expertise of the user in various topical
parts of the space. This leads to a significant reduction in
error rates, while at the same time improving the timeliness
of the information that is represented in the knowledge base.

In the future, we plan on leveraging more sources of infor-
mation for modeling the probability that a fact contribution
is correct or not. One possible future works is to use hard
constraints based on schema rules, for example, we can use
the fact that a person should have a date of death after a
date of birth, and that two persons born on different eras
could not possibly be spouse and etc. We can also use signals
from other information extraction systems to infer the likeli-
hood that a particular contribution is correct based on the
evidences from the web. Similarly, we can use Item Response
Theory (IRT) [14] to jointly model in a more fine-grained
mode the ability of users in different knowledge domains,
potentially allowing for actively soliciting users to contribute
facts to areas that they are contributing already and are
experts on. Combining this with an appropriate design of
badges [4], or other rewards, could potentially allow for a
more focused and faster generation of high-quality knowledge
repositories.
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