Learning Multiple Non-Linear Sub-Spaces using K-RBMs
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Abstract step in many machine learning applications.

) ) ) We propose a feature learning framework that uses the
~ Understanding the nature of data is the key to build- 1 iheses: data really liesinultiplenon-linear subspaces
ing good representationsin domains such as natural im- - 54 finding those subspaces and clustering the right data
ages, the data comes from very complex distributions whichy s into the right subspaces will result in the kind of-fea

are hard to capture. Feature learning intends to discover o \we are looking for. Figuf@ 1) sho@@non-linear sub-
or best approximate these underlying distributions and use spaces in VOC PASCAL 2007 data. It is evident from the
their knowledge to weed out irrelevant information, pre- i, re that the huge diversity in the image patches can not be

serving most of the relevant infolrmatiqn. F(_aature Iea_lrning captured by a single subspace. Our approach requires that
can thus be seen as a form of dimensionality reduction. In,, .o <olve the “coupled” problem of non-linear projection

this paper, we describe a feature learning scheme for nat- 5§ cjustering of data points into those projections simul-
ural images. We hypothesize that image patches do not allze4ysly. Clustering cannot be done in the raw input space

come from the same distribution, they lie in multiple non- pecayse the data really lies in certain non-linear subspace
linear subspaces. We propose a framework that uses o the right subspaces cannot be discovered without proper
Restricted Boltzmann Machinels(RBMS) to learn mul- 45 5ings of the data. While most of the work in cluster-
tiple non-linear subspaces in the raw image space. Pro- i, and projection methods is done independently, attempts
jections of the image patches m_to _these subspaces 9iVeRave been made to combine them([Ll 17]. In this paper,
us feature_s, which we use to build image repre_ser)tatlons.we take this “coupling” a step forward by learning clusters
Our algorithm solves the coupled problem of finding the 4y projections simultaneously. This is fundamentally dif

right non-linear subspaces in the input space and assoCi-ferent from an approach like Sparse Subspace Clustering
ating image patches with those subspaces in an |terat|ve(SSC) [5] that first learns a sparse representation (SR) of

EM like algorithm to minimize the overall reconstruction ¢ gata and then applies spectral clustering to a sinyilarit
error. Extensive empirical results over several popula im .o puilt from this SR.

age classification datasets show that representationscbase

on our framework outperform the traditional feature repre- Ve further hypothesize that a mere non-linear clustering
sentations such as the SIFT based Bag-of-Words (Bow) andS Not the best way to understand the nature of dasather
convolutional deep belief networks. linear clusters might be present in each of the non-linear

subspaces.An overall solution should first find multiple

non-linear sub-spaces within the data and then further clus
1. Introduction ter the data within each sub-space if necess@mgice we

discover the subspaces the data points (image patches) lie

Feature extraction and modelling together address thein, projections into these subspaces will give us the fea-

overall complexity of mapping the raw input to the final tures that best represent the patch&ge proposea sys-
output in modelling. Rich features that capture most of tematic framework for a two-level clustering of input data
the complexity in the input space require simpler mod- into meaningful clusters - first level being clustering cou-
els while simpler features require more complex models. pled with non-linear projection while the second level be-
This “law-of-conservation of complexity” in modelling has ing clustering with linear projection in each non-lineabsu
driven many efforts in feature engineering, especially, in space.We use K-RBMs for the first level clustering and
complex domains such as computer vision where the rawsimple k-means on the RBM outputs for the second level
input is not easily tamed by simple features. Finding seman-clustering. We apply our framework to clustering, improv-
tically rich features that capture the inherent complegity  ing BoW and feature learning from raw image patches. We
the input data is a challenging and necessary pre-progessindemonstrate empirically that our clustering method is com-



parable to the state of the art methods in terms of accuracytions. One reason for our choice of traditional RBMs as
and much faster. Representations based on K-RBM featuresuilding blocks was the availability of a great deal of re-
outperform traditional deep learning and SIFT based BoW search on properly training RBMs [11]. Secondly, the par-
representations on image classification tasks. tition function of an RBM is intractable. By introducing
the third layer[[19] manages to fit the mixture of boltzmann
machines without explicitly computing the partition func-
tion. We tackle the partition problem by associating sam-
ples with the RBMs that reconstruct them best (minimizing
the reconstruction errors) in an EM algorithm. Since the re-
Figure 1: RBM weights (learnt by the model) representing construction error is not an inherent part of the traditiona
20 non-linear subspaces in the Pascal 2007 data. Local KRBM formulation, our framework is not a mixture model.
RBM features are computed by projecting image patches to
the subspace they belong to, and adding the biases.

2. Training RBMs

Restricted Boltzmann Machines (RBI[22] are undi- RBMs are two layered, fully connected networks that
rected, energy-based graphical models that learn a nonhave a layer of input/visible variables and a layer of hidden
linear subspace that the data fits RBMs have been used random variables. RBBI model a distribution over visi-
successfully to learn features for image understanding andPle variables by introducing a set of stochastic features. |
classification[[12], speech representation [18], analysze u applications where RBMlare used for image analysis, the
rating of moviesm] , and better bag_of-word representa- visible units COfreSpond to the pixel values and the hidden
tion of text datal[2D]. Moreover, RBBlhave been stacked Units correspond to visual features.
together to learn hierarchical representations such gs dee There are three kinds of design choices in building
belief networks[[12.13] and convolutional deep belief net- an RBM: the objective function used, the frequency of
works [16] for finding semantically deeper features in com- parameter updates, and the type of visible and hidden units.
plex domains such as images. Most nonlinear subspaceRBMs are usually trained by minimizing the contrastive
learning algorithms [€,]12] make various assumptions aboutdivergence objective (CD-1)[10] which approximates the
the nature of the subspaces they intend to discover. RBM actual RBM objective.For an RBM with I visible units
are a generic framework for learning non-linear subspacesyp;,i = 1,...,I (vp = 1 is the bias terms),J hidden
make no assumptions about the sub-spaces other than thenits #;,j = 1,...,J (ho = 1 is the bias term) and
size of the subspacese a standard energy based learning symmetric weighted connections between the visible
algorithm, and can model subspaces of any degree of comand hidden layers denoted by ¢ RU+Dx(/+1) (these
plexity via the number of hidden units making them most include asymmetric forward and backward bias terms), the
suitable as general purpose sub-space learning machines. activation probabilities of units in one layer are computed

Our model learngX RBMs simultaneously. Each RBM  based on the states of the opposite layer:
represents a subspace in the data. The association of a
data point to an RBM depends on the reconstruction er- I
ror of each RBM for that data point. Each RBM updates Pr(h;=1v) =0 <Z WijUi> 1)
its weights based on all the data points associated with it. i—0
Through various learning tasks on synthetic and real data,
we show the convergence properties, quality of subspaces J
learnt, and improvement in the accuracies of both descrip-
tive and predictive tasks. Pr(vi =1lh) = ¢ ZW’U h )

Kindly note that[[19] also uses RBMs for data partition- =0
ing. However, their approach is different from ours in sev-
eral ways. Firstly, while we employ traditional second or-
der (2-layer) RBMs,[[19] describes an implicit mixture of
RBMs which is formulated using third order RBMs. Au- ! . .
thors in [19] introduce the cluster label (explicitly) asid-h bapkwgrd .passi(h|dden +t0 V's'ble).’ we recompute visible
den discrete variable in the RBM formulation describing an u.nlt aCt'Va.t'Onsfi f-rom h (E‘?B)- Finally we compute the
energy function that captures 3-way interactions among vis Nidden unit activationé ;- again fromo;”. The weights are
ible units, hidden units, and the cluster label variable. In updated using the following ruleAw;; = n(< v;"h} >
our solution, the cluster label is implied by the RBM id, — < v; h; >) wheren is the learning rate ane-> is
and the model parameters capture the usual 2-way interacdefined as the mean ovéf examples. The reconstruction

o(+) is the sigmoid activation function. In the CD-1 for-
ward pass (visible to hidden), we activate the hidden units
h from visible (input) unit activations;” (Eq0). In the



error for any sample is computed as: its reconstruction by thg*"» RBM, computed using (Elg.3).
We denote this error by,,. The total reconstruction error

! N
€= Z (vf — v;)Q (3) €, in any iteratiort is given by > mkin {€kn}
=1

=1 The K RBMS are trained simultaneously. During the

RBM weights are usually updated once per mini-batch. RBM training, we associate data points with RBMs based
Other options are once per sample update (fully online) andon how well each component RBM is able to reconstruct the
corpus level update (fully batch). We found doing a full data points. A component RBM is trained only on the train-
batch update gives a more reliable gradient and slightly bet iNg data points associated with it. The component RBM
ter reconstruction compared to other strategies. are given random initial weights*, k = 1, .., K.

An RBM can have binary or non-binary visible and hid- ; ; _
den units. Most RBM implementations use binary visible 3.2. Clustering using K-RBMs
units. In our applications, we have used Gaussian visi- As in traditional K-means clustering, the algorithm al-
ble units to model distributions of real valued data. The ternates between two steps: (1) Computing association of
stochastic output of hidden unit (E.1) is always a probabil a data point with a cluster and (2) updating the cluster pa-
ity which is thresholded against a random value between Orameters. In K-RBM n'" data point is associated with"
and 1 to give a binary activatiaf,. In CD-1, it is custom- RBM (cluster) if its reconstruction error from that RBM is
ary to use binary hidden states when the hidden units ardowest compared to other RB§i.e. if ey, < €, Vk #
driven by datal@j) and the probabilities without sampling &', k, k" € {1,.., K}.
when the hidden units are driven by reconstructidns)( Once all the points are associated with one of the RBM
Thresholding introduces sparsity by creating an inforomati ~ the weights of the RBM are learnt in a batch update. In
bottleneck. We however always use the activation probabil- hard clustering the data points are partitioned into the-clu
ities in place of their binary states for parameter updates.ters exhaustively (i.e. each data point must be associated
This decision was based on the desire to eliminate unneceswith some cluster) and disjointly (i.e. each data point is as

sary randomness from our apprd3emd was supported by ~ sociated with only one cluster). In contrast with K-means
extensive experimentation. where the update of the cluster center is a closed form so-

lution given the data association with clusters, in K-RBM
3. Learning Multiple Non-Linear Subspaces the weights are learnt iteratively. _
using K-RBMs We can extend our model to incorporate soft clustering
where instead of assigning a data point to only one RBM
Our framework usegl component RBN. Each com- cluster, it can be assigned softly to multiple RBM clusters.
ponent RBM learns one non-linear subspace. The visible The soft association of the data point with the:*" clus-
unitsv;, 7 = 1, .., I correspond to ail dimensionsional vis-  ter is computed in terms of the reconstruction error of this
ible (input) space and the hidden units, j = 1,.., J cor- data point with the RBMu,,;, = M where
respond to a learnt non-linedrdimensional subspace. For kgl exp(—eprp, /T)
the sake of simplicity, we experiment with RB3f the 7 s the temperature parameter that is reduced over time as
same size; all the subspaces our model learns have the samg simulated annealing [13]. Each sampig contributes
aSSUmeaﬂimenSiona”tyJ. However, this restriction is un- to the training of all RBM in proportion to its associa-
necessary and we are free to learn subspaces with differenfion with the RBMs. While updating weights, the asso-
assumediimensions. ciation factor is also multiplied with the learning rate. A
3.1. K-RBMs K-RBM trained using th_e soft approa_ch can be seen as a
o set of RBMs, each of which learns a distribution of all the
The K-RBM model has K component RB3 Each of data but using more information from those it can represent
these maps a set of sample poixtse R to a projection in most accurately. Each RBM can reconstruct all the points,
R’. Each component RBM has a set of symmetric weights some more accurately than the others. This is fundamen-
(and asymmetric biases)* € RUTD*(/+1) that learns a tally different from the hard clustering where each compo-
non-linear subspace. Note that these weights include thenent RBM learns the distribution of a subset of the data and
forward and backwartliasterms. The error of reconstuc- tries to distort samples from other clusters to look like the
tion for a samplex,, given by thek*® RBM is simply the samples that it has learnt from.
squared Euclidean distance between the data pgjrand

3.3. Convergence and Initialization

1We use the reconstruction error as a cost function in outtenfing; .. ..
random thresholding introduces randomness in the projesticence af- K-RBM training seeks to learn both the associations

fecting the reconstruction errors. (clusters) and the parameters (non-linear subspaces)-simu
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Figure 2: (a) Schematic Diagram of K-RBM training: Each inpample is fed to all component RBMs, and is assigned
to the one which reconstructs it best. Each RBM is then tchim@ng the samples assigned to it. (b) Block Diagram of
K-RBMs.

taneously. There are two kinds of convergences associated Clustering and RBM Trairing Convergence

with the model: the clustering convergence and the RBM - ;ﬁzfo
learning (subspace learning) convergence. In our experi- ——— |
ments the clustering process is said to have converged when

more tharm9% of the samples stop changing cluster asso- ]
ciations. In case we require only the cluster associations,

N
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S

a
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we can stop the algorithm once the clustering converges.
However, the convergence of clustering just means that the
points in each cluster belong to the same non-linear sub- |
space, it does not guarantee the accuracy of the learnt sub-

spaces. For feature learning, we require data projections S L

in the non-linear subspaces, therefore we continue train- 0 % 0 ey 0 T s w
ing the RBMs until the total reconstruction error stabiiize
Our experiments indicate that clustering converges far be-
fore the RBM training converges. We empirically decide
the number of epochs our algorithm iterates for and we call
this numbemmaxepoch.
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S
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Figure 3: A plot of reconstruction errors vs epochs of train-
ing process for our experiments on the Pascal dataset (sec-
tion[4.2). Reconstructions are significantly better with-a K
RBM over a single RBM. For the Single RBM, we divide

the mean error by 10 to bring it to scale with the others.
Figure[3 shows that K-RBMs significantly outperform

the single RBM in terms of the final mean reconstruction er-
ror per data point. This supports our hypothesis that the in-
put data lies in multiple simpler non-linear sub-spaced{mu

tiple K-RBMs) and not in a single complex non-linear sub-  Tragitionally, hand-crafted features like SIFT and HoG
space (single RBM). have been employed for building image representations.
Like most EM methods, our model is sensitive to ini- Such hand crafted features are often not semantically mean-
tialization. However, following the standard best RBM im- ingful representations of images. Also they are not “l€arnt
plementation practices (small initial weights, small leag but just “computed” from raw data. Recent times have seen
rates, weight decay, momentum and so bn) [11] ensures thathe introduction of features that are learnt from the data.
this sensitivity is minimal. Further, the reconstructioroes Deep belief networks [16.-18] and convolutional networks

3.4. K-RBMs for Image Feature Learning

typically converge around the same value owetzepoch [15] have been employed for feature learning to solve a va-
iterations. All our experiments were conducted once with riety of tasks. These methods are based on the hypothesis
random initialization. that good data representations are hierarchical and can be



learnt directly from the data; these methods usually have hi with our second hypothesis, K-Means followed by K-RBM
erarchical layered feature extractors. Although deemlear clustering helps achieve better partitioning of the dath an
ing methods yield robust features, training deep networksconsequently better vector quantization.

involves making many design choices, tuning many param-  Both SIFT and K-RBM project image patches into non-
eters, and are often computationally challenging. We pro- linear sub-spaces. While SIFT introduces non-linearity by
pose a feature learning scheme using K-RBMs that learnsusing non-linear filters followed by counting the number of
from the data like the deep networks but is simpler in terms directions the edges take, K-RBMs “learn” features from
of the overall model complexity and parameters. By doing the data without assuming a specific class of low level fea-
so, we intend to take a step forward towards promoting fea-tures (e.g. edges assumed by SIFT). Thus while SIFT “com-
ture extraction schemes that “learn” semantically meaning putes” the features, K-RBMs are more adaptable to the im-
ful representations of the data from the data, while keepingage corpus they are applied to. While SIFT itself is a his-
a check on the model complexity. togram of very simple artefacts (edges), K-RBMs treat each

In image domains, we typically compute local features Patch as an artefact.
over patches in an image and then pool the local features
to get global image representations (e.g. BoWw). In this pa-4. Applications
per, we describe dense local K-RBM features. K-RBM fea-
tures are computed hyard clustering patches from dense

grids in images. K-RBM features are the projections of  |n this section, we compare the accuracy and speed of K-
these patches in the corresponding learnt subspaces. UmRBM clustering with the state of the art subspace clustering
like the 128 —dimensional SIFT deSCI’iptorS, the size of the methods, Random Samp|e Cconsensus (RANS'AC)[Q] and
K-RBM features is dictated by the number of hidden units Sparse Subspace C|ustering (SEC)[S] in addition to PCA
in the component RBMs. In our experiments, we work with + K-means, t-SNE[[23] + K-means and RBM + K-means
patches of size2 x 12 pixels. Each patch can thus be rep- on two synthetic datasets where we can control the nature
resented as a44—dimensional sample vector. Our com- of the sub-spaces in the data. t-SNE is a non-linear dimen-
ponent RBMs have 44 visible units and36 hidden units.  sjonality reduction method which minimizes the divergence
Each local K-RBM feature is thus6—dimensional. Un-  petween distributions over pairs of points. RANSAC works
like SIFT BoW representations where we can perform K- py iteratively sampling a number of points randomly from
Means clustering of all the SIFT features directly, we can’t the data, ﬁtting a model to those points and rejecting out-
cluster K-RBM features coming from different component jiers. SSC computes a sparse representation (SR) of the
RBMs since they lie in different subspaces. All SIFT fea- data and applies spectral clustering to a matrix obtained

tures lie in the samé28—dimensional space. However each from the SR. These algorithms represdetoupledearn-
K-RBM feature lies in one of< different subspaces. Thus, ing of projection and clustering.

we cluster the K-RBM features from each componentRBM  The goal of these experiments is to investigate our first
separately, get a different BoW representation for each non hypothesis:clusteringand projection are better done in a
linear subspace and concatenate these Bow representatior&,umed manner than in a sequential manner. In these ex-
to get the final BoW representation. periments, we compare the performance of a K-RBM with
RBMs are generative models that learn a non-linear sub-that of KMeans over data processed by a single RBM. In
space the data lies in. RBM features are merely projectionsthese comparisions, we could either (a) fix the complexity
of the data onto the learnt subspace. Our K-RBM objec- (size) of the latent non-linear subspaces by fixing the num-
tive minimizes the error of reconstruction of the data from ber of hidden units in each RBM or (b) fix the number of
these projections, hence the projections are good “learnt’total RBM parameters in the two models (i.e. if we have a
representations of the data. RBM feature extraction can seK-RBM with K components having hidden units each,
mantically be understood as non-linear dimensionality re- we allow the single RBM to hav&’J hidden units). Here,
duction of the data. K-RBM feature extraction partitionsth we use the latter scheme: therefore the subspaces learnt by
data across several RBMs (or subspaces). This has a twothe two models have different dimensionalities. This was
fold advantage: (a) it gives more reliable similarity mea- done to ensure our model had no undue advantage over the
sures among data in the same subspace, (b) much of the dissingle RBM model in terms of complexity.
criminative information is encoded into the data partition The synthetic datasets in talile 1 were generated using
Figure[4 shows image patches corresponding to differentthe RANSAC demo code atww.vision.jhu.edu/downloads
BoW/K-RBM clusters for SIFT and K-RBM features. SIFT DatasetD1 comprises of 500 points drawn from 5 randomly
space is discrete in some sense because it counts the typegenerated subspaces having orthogonal basis vectors, 100
of edge directions. K-RBMs use a knowledge of the un- points from each subspace. For all the points, the dimen-
derlying non-linear subspaces to partition the data. la lin sion of the raw feature space is 144 while g#ssumed in-

4.1. Application to Clustering
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(a) K-Means on SIFT (b) K-RBM (c) K-RBM followed by K-Means
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Figure 4: Sample patches corresponding to the differerstets (experiments in sectibn ¥.3). Each row in (a) and (b)
represents a cluster. A row in (c) represents 2 clustersdheatenation of these 2 clusters gives the cluster in sporeding

row in (b). Patches in (a) are independent of (b) and (c). | Tatmber of SIFT clusters in (a) was 1008; for (b) was 40,
K5 in (c) was 50.

trinsic dimensionalityis 36. D1 also contains added Gaus- lowed by further sub-clustering within each first level elus
sian noise. DatasdD2 consists of 500 points drawn from ter. The second goal of these experiments is to propose an
5 randomly generated subspaces with non-orthogonal basislternative to the traditional bag-of-words represeoteti
vectors.D?2 is thus harder tha® 1. used ubiquitously in computer vision applications.

The clustering results are reported in Tdle 1 interms of e experiment with 3 datasets here: PASCAL VOC
misclassification error and the running time of these algo- 2007 [7], 15 Scene Categories [14] and Caltech 101 [8].
rithms. We chose 36 principal components for PCA. Allthe paAScAL vOC 2007 data has a total of 5011 training im-
RBMSs had 144 Gaussian visible units. Each RBM in the ages and 2944 testing images in 20 classes. The 15 Scene
K-RBM had 36 binary hidden units while the single RBM  categories dataset has 4485 images in all split over 15 dif-
had 180. It can be seen that K-RBM is comparable to SSCterent scene categories. As n[14], we choose 100 random
in terms of quality metrics, but orders of magnitude faster jmages per category for training and the rest for testing. We
as well. Due to the time complexity of RANSAC and SSC repeated the experiments 5 times and report the average ac-
itis impractical to train these models on huge datasets with cyracy. Caltech 101 h#s 46 images, split among01 dis-
out serious sampling. Kindly note that SSC uses three kindstinct object categories. In these experiments, we sampled
of spectral clusterings, and thus gives three error rates. | 3 random images for training from each of thel cat-
table[1 we report the least of the three errors. We observedggories, getting a total 03030 training images; the rest
that using all the connections in the similarity graph tddui  of the images were treated as testing images; however, as
the adjacency matrix in SSC gives better performance.  jn [14], we limited the number of testing images per cate-
gory to 50. These experiments were repeated 5 times with
random subsampling and the mean classification accuracies
over the five experiments are reported.

Table 1: Running Time and Misclassification Errors of var-
ious methods on synthetio1 and D2 datasets.

METHOD DATASET D1 DATASET D2 128— dimensional SIFT features on all datasets are com-

TIME(s) ERROR | TIME(s) ERROR puted using a scale d and a shift of6. For the baseline
K-MEANS 0.68 27.4% 2.76 29.6% BoW representation, we cluster SIFT features coming from
PCA 0.37 27.4% 0.42 29.8% 10 random images per class int600 visual words using
T-SNE 11.68 11.3%| 11.93 23.6% standard K-means. We use a 2nd level spatial pyramid [14]
RBM 3.29 26.6% 3.89  28.2% to get the BoW image representations. For Scene 15 and
RANSAC | 134.80 66.6%| 474.72 69.6% Caltech 101 datasets, we trained a 1-vs-rest classifier for
SSC 365.29 0%| 760.48 0% each class and the test image was assigned the label of the
K-RBM 0.46 0% 3.62 0%

classifier with the highest score. For PASCAL data, we train
a l-vs-rest classifier per class and report the mean Average
Precision per class.

In our approach, we create the00 clusters in a different
These experiments investigate the second hypothesisway. We train a K-RBM withK; components over SIFT
multi-variate real-valued data generally lies in multiptan- points. The RBM use128—dimensional Gaussan visible
linear subspaces (e.g. as learnt by K-RBMS) and that thereunits. These are reduced 20—dimensional real valued
are further potential clusters within each of the sub-space hidden units. The model here is that the feature points in
This points to a two stage clustering of data: first cluster- the original 128-dimensional SIFT space residédinnon-
ing “coupled” with non-linear projection (e.g. K-RBM) fol-  linear 20-dimensional subspaces. Once trained, the K-RBM

4.2. K-RBMs for Visual Bag-of-Words



partitions the SIFT data points infg; exhaustive and non- and VOC Pascal 2007 datasets. Note that CDBN classifi-
overlapping (we used hard clustering) subsets. We furthercation results are unavailable on VOC 2007. Hierarchical
clustered each of thé&(; subsetsin the trasnformed 20- methods such as CDBN work well on Caltech 101 which
dimensional spacato K, clusters using simple K-means has object-centered and cropped images, conducive to hier-
clustering. This is in-line with our hypothesis that within archical learning of artefacts. Pascal data has huge wariat
each sub-space there might be multiple clusters. To keepn the scale, position and orientation of objects, even has
the total number of clusters compatible with the baseline multiple objects per image. Dense local K-RBM features
K = 1000, we choseK; and K5 such that their product  work well even on Pascal because they exploit the invari-
is 1000. The K; and K, we report in tablé€13 for differ-  ance of BoW representations.
ent datasets were learnt by using a validation set. Hence, SIFT and K-RBM features are computed over a dense
each SIFT descriptor is first mapped to one of heRBM grid of 12 x 12 patches with a shift o6. The component
clusters and then its transformed representation is furthe RBMs havel44 Gaussian visible units argb real hidden
mapped to one of th&, clusters givingK' = 1000 final units. We use 2nd level spatial pyramid[14] for BoW Image
cluster BoW representation for the images. Here too, werepresentations. We fix the BoW vocabulary sizé00 as
use the 2nd level spatial pyramid for the BoW image repre- in section 8. We use a linear pegasos SVM classifier with
sentation. The same SVM classifier and evaluation method-the 2 kernel map for classification [24]. For Caltech 101,
ology was used for this new image representation. as in sectiof 412, we used) random images per class for
Overall mean classification average precision (AP) on training and use the rest for testing, limiting the test iemg
various code-books on Pascal 2007 is shown in Tdble 2. Forto 50 per category. We repeat the experiments 5 times and
K, =8, Ky =125, mean AP is highest, significantly higher report the mean classification accuracy. The classification
than traditional BoW. Thus learning clusters in a two-stage schemes for the two datasets remain the same as in section
process: non-linear subspaces followed by clusteringmvith [4.2. K, K, are learnt using a validation set. The results are
each subspace improves the quality of the clustering. Also,reported in tablels]5 and 4 along with State of the Art results
the right balance has to be struck on how the complexity is based on SIFT-Fisher vectors aslin [4]. Features learnt us-
distributed between the two stages. The size of projecteding K-RBMs significantly outperform the SIFT and CDBN
RBM spaces (in our cas#)-dimensional) is also a factor features. Low level hand-crafted features work well beeaus
in the overall complexity of the representation. These needof scale, distortion invariant pooling schemes like Bow and
to be empirically determined for any dataset. powerful SVM classifiers. Deep learning methods work be-
Results on the 3 datasets are listed in t@ble 3. A 2 levelcause of semantically meaningful features. Our approach
clustering of SIFT features yields better BoW representa- combines rich features with powerful BowW representation
tion. This is indicated by better classification performmnc and SVM classifiers and thus outperforms the two compet-
and low mean quantization error on the three datasets. Theng classes of methods.
mean quantization error is the mean euclidean distance be-
tween the SIFT/K-RBM features and the correspoding clus- 5. Conclusions
ter centers, divided by the length of the feature vectoreNot
that we normalize the SIFT vectors to contain all values be-
tween0 and1 (as for K-RBM features) to ensure fair com-
parision. Smaller quantization errors indicate betterannd
standing of the feature space.

We developed a framework that usEsRBMs to learn
rich, complex, and more meaningful featur&sRBM fea-
tures are projections of the input image patches onto the
non-linear subspaces they lie ilCompared to clustering
methods like SSC and RANSAC, K-RBd/s faster and

Table 2: Mean Classification AP on VOC Pascal 2007 more accurate. The two stage feature learning where first
stage uses K-RBMs followed by K-Means for BoW helps

METHOD K1 K2 | MEAN AP improve the overall image representation. K-RBM+K-
BASELINE BOW (K-MEANS) - 1000 | 52.84% means features outperform SIFT+Kmeans and CDBN fea-
K-RBM Bow S 200 55.10% tures for image classification. Complex input domains such
K-RBM BowW 8 125 56.40% as images where input lies in multiple non-linear subspaces
i:ggm Engv ;8 128 gigg;‘; the K-RBM a_pproach provides a general, robust, and fast
: feature learning framework compared to other methods that

are either too computationally intensive or make lots of as-
sumptions about the nature of the data or need a lot of pa-
rameter tuning. We speculate if supervising R-RBM ini-

In this section, we compare the classification perfor- tialization using information from the dataset would yield
mance of K-RBM features with that of SIFT and Convolu- faster convergence / better modé&o far we have worked
tional Deep Belief Networks (CDBN) [16] on Caltech 101 with an unsupervised version of K-RBM but this can be ex-

4.3. Feature learning using K-RBMs



Table 3: Classification Performance on VOC Pascal 2007, #5&€Categories and Caltech 101

DATASET BASELINE BoOW K-RBM BowW

PERFORMANCE MEANQ.E. PERFORMANCE MEANQ.E.
VOC PASCAL 2007 52.84% 0.7678 56.40% (K1 = 8, K2 = 125) 0.1620
15 Scene 80.50 = 0.5% 0.5635 85.75 + 0.6% (K1 = 20, K2 = 50) 0.0840
Caltech 101 68.34 £+ 1.3% 0.6420 72.80 +1.1% (K; = 8, K2 = 125) 0.1365

Classification Performance of K-RBM Features on Caltechdil VOC Pascal 2007 Datasets.

Table 4: Caltech 101 Table 5: VOC Pascal 2007
Method Accuracy
SIFT Features 68.34 + 1.3% Method Mean AP
SIFT Features 52.84%
CDBN (layers 1+2) 65.4 + 0.5%
K-RBM Features {1 = 20) | 58.40%
K-RBM Features [; = 20) 742+ 1.7% STATE OF ART [4] 61.69Y%
STATE OF ART [4] 77.78 £0.56% St

tended to supervised version where a separate K-RBM car[12] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-

be learnt for each class. ing algorithm for deep belief netsNeural Comput.
2006.
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