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Abstract
JavaScript is the dominant language for implementing dy-
namic web pages in browsers. Even though it is standard-
ized, many browsers implement language and browser bind-
ings in different and incompatible ways. As a result, a
plethora of web development frameworks were developed to
hide cross-browser issues and to ease development of large
web applications. An unwelcome side-effect of these frame-
works is that they can introduce memory leaks, despite the
fact that JavaScript is garbage collected. Memory bloat is a
major issue for web applications, as it affects user perceived
latency and may even prevent large web applications from
running on devices with limited resources.

In this paper we present JSWhiz, an extension to the
open-source Closure JavaScript compiler. Based on experi-
ences analyzing memory leaks in Gmail, JSWhiz detects five
identified common problem patterns. JSWhiz found a total
of 89 memory leaks across Google’s Gmail, Docs, Spread-
sheets, Books, and Closure itself. It contributed significantly
in a recent effort to reduce Gmail memory footprint, which
resulted in bloat reduction of 75% at the 99th percentile, and
by roughly 50% at the median.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers; D.3.4 [Processors]: Optimization

General Terms Performance, Static Analysis

Keywords Optimization, Performance, Static Analysis,
Memory Leak, JavaScript

1. Introduction
JavaScript is the dominant language for implementing dy-
namic web pages in browsers. It is the “Lingua Franca” of
the web. It has been standardized [14] and is supported by
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all major web browsers, such as Microsoft’s Internet Ex-
plorer, Mozilla’s Firefox, Apple’s Safari, Google’s Chrome,
and many others. With JavaScript’s execution speed acceler-
ating, efforts such as node.js [1] promote using JavaScript
in servers as well.

Despite the fact that JavaScript and its semantics have
been standardized, the various JavaScript engines and their
embedding browsers implement important parts of Java-
Script in incompatible ways, a problem that has burdened
the web development community for years. As a result, a
whole range of JavaScript development environments were
developed to ease development of larger JavaScript web ap-
plications and to hide cross-browser differences. Prominent
libraries such as JQuery [10] and Dojo [24], as well as frame-
works such as Google Web Toolkit [12, 15] or Google’s Clo-
sure [8] are widely used and applications written with these
toolsets are being used by hundreds of millions of users ev-
ery day. Google Closure stands out as it contains a JavaScript
compiler as well as library code. The (open-source) Closure
compiler is based on Mozilla’s Rhino [21]. It accepts legal
JavaScript as input and produces JavaScript as output. It con-
tains a JavaScript comment-based type system to aid large-
scale developments. The type system is also helpful in the
context of this paper. The compiler offers many optimiza-
tions targeting performance, minification and obfuscation,
which are all important for web applications.

An interesting and unwelcome side-effect of these frame-
works’ abstractions and wrappers is that they can introduce
memory leaks, despite the fact that JavaScript is garbage col-
lected. As with any garbage collected language, if references
to otherwise dead objects exist, the objects are reachable and
cannot be reclaimed. In browsers, a simple example could
be that a group of DOM nodes is managed as a “view”, and
the application maintains a (badly managed) cache of these
views. Since there are JavaScript objects maintaining refer-
ences to DOM nodes, those can never be freed, unless the
references from JavaScript are set to null as well.

A specifically common problem in browsers is being in-
troduced by the abstractions to handle the incompatible na-
tive browser event systems. Typically, the frameworks pro-
vide their own abstractions and wrap the native event sys-
tems to hide the browser differences. Often, global reg-



istries are being used where references to events and event
targets are being maintained and have to be explicitly re-
leased to avoid leaks. This is similar to, e.g., the C++ new

and delete memory allocation API requiring matching calls.
This situation is further complicated by modern, dynami-
cally compiled, browser-embedded execution engines. Com-
piled JavaScript living in an internal code cache can hang on
to DOM nodes which are allocated in the rendering parts of
the browser. Such problems are typically very hard to find,
specifically because of insufficient tool support in browsers.
Forgetting to manually “unlisten” to events can lead to leak-
ing DOM nodes and unlimited memory growth.

