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ABSTRACT

Given a set of entities, the all-pairs similarity search aims at
identifying all pairs of entities that have similarity greater
than (or distance smaller than) some user-defined threshold.
In this article, we propose a parallel framework for solving
this problem in metric spaces. Novel elements of our solution
include: i) flexible support for multiple metrics of interest;
ii) an autonomic approach to partition the input dataset
with minimal redundancy to achieve good load-balance in
the presence of limited computing resources; iii) an on-the-
fly lossless compression strategy to reduce both the running
time and the final output size. We validate the utility, scal-
ability and the effectiveness of the approach on hundreds of
machines using real and synthetic datasets.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms

Algorithms, Performance

Keywords

Similarity Joins; All-Pairs Similarity Search

1. INTRODUCTION
The all-pair similarity search (APSS) problem seeks to

find all pairs of records (or entities) within a dataset that
meet a user-defined similarity threshold, based on some def-
inition of similarity. This problem has found applications
in many domains including community discovery [29], du-
plicate detection [16], collaborative filtering [19] and as a
preprocessing step for clustering [18].
The motivating application behind this work is the de-

tection of click fraud rings [21]. Since an Internet content
publisher collects revenue for each click on any ad displayed
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on her page, she has the incentive to launch click inflation
attacks by generating fake clicks. The identification of pub-
lisher accounts that have similar features, from an enormous
amount of accounts with legitimate traffic, is very effective
in detecting such attacks. This can be achieved by represent-
ing each account as a point on a multi-dimensional space,
and efficiently solving the APSS problem on all such points.

A significant amount of related work has focused on set
similarity measures (e.g. Jaccard or Cosine) operating on
binary or categorical data [31, 5, 27, 22]. The key to their
scalability is effectively leveraging the inherent sparsity in
such data [26, 8, 6, 31, 22].

In contrast to the aforementioned sparse APSS problem,
we focus on the dense APSS problem [28]. In the motivat-
ing application, publishers are typically represented using
vectors of numerical features that are reasonably dense i.e.,
each record has a non-zero value for a significant fraction of
the dimensions. To make the problem more tractable, we fo-
cus on the MAPSS problem, the APSS flavor of the problem
where the similarity measure is a Metric. MAPSS has appli-
cations from image search [20] to time series analysis [11]. To
make the solution more scalable, we propose a parallel algo-
rithm. While our implementation is MapReduce-based [9],
the algorithm is generalizable to other forms of parallelizing
frameworks, such as MPI and OpenMP.

The proposed MR-MAPSS (MapReduce-based MAPSS)
algorithm relies on a carefully engineered partitioning scheme,
where the backbone algorithm intelligently routes the input
data records into worksets with minimal redundancy. These
worksets are independent and each is processed by a MapRe-
duce worker. This achieves load-balancing when handling a
massive number of high-dimensional records. Repartitioning
is employed to further split large worksets that occur when
the input data is densely clustered. This improves the load
balancing, and enables execution with limited per-machine
resource budgets. For efficiency, MR-MAPSS also employs
a multi-level indexing structure to combine computing the
similar pairs of records with on-the-fly lossless compression
of the results. MR-MAPSS is flexible, and caters to diverse
measures of similarity, and even handles non-metric simi-
larity measures as long as upper and lower bounds on the
distances can be established. The main contributions are:

1. We propose MR-MAPSS, an intelligent divide-and-conquer
partitioning scheme, where the data routing ensures
each pair of records is evaluated at most once.

2. The MR-MAPSS framework automatically detects skewed
workloads, and further distributes the computation
among other machines.
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3. The MR-MAPSS framework is agile and can adapt to
streaming and memory constrained environments.

4. MR-MAPSS employs a novel compression strategy us-
ing a community-based approach, which requires no
decompression in almost all of the follow-up jobs. This
compression greatly reduces the running time and the
output size, as verified in the experiments.

5. We establish the effectiveness of the optimizations on
two real datasets, and demonstrate the scalability of
MR-MAPSS on hundreds of machines.

2. BACKGROUND
Notation: We begin by briefly going over notation used in
this paper (see Table 1). Note that the terms “record” and
“point”will be used interchangeably in the rest of the paper.

Table 1: Notations
L The dimensionality of the points

D Database of points from R
L

|D| Number of points in the database

pi ith point in the database
dist(pi, pj) Distance between pi and pj
t Distance threshold for a pair to be similar

MapReduce infrastructure: MapReduce [9] (MR) has
become the de facto platform for big data processing in
shared-nothing clusters due to its high scalability and built-
in fault tolerance support. It borrows Map and Reduce con-
cepts from functional programming. The computation can
be represented using two functions:

Map : 〈k1, v1〉 → [〈k2, v2〉]
Reduce : 〈k2, [v2]〉 → [v3]

Each input record is a tuple 〈k1, v1〉. During the execution
of a job, each mapper fetches a set of records from the dis-
tributed file system, and applies the map function on each
single record to produce a list in the form of [〈k2, v2〉], where
[.] represents a list of elements. The mappers can also out-
put the tuples with a secondary key. The shuffler groups
the output of the mappers by k2 and sorts by the secondary
key within each group, and sends all tuples with the same
k2 value to the same reducer. The reduce function receives
the key and the list of values as input, and emits the results.
A combiner, a function similar to reducer, can be used for
partial reducing at the mapper’s side to reduce the network
load. The MR infrastructure allows for specifying initializa-
tion operations before the actual Mapper or Reducer starts.
Examples of MR applications can be found in [9].

3. THE MR-MAPSS FRAMEWORK
This section describes the backbone algorithm of the MR-

MAPSS framework. Optimizations to scale under tight com-
putational constraints are discussed in Section 4 and 5.

3.1 Key Definitions and Intuitions
We start by introducing some notations.

Definition 3.1. SimSet: Given two sets of points S1 and
S2, define SimSet(S1, S2) = {〈p1, p2〉 | dist(p1, p2) ≤ t ∧
p1 ∈ S1 ∧ p2 ∈ S2 ∧ p1 6= p2}.
The MAPSS problem is to find SimSet(D,D) of Dataset

D in a metric space.

Definition 3.2. Inner sets, Outer sets, Worksets and APSS
division: Assume there exist N sets {Ii=1,...,N} such that
∪N

i=1Ii = D, and N sets {Oi=1,...,N} such that Oi ⊆ D. We
call each Wi = 〈Ii, Oi〉 a workset of D. Ii, Oi are the inner
set and outer set of Wi respectively. If ∪N

i=1SimSet(Ii, Ii ∪
Oi) = SimSet(D,D), then {Wi=1,···N} is said to define an
APSS division of D.

From Definition 3.2, partitioning the APSS workload of D
becomes a problem of finding an APSS division. There may
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Figure 1: APSS Division and Their Constructions

be multiple APSS divisions. A trivial APSS division is to
define inner and outer sets as I1 = . . . = IN = O1 = . . . =
ON = D. The left part of Figure 1 illustrates the concept of
APSS division. In the figure, the nodes are interconnected
if similar. Circular and square points represent inner and
outer points, respectively. Note that B and C serve as outer
points for the upper workset, and serve as inner points for
the lower one.

Definition 3.3. Partitions, Centroids, and Radii: D can
be divided into N disjoint partitions, Pi, . . . , PN , such that
Pi∩Pj = ∅ ∀i 6= j and ∪N

i=1Pi = D. Let N centroids, c1, . . . ,
cN be used to partition D. A point, p, belongs to partition
Pi if and only if ci is its closest centroid. The radius of Pi

is defined as ri = maxpi∈Pi
dist(ci, pi).

In metric space, one way to form worksets is to let Ii, the
inner set of workset Wi, be Pi. Oi, the outer set of Wi,
is given by {pj | dist(pj , ci) ≤ (ri + t) ∧ pj /∈ Pi}. The
right part of Figure 1 is an example of constructing workset
from a partition consisting of all the circular points. All
circles serve as inner points in the generated workset, while
squares serve as the outer points. Triangles are irrelevant to
this workset and thus discarded.

Theorem 3.4. The worksets formed above define a MAPSS
division.

Proof. It suffices to show that all the pairs in SimSet(Ii, Ii∪
Oi) are similar, and that no similar pair is missed. Each
pair in SimSet(Ii, Ii ∪ Oi) is a similar pair, from Defini-
tion 3.1. This establishes that ∪N

i=1SimSet(Ii, Ii ∪Oi) only
contains similar pairs. From Definition 3.3 and Triangle
Inequality (TI), Ii ∪ Oi contains all points similar to any
point in Ii. Since from Definition 3.3, D = ∪N

i=1Ii, it fol-
lows that ∪N

i=1SimSet(Ii, Ii ∪ Oi) ⊇ SimSet(D,D). Hence
{Wi=1,...,N} defines an APSS division for D.

Other approaches, such as the “generalized hyperplane
partitioning”, can also serve as alternatives to construct in-
ner and outer sets. The “generalized hyperplane partition-
ing” is also implemented in our framework. Interested read-
ers are referred to [30, 17] for more details. We omit this
discussion here in the interest of space.
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3.2 The Framework
Figure 2 depicts the MR-MAPSS framework. It has two

major phases: data pre-processing and similarity comput-
ing. The data pre-processing phase comprises the Centroid-
Sampling and CentroidStats steps. CentroidSampling se-
lects random points as centroids. The output samples will
be stored on disks and used in the follow-up step. Centroid-
Stats step computes partition statistics, such as the radii
of the centroids. The Similarity computation phase identi-
fies all the similar pairs. It has either one or two chained
MapReduce steps, depending on the computing resources
and data characteristics. SimilarityMapper reads in the
original dataset as well as the centroid statistics, and con-
structs the worksets for SimilarityReducer. SimilarityMap-
per uses secondary keys so that SimilarityReducer receives
inner points before outer points. An optional repartitioning
step is employed to split large worksets that do not fit in
memory into smaller ones. The repartitioning work is done
by the RepartitionReducer. The RepartitionMapper is al-
most an identity mapper, except for using secondary keys
to provide the same guarantee of SimilarityMapper. Finally,
SimilarityReducer computes ∪iSimSet(Ii, Ii ∪Oi).
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Figure 2: The MR-MAPSS Partitioning Framework

In the rest of the section, we describe the CentroidSam-
pling, CentroidStats and Similarity steps without reparti-
tioning. Repartitioning will be discussed in the Section 5.

3.2.1 CentroidSampling and CentroidStats

Selecting the right set of centroids(partitions) to minimize
the APSS computational cost is a very difficult task. If each
data point is treated as a vertex in the graph, the similar
pair can be modeled as an edge connecting the correspond-
ing vertices. When forming the partitions, a simple but in-
tuitive partitioning approach is to find a set of N centroids
for which the largest distance of any point to its closest cen-
troid in the K-set is minimum. This problem is commonly
known as metric K-center, a NP-complete problem [15]. In
practice, the algorithm also needs to minimize the number
of similar pairs formed by points in two different partitions.
Considering the various system constraints makes the prob-
lem even harder.
The CentroidSampling step samples N centroids from the

input. We tried methods such as KMeans++ [3], random
sampling, as well as a seeding approach ensuring the dis-
tances between any pair of samples is no less than a thresh-

old. It turned out random sampling and KMeans++ have
better performance. We therefore chose random sampling
due to the simplicity and scalability. CentroidStats com-
putes the radius of the partitions. Centroid information is
read in every mapper before the actual map operation starts.
As a mapper processes a point, it outputs the closest cen-
troid id as the key, and the corresponding distance as the
value. For each centroid, a reducer receives a list of the
distances of the inner points to that centroid, [dist(pj , cj)].
The reducer computes the radius for each centroid as the
maximum distance in this list.

3.2.2 SimilarityMapper

Algorithm 1 Similarity

Input: D: the dataset; {〈ci, ri〉}: the centroid statistics.
Output: SimSet(D,D): the set of similar pairs.

Map:
〈i, pi〉+ 〈ci, ri〉 → [〈ci, 〈pi, pointType, dist(pi, ci)〉〉]

Reduce:
〈ci, [〈pi, pointType, dist(pi, ci)〉]〉 →

[〈pi, pj〉 | dist(pi, pj) ≤ t ∧ pi or pj is an inner point ]

In the Similarity step (Algorithm 1), all the outer points
of each workset are found. The mappers route the corre-
sponding inner and outer points of each partition to the
same reducer, and specify the pointType of each point as
either inner or outer. Each reducer receives one of these
worksets, computes all its similar pair of points and outputs
them. Secondary keys that guarantee the reducer receives
inner points before outer points are not shown for simplicity.
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Figure 3: The MR-MAPSS Backbone Algorithm

Figure 3 provides an example of four data points that
are aligned horizontally on increasing subscript order, such
that the distance between any two neighboring points is 0.5.
Partition P1 has points p1 and p2. Its centroid, c1, lies
between p1 and p2. Similarly, partition P2 contains p3 and
p4, with centroid c2 lying between them. Hence, r1 = r2 =
0.25. For simplicity, the centroids are assumed not to be
part of the dataset. The distance threshold is set to 0.6. p1
and p3 reside in shard S1, while the other two points reside
in shard S2. From Definition 3.3, p2 and p3 are outer points
of P1 and P2, respectively. During the shuffle phase, p1 and
p3 are routed to W1, and p2 and p4 are routed to W2 as inner
points. In addition, p2 and p3 are routed as outer points to
W1 and W2, respectively. The two reducers then compute
all the pairs in SimSet(Ii, Ii ∪Oi) for i = 1, 2.

4. OPTIMIZATIONS

Exploting Commutativity: So far, the mappers are as-
sumed to send out the outer points of all the worksets. One
drawback of this näıve routing scheme is the existence of
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redundant computation. In Figure 3, the two points p2
and p3 were sent to W1 and W2, respectively. This causes
the pair 〈p2, p3〉 to be computed by both reducers. More
generally, assuming the dataset is N -way partitioned, and
OP (Pi, Pj) = {a | a ∈ Ii ∧ a ∈ Oj} then the number of
unnecessary computations in the reduce phase is at least∑

1≤i<j≤N
|OP (Pi, Pj)|.

The symmetry property of the metric space can be ex-
ploited to form worksets more efficiently as defined below.

Definition 4.1. Contributing Partitions: Let {Pi=1,...,N}
be the N partitions of D as defined in Definition 3.3. For
any pair of partitions, 〈Pi, Pj〉, let either OP (Pi, Pj) be routed
to Wj as outer points, or OP (Pj , Pi) be routed to Pi as outer
points, but not both. Define the contributing partitions to Pi

as the set Qi = {Pj | OP (Pj , Pi) is routed to Pi as outer
points of Pi}. The worksets are formed such that Ii = Pi

and Oi = ∪Pj∈Qi
OP (Pj , Pi).

A B C D

Figure 4: Näıve VS Optimized Routing.

Figure 4 illustrates the inefficiency by showing a 4-way
partitioned dataset, where an edge represents OP (Pi, Pj)
for partitions Pi and Pj . The dotted edges represent redun-
dant computation. The solid edges incident on any partition
represent contributions of outer points from neighboring par-
titions that do not result in redundant computation.

Theorem 4.2. The worksets formed according to Defini-
tion 4.1 define a non-redundant APSS division where any
pair of points is considered in at most one workset.

Proof. The output ∪N
i=1SimSet(Ii, Ii ∪ Oi) is equal to

(∪N
i=1SimSet(Ii, Ii)) ∪ (∪N

i=1SimSet(Ii, Oi)). To prove by
contradiction, assume two points pi ∈ Pi and pj ∈ Pj are
similar, but not included in the output. We have Pi 6= Pj ,
otherwise, this point pair will be evaluated in SimSet(Pi, Pi).
From the symmetry of the space, since pi and pj are simi-
lar, pi ∈ OP (Pi, Pj) and pj ∈ OP (Pj , Pi). Without loss of
generality, we assume OP (Pi, Pj) is routed to Pj as an outer
point, and the pair (pi, pj) is evaluated in SimSet(Ij , Oj).
Thus, such pair (pi, pj) cannot exist. Hence, the worksets
define an APSS division. In addition, (pi, pj) will either be
routed to workset Wi or Wj , but not both. Thus, any pair
is only considered in at most one workset.

One way to construct the non-redundant APSS division
is to route OP (Pi, Pj) to Pj if |Pi| < |Pj |. This greedy
construction minimizes the total computations for forming
the APSS division, assuming that the time of evaluating
OP (Pi, Pj) is proportional to |Pi|. However, this skews
the workload, since partitions with larger sizes receive more
points. We propose a balancing approach, which is to route
OP (Pi, Pj) to Pj if (((Pi.id + Pj .id) is odd) XOR (Pi.id <
Pj .id)) is true

1. Hence, each partition gets outer points from
roughly half the other partitions, ensuring better load bal-
ancing. The SimilarityMapper is outlined in Algorithm 2.

1All ids are assumed to be fingerprint-able into integers.

The input of the SimilarityMapper is points rather than
partitions. The algorithm first finds the partition Pi to
which point pi belongs (Line 1). In Line 2-6, the algorithm
loops over all the partitions. It outputs pi as an inner point
of Pi (Line 3-4). Otherwise, the point is checked for being an
outer point of Pj and output if it is (Line 5-6). The output is
sorted based on the secondary key (“inner” or “outer”). This
ensures the SimilarityReducer processes inner points first to
guarantee the correctness of the results in case repartitioning
takes place, as discussed in Section 5.

Algorithm 2 SimilarityMapper

Input: pi: the current point; PartitionSet: the set of
partitions.
Output: {〈cj , 〈pi, PointType〉〉 }: a set of mapper output
tuples.

1: Pi = GetPartition(pi, PartitionSet)
2: for Pj in PartitionSet do
3: if Pi.id == Pj .id then
4: OutputWithKey(〈Pi, “inner”, 〈pi, “inner”〉〉)
5: else if (((Pi.id+ Pj .id) is odd) XOR (Pi.id < Pj .id))

&& dist(pi, cj ≤ (rj + t)) then
6: OutputWithKey(〈Pj , “outer”, 〈pi, “outer”〉〉)

Compression of Pairs: To design an efficient Similari-
tyReducer, one major challenge is the online compression
of enormous APSS output. This happens when the data
is highly clustered given the similarity threshold. Existing
graph compression algorithms such as WEBGRAPH [7] are
not appropriate because they assume the entire data fits
in memory. Our solution, Community-based Lossless Com-
pression, compresses similar pairs efficiently on the fly, and
provides good Interpretation of the resulting pairs better.

We treat the APSS output as a graph, where records are
vertices and similar records are connected with edges. Three
key community structures are identified – cliques, bicliques
and hubs (implemented as adjacency lists), as illustrated in
Figure 5. By exploiting the community structures in the
graph, MR-MAPSS outputs compressed community struc-
tures on the fly. The fundamental idea of the compression
scheme is to find the community structures when computing
the similar pairs, and store them right away. If one record
is similar to a set of records, then we say the record and the
similar set form an adjacency list. We can thus compress
the pairs by factoring the record out. For example, the four
similar pairs [(a, b)(a, c)(a, d)(a, e)] can be compressed as
[a, (b, c, d, e)]. Biclique structure generalizes the adjacency
list. We say two sets of records form a biclique if any pair of
records, each from a different set, forms a similar pair. For
instance, the four similar pairs [(a, c)(a, d)(b, c)(b, d)] can be
compressed as [(a, b), (c, d)]. To simplify the implementa-
tion, cliques are treated as a special bicliques. In terms of
compression ratio, adjacency list can compress the data to
half of its size, while the biclique representation can com-
press the data up to min(m,n) times, with m and n being
the two set sizes respectively. Clique representation com-
presses the data to the O(

√
n), where n is the clique size.

Achieving the optimal compression is very difficult - one
criteria of optimality is to minimize the number of bicliques
collections covering all edges, which is NP-complete [13]. In
datasets where no huge cliques and bicliques exist, the ratio
is usually between one and two. These compressed struc-
tures are identified by sorting the points in their distance to
the centroid, and binning them. Then, the bins that have
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(a) Clique (b) Biclique (c) Hub

Figure 5: Compression Helps Exhibit the Commu-
nity Structure

points that fit any of the structures are identified using the
Triangle Inequality (TI). Compression results in an order
of magnitude difference in the output size when the data is
highly clustered given the similarity threshold.
The proposed compression earns us some extra bonus on

processing the follow-up steps. For example, shingle cluster-
ing [14] and neighborhood density estimation can directly
use the compressed data without decompressing, reducing
both the IO and the CPU costs.

Similarity Evaluation: The SimilarityReducer employs
the online compression approach while generating all similar
pairs. Here we assume the whole workset fits in memory. If
the workset cannot fit, our streaming solution takes care of
it, as discussed in Section 5.
A tree-based indexing structure is built using hierarchical

clustering. In our implementation, this creates partitions at
different granularities, and makes both pruning and identi-
fying bicliques at different levels easier.

Algorithm 3 EmitSimSet

Inputs: PA: index A; PB: index B.
Outputs: the similar pairs SimSet(PA, PB).
1: if IsBiClique(PA, PB) then
2: EmitBiClique(PA, PB)
3: else if MayHavePairs(PA, PB) then
4: //Dissimilar partitions are ignored.
5: if PB .HasChildren() then
6: for childinPB .Children() do
7: EmitSimSet(PA, child)
8: else if PA.HasChildren() then
9: for childinPA.Children() do
10: EmitSimSet(child, PB)
11: else
12: EmitAdjLists(PA, PB)

In Algorithm 3, EmitSimSet recursively outputs SimSet(PA,
PB). The output formats are adjacency list and biclique.
The algorithm first outputs the two partitions if they can
form a biclique. The checking only needs radius and centroid
information in the indexing structures (Line 1-2). Next, the
algorithm continues only when the two partitions may have
similar pairs, which prunes away the dissimilar partitions if
they have no chance of forming similar pairs. The algorithm
exploits the fine-granularity partitioning information by go-
ing to the child nodes, and calls itself recursively on one of
the child level partitions. If we are already at a leaf node of
the indexes, we directly compute and emit the similar pairs
(Line 3-12). SimilarityReducer calls EmitSimSet to evaluate
similar pairs in each partition.

Algorithm Applicability: Our MR-MAPSS framework
can be applied to any metrics, including Earth Mover Dis-
tance(EMD), Hamming distances, string edit distances and
so on. When computing pairwise distance, it is common
practice to make use of filters. For example, with EMD
metric, we can employ filters such as weighted Lp norms [4].

It is also worth noting that this generic partitioning frame-
work can even cope with some non-metrics. In fact, both
cosine similarity and the KS-statistics can work under our
framework. For instance, although cosine similarity itself
does not conform to TI, the angles between the vectors ac-
tually exhibit the TI property [2].

5. DATA REPARTITIONING
In an imbalanced workload [12], few machines take hours

or even days to compute the large worksets while all other
machines finish in seconds. It is also possible some worksets
are too large to fit in memory, which may make the program
crash in the middle of a job. Fortunately, both issues can
be greatly relieved by repartitioning the large worksets into
even smaller ones iteratively.
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Figure 6: Improved Similarity Computation Task

Figure 6 highlights the more scalable Similarity computa-
tion task with repartitioning. The WorkloadEstimate step,
Job1 in Figure 6, computes the inner and outer sizes for each
workset. The fact that partition c1 has 2 inner and 1 outer
points is denoted in Figure 6 as 〈c1, 〈2, 1〉〉. Then for each
workset, it computes a simple estimate of the processing
load. It sorts both inner and outer points first, and con-
structs a frequency histogram based on the distance to the
centroid. By applying TI, WorkloadEstimate identifies the
bins whose points have to be compared against each other.
Hence, WorkloadEstimate can estimate an upper bound on
the total number of comparisons. If there exists one par-
tition whose estimated comparison number is larger than
ut2, or whose estimated data size cannot fit in memory, the
worksets are repartitioned during the Repartition step. Oth-
erwise, the similar pairs are computed directly.

2The value ut was set to 108 in our experiments.
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(c) Outer Streaming

Figure 7: Illustration of RepartitionReducer

Map2 is SimilarityMapper. Based on the estimated work-
load from WorkloadEstimate, it either continues running
SimilarityReducer (ReduceA) to compute all the similar pairs
when the data is not highly clustered given the similarity
threshold, or switches to the RepartitionReducer (ReduceB)
to split the large worksets into smaller ones. WorkloadEs-
timate and SimilarityMapper can run in parallel until the
repartitioning decision is reached.
RepartitionMapper (Map3) is simple as it outputs the

input as is. It parses the point list and outputs each point
individually using the key generated by RepartitionReducer.
It also applies a secondary key for the SimilarityReducer to
process all the inner points before the outer points.
SimilarityReducer (Reduce3) finds the similar pairs and

effectively compresses them on the fly. Streaming of data
reading can be achieved because the MapReduce infrastruc-
ture can stream data from disk when necessary.
When the repartitioning is done, MR-MAPSS checks whether

each workset is small enough and repartitions again if there
are still some large worksets. We omit this iterative process
for simplicity. Next, we study the design of repartitioning,
and how it scales even under scarce system memory.

RepartitionReducer: A RepartitionReducer reads inner
points before outer ones, due to the use of secondary keys by
SimilarityMapper. Each reducer evaluates one workset. If
the available memory can accommodate the whole workset
and the workload is relatively small, the algorithm outputs
all the points in the workset as is, deferring the pair evalu-
ation to the SimilarityReducer. Otherwise, repartitioning is
carried out, as will be discussed next.
To repartition the large worksets into smaller ones, the

workset’s inner points are first divided into multiple “inner
sub-partitions” using randomly sampled centriods. Each in-
ner sub-partition then forms a new sub-workset by picking
up some outer points, that could be either inner or outer
in the original workset. Figure 7a illustrates this concept
by splitting the original workset into two smaller ones. The
repartitioning operation results in two smaller sub-worksets
by duplicating p5, p9. Interestingly, p8 no longer exists in the
sub-worksets. The correctness is ensured as SimSet(I, I ∪
O) = SimSet(I1, I1 ∪O1) ∪ SimSet(I2, I2 ∪O2) holds.
So far, repartitioning assumed all inner points fit in mem-

ory. Next, we describe a streaming repartitioning scheme
that relaxes this assumption, and prove its correctness.

Streaming Repartition: After identifying the worksets to
be repartitioned, the algorithm processes points in a stream-
ing way, thus avoiding crashing if the inner set does not fit in
the RepartitionReducer memory. It first randomly samples
points from the inner set. Each one of the samples will be a
centroid to one of the new sub-worksets .

The streaming operation has two phases - inner point
streaming and outer point streaming. If all the inner points
fit in memory, calculating the radii of each inner sub-partition
is trivial. Otherwise, the exact radii cannot be known un-
til it finishes processing the disk-resident inner points. By
adding the old centroid in the centroids list, the radius of
the original workset is guaranteed to be an upper bound on
all the radii of the new worksets. In this case, the original
radius is assigned as the tentative radius when streaming
the inner points. The observation on the radii upper bound
allows us to avoid outputting the point with every centroid
as an outer point. After all inner points are processed, the
exact radii are adjusted based on the inner point assignment.
This adjustment minimizes the redundancies for the outer
points streaming.

Algorithm 4 ProcessInnerPoint

input: worksetInfo array, which contains the centroid and
the corresponding radius for each point; point: the input
point to process.
1: point is emitted as inner point of its closest workset Wi

2: for Wj in worksetInfo do
3: point is emitted as outer point of workset Wj , iff

dist(point,Wj) ≤ RWj
+ t and i 6= j

The disk-resident inner (to the original centroid) points
are scanned. For each point, the RepartitionReducer emits
the point as an inner point to the sub-workset with the clos-
est centroid. It also emits the point as an outer point with
all the sub-worksets where the point is within r+ t of it cen-
troid, and r is the radius of the original centroid. Figure 7b
shows a state change of the worksets when a new inner point
arrives after the memory is filled up. Point p is deemed an
outer point for W1 since dist(p, c1) does not exceed r + t.

After all such points are scanned, the radii of the new
centroids are calculated. The new radii (instead of the radius
of the original centroid) are used when scanning the disk-
resident outer (to the original centroid) points and assigning
them as outer points to the new centroids.

Processing disk-resident outer points is almost identical to
the loop in Algorithm 4. If the distance of the point to any
new centroid, Wi, does not exceed RWi

+ t, it is output as
an outer point with Wi. Figure 7c provides an illustration.

Theorem 5.1. Streaming Correctness: StreamRepartition
splits the workset W into P worksets W1,2,...,P , such that
SimSet(W.I,W.I ∪W.O) = ∪P

i=1SimSet(Ii,Wi) holds.

Proof. If the inner points fit in memory, the proof is
trivial. We only discuss the other case. Due to the sort-
ing on point type, all the inner points are processed be-
fore any outer points. We divide the streaming into three
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phases. In the first (second) phase, the RepartionReducer
scans the inner points of the original workset that fit (do
not fit) in memory. In the third phase, it scans the outer
points of the original workset. Denote the inner (outer)
set for workset Wi by Iij (Oij) after phase j finishes. De-
note all the inner (outer) points of Wi as Ii (Oi). Thus,
Ii1 ⊆ Ii, Oi1 ⊆ Oi, W.I = ∪P

i=1Ii2 = ∪P
i=1Ii, and ∪P

i=1Oi1 ⊆
∪P

i=1Oi2 ⊆ ∪P
i=1Oi3, hold. In the first phase, Algorithm 4

partitions ∪P
i=1Ii1 into P smaller worksets. Also, it outputs

∪P
i=1Oi1. Hence, the output of the first phase is used by

SimilarityReducer to compute ∪P
i=1SimSet(Ii1, Ii1). Simi-

larly, the output of the second phase is used by Similari-
tyReducer to compute ∪P

i=1SimSet(Ii2 − Ii1, Ii2). Finally,
the output of the third phase is used by SimilarityReducer
to compute ∪P

i=1SimSet(Ii2, Oi3). By combining the Sim-
ilarityReducer computed pairs from the above output, we
get SimSet(W.I,W.I ∪W.O).

The form 〈worksetID, 〈point, pointType, distance〉〉 is used
for the output of RepartitionReducer. There could be multi-
ple repartitioning steps, though we find repartitioning once
is sufficient, in practice, for solving any scalability issues.

6. EVALUATION
We analyze the algorithm, then explain the experiments

setup and results.

6.1 Algorithm Analysis
Given the data D and M machines, assume the data is

partitioned with N centroids. We analyze the complexity of
each MapReduce job. One notable feature of the framework
is that it has minimal redundancy as each pair is considered
only once in SimilarityReducer.
The Sampling step computes statistics on every partition.

As each machine works independently on roughly O(|D|/M)
records, this step is embarrassingly parallel. Usually it could
be done in tens of seconds.
The Statistics step computes the centroid statistics. A

näıve approach would compare every point with all the cen-
troids, thus having a complexity of O(K×|D|/M). However,
by using some indexing on the centroids, we can significantly
reduce the number of comparisons.
In RepartitionMapper, the IO cost takes most of the time.

Let I denote the total number of repartitions. In most cases
I = 1. Basically, the IO cost is O(I ∗∑K

i=1
|workseti|) as we

need to route the worksets to the same Reducer. Reparti-
tionReducer time is linear to the workset size if the number
of repartitioned worksets is fixed to a constant(20 in our
implementation). Fortunately, most sorting can be done in
main memory and the shuffling overlaps with the Mapper.
The repartition step reduces the workset size at the expense
of extra overhead. This tradeoff is evaluated in Section 6.3.
SimilarityReducer is often the most time-consuming oper-

ation in the framework. A näıve implementation would have
Θ((N/(M ∗ I))2) complexity. However, because a workset
is repartitioned when the workload is above the threshold
ut, the time complexity is bounded by ut. Usually Similari-
tyReduer performance is even better given our indexing and
compression techniques.

6.2 Experiments Setup
The principal motivation for this work is to find all simi-

lar pairs of records in a dataset of network traffic collected

at Google. Each record corresponds to the distribution of a
signal used for click ring detection3. For this evaluation, we
used a subset of this dataset of approximately 2M records
where each record is a point in a 30-dimensional space. Ad-
ditionally, we report results on a publicly available dataset
from the Netflix competition [23]. This dataset contains
480000 users and their ratings on 17770 movies. Each rat-
ing is an integer ranging from 1 to 5. We identified a useful
subset, namely the 20 most rated movies (dimensions) and
the 421144 users (records) who rated them.

We use these datasets to study five issues. First, we in-
vestigate the role of repartitioning as a survival mechanism
when the computational resources are constrained. Second,
we examine repartitioning as a mechanism to mitigate the
undersampling problem, where the number of selected cen-
troids is relatively small, and hence MR workers are over-
loaded. Third, we assess the effectiveness of the compression
strategy. Forth, we study the scalability of the MR-MAPSS
approach as the number of machines is varied, and finally,
we compare our approach with similar efforts.

For all the experiments, a set of default settings is used
unless otherwise stated. The MapReduce jobs are run on 500
machines (500 Mappers and 500 Reducers). The pairwise
distances are normalized to [0, 1]4. The distance threshold
assumes the values 0.5, 0.2, and 0.05.

6.3 The Effect of Repartitioning

 1000

 10000

 100000

500 1000 5000

R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Centroids

No-Repartitioning
Repartitioning

(a) Threshold 0.5

 1000

 10000

 100000

500 1000 5000

R
u
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Number of Centroids

No-Repartitioning
Repartitioning

(b) Threshold 0.2

Figure 8: Repartitioning on the Google Dataset

As mentioned above, repartitioning can be autonomously
disabled when it is deemed not useful. However, for these
experiments, repartitioning is always enabled to study its
impact on the overall performance. Figure 8 illustrates this
effect when the number of centroids is 500, 1000 and 5000
on the Google dataset. The algorithm with repartitioning
is several times faster than the one without repartitioning
for almost all configurations. The only exception, under the
configuration of 0.5 threshold and 5000 centroids, is because
we reached the oversampling zone. When oversampling, the
number of selected centroids is relatively large, and the over-
head of the extra repartitioning MapReduce step does not
justify the extra little load balancing. On the other hand,
from Figure 9, repartitioning was never useful on the Net-
flix data. This is because that data was not highly clustered,
thus naturally highly load-balanced.

Another major motivation for repartitioning is when the
computational resources are limited. An experiment was
conducted on the Google dataset with 50 machines, each

3Further details of this dataset cannot be disclosed for pro-
prietorial considerations.
4Although the current implementation supports Euclidean,
Earth Movers Distance and KS-Statistic, we report results
using the Euclidean distance. The reason is no significant
trend differences were detected between the metrics.
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Figure 9: Repartitioning on the Netflix Dataset, t =
0.05

with a 500MB memory limit. When running with 100 cen-
troids, the repartitioning method always outperformed the
non-repartitioning counterpart, as shown in Table 2. The
non-repartitioning runs were aborted when the threshold
was set to 0.5, and failed several times before succeeding
when the threshold was 0.2. When running the experiments
on larger datasets, the non-repartitioning runs crashed im-
mediately when the memory was constrained to 3GB, while
the repartitioning case completed in reasonable time.

Table 2: Run Time (seconds) on the Google Dataset
with Limited Memory (500MB)
Threshold Non-Repartitioning Repartitioning
0.5 Failure 23864
0.2 69010 28866
0.05 3019 3639

6.4 The Effect of Compression
To appreciate the effectiveness of compression, we de-

signed a näıve algorithm, Basic, which does brute-force com-
putations for each workset, and outputs the similar pairs
without compression. For the Google dataset, Basic failed
due to the sheer number of pairs. Thus, we only report re-
sults on the Netflix dataset in Figure 10. On average, com-
pression resulted in an order of magnitude improvement.
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Figure 10: Compression on the Netflix Dataset

On the Google dataset, we examined the effect of the se-
mantic compression technique by comparing different output
sizes as the threshold and the number of centroids, N , were
varied (see Figure 11). The output sizes reported here are
after MapReduce further compresses the output with bzip2.
At 0.5 we have an interesting situation where most of the
pairs are similar. So, there was little benefit from pruning,
but there was massive benefit from compression. When the
threshold was 0.2, many pairs had to be considered, and
there was moderate benefit from compression. Notice that
the output size when t was 0.5 is almost an order of magni-
tude smaller than its size when t was 0.2, even though the
total output comprises more pairs. At 0.05 there was the
least benefit from compression. However, given the thresh-
old is very low, our pruning techniques worked well. It is
also worth noting that towards the lower thresholds, as N

increases, the compression power is restrained by the smaller
workset sizes.
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Figure 11: Compression on the Google Dataset

6.5 The Scalability Study
We present the scalability results on both the Netflix and

Google datasets in Figures 12. We varied the threshold and
the number of centroids, N . We selected 500 and 1000 cen-
troids for the Netflix dataset and 5000 and 10000 centroids
for the Google datasets. From Figures 12, for most of the
different combinations of parameter values, the MR-MAPSS
framework scaled well with the number of machines. The
main exception was the case when 1000 centroids were se-
lected for the Netflix dataset when the threshold was 0.05.
This is mainly because the scale of Netflix dataset is rela-
tively small. Running with 1000 centroids on 500 machines
does not help much in reducing the overall running time but
brings in extra system communication and overheads.
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Figure 12: Scalability on the Netflix and Google
Datasets

6.6 Comparison with MRSimJoin
We first briefly note that MRSimJoin [28] is distinct from

our approach in that it does not address streaming data
when input cannot fit in the reducer memory. Moreover, it
does not consider compressing the output. The Theta-Join
framework [24] enables the comparison of competing strate-
gies when the join problem is: i) input-size dominated,
when the reducer-input related costs dominate the join com-
pletion; ii) output-size dominated, when the reducer-
output cost outweighs other costs and iii) input-output
balanced, if neither dominates the other. Since MRSimJoin
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does not address the output size problem (see Section 6.4),
here we focus only on the input-size comparison5.
We also compare these two approaches with an approach

called record partitioning (RP). This näıve approach first
splits the data by record into P partitions. Each parti-
tion is then routed to all other partitions to form worksets
and compute similar pairs. Two synthetic datasets and the
Netflix dataset are considered for this evaluation. GAUS-
SIAN and CLUSTERED are both 20 dimensional datasets
with 3000000 records. For GAUSSIAN, each element in
the record follows normal distribution N(1, 1). For CLUS-
TERED, each dimension following 1 + 2 × Uniform(0, 1).
For ease of comparison, we apply the same indexes proposed
by Jacox and Samet [17], which ensures that the total num-
ber of evaluations is roughly identical in both methods.
We now consider the size of intermediate data that is fed

to the reducers. As shown in Figure 13, on all datasets, our
approach consistently reduces the intermediate data size by
half even compared with MRSimJoin, resulting in signifi-
cant gains. The rationale is that MRSimJoin is also an N-
Way partitioning model with a different routing scheme. For
any two partitions Pi and Pj , it sends both OP (Pi, Pj) and
OP (Pj , Pi) to the same reducer. Thus, the amount of inter-
mediate data to the Reduce phase is the same as the näıve
approach in Figure 4. Essentially, MR-MAPSS delays about
half of the overall evaluations to the Reduce phase, thus gen-
erating much fewer candidate pairs. Both MRSimJoin and
Record Partitioning do not consider output compression at
all (described in Section 4) which results in an additional
performance benefit for our method.
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Figure 13: Reducer Input for MR-MAPSS(MM),
MRSimJoin and Record Partitioning (RP). X axis
is threshold.

7. RELATEDWORK
The set APSS problem, also known as set similarity self-

join, has been widely studied in the literatures due to its
wide applicability. Several key optimizations, including in-
verted indexes [26], prefix filtering [8, 6], suffix filtering [32],
were proposed. MapReduce versions also exist [10, 5, 22,
31]. Some optimizations in [32] are adopted in a MapRe-
duce setting in [31] for database joins. One recent paper [22]
discussed the inefficiencies in [31], and proposed an order of
magnitude faster and a more scalable approach. The al-
gorithms in [10, 5] approximate the set and multiset simi-
larity using cosine similarity. Very recently, a partitioning
approach [1] has applied cosine similarity on vectors.
The Metric APSS problem has many applications, e.g.,

recommender systems [19] and Internet-scale image search [25,
20]. Sequential solutions [17] employed effective indexes
for metric similarity joins. Silva et al [28] demostrated a
MapReduce-based metric APSS applications on EC2 by ex-
tending the “generalized hyperplane partition” idea. How-

5It is difficult to compare with Theta-Join work as the au-
thors do not mention a specific approach for estimating the
join matrix efficiently for similarity self joins.

ever, they did not consider surviving resource sparsity and
output compression.

8. CONCLUSION
In this paper, we proposed the novel MR-MAPSS frame-

work. The backbone of our approach intelligently routes
the input data records into independent worksets processed
by independent MapReduce workers such that no pair is
evaluated twice. We further enhanced the load-balancing of
the partitioning algorithm by using workset repartitioning,
and employing compression of the output pairs. Finally, we
demonstrated the efficiency, the effectiveness and the scal-
ability of the framework using real datasets on hundreds
of machines. Future work will study automatic parameter
tuning and compare with approaches on Hamming and edit
distances.
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