Memory bloat for web applications is big problem, it
impacts, as we shall show, user experienced latency, and
can prevent larger, long running web applications from even
running on smaller devices. In the context of Gmail, we
studied the impact of memory bloat itself, as well its impact
on user experienced latency.

The Gmail team started an effort to reduce memory bloat
and identified and fixed several dozen problems in a labor
intensive, manual process. Since Gmail utilizes the Closure
compiler, the question was whether it would be possible
to automate finding of these problems with help of static
analysis in the compiler.

The results presented in this paper are specific to the use
of the Closure library and mostly to the event system abstrac-
tions made in this framework. However, we want to empha-
size that the problem itself is general—any framework that
uses auxiliary data structures to maintain certain objects’
lifetimes is susceptible to introducing memory leaks from
mis-matched API calls. For example, the jQuery framework
has several leak patterns [3], and both the Dojo framework
and the YUI framework suffer from leak patterns in the event
system [2, 4]. We focus on the Closure specific leak patterns,
but believe that many of these other patterns can be found
with static analysis similar to the one presented here. We
make the following main contributions:

• We show the correlation of memory bloat and latency
degradations for web applications;

• We identify seven patterns that introduce memory leaks
in JavaScript; these examples are Closure specific, but,
again, the conceptual problems are general.

• We developed compiler passes to identify five of them
reliably, without any false positives. This implementation
will be released open-source with Google Closure.

Using the new compiler passes, we found 89 memory
leaks across several large Google applications, such as
Gmail, Docs, Spreadsheets, Presentations, Books, and the
Closure libraries. Together with a range of improvements
in Chrome’s garbage collection itself, fixing the issues con-
tributed to the majority of the memory reduction for Gmail,
which were more than 75% at the 99th percentile, and ap-
proximately 50% at the 50th percentile.

The rest of this paper is organized as follows. We show a
correlation between memory bloat and latency degradation
in Section 2. We describe the current manual labor intensive
process to find memory leaks in Section 3. In this section we
also describe in detail the identified seven problem patterns
and their resolution. We then discuss the static memory
leak identification tool we have developed in Section 4. We
discuss results in Section 5, before we present related work
in Section 6. We conclude in Section 7.

2. Impact of Memory Bloat on Latency
The Gmail team regularly got complaints from users about
massive size Gmail processes. 2GB were not uncommon,
some users reported memory usage of over 10GB. For mo-
bile devices, such as Chromebooks or mobile tablets, which
typically have less physical memory available than desktop
computers, Gmail would consume more memory than avail-
able and be terminated on a regular basis.

To further study the impact of memory bloat on la-
tency, we ran a simple Gmail scenario (compose/discard)
repeatedly for many hours. In Figure 1 the x-axis denotes
time, 21,056 seconds for the whole experiment. The left y-
axis shows the latency in Milli-seconds, from 0ms to over
2,000ms. The right y-axis shows the number of DOM nodes,
which linearly increases in this experiment to up to over
2,000,000 nodes.

As the number of DOM nodes continues to grow into
the millions because of Gmail memory leaks, we can see
that the magnitude of the latency outliers also increases.
An operation that took just about 100ms in the beginning
can take more than 2 seconds at the end of the experiment.
This can be explained by the effects of garbage collection.
In order to detect detached DOM trees the browser has to
traverse all nodes, an operation that scales linearly to the
number of DOM nodes.

The effect of this can be observed for real individual user
accounts as well. Figure 2 shows how memory grows for
a single user over the course of 4 days. Starting at only a
few hundred MB, memory grows to roughly 1.5GB. Figure
3 shows the distribution of latency for this user. The blue
dots represent user requests that were done during the day,
“empty” white space correspond to this user’s inactive night
time. Latency variation increases greatly with memory bloat.
Latency outliers grow in size from roughly 2 seconds to over
12 seconds.

3. Memory leak patterns
Garbage collectors used by the modern browsers are able to
reclaim memory in a great assortment of varied and com-
plex situations, but unfortunately not in all. In this section
we present instances where developers must explicitly man-
age objects in order to avoid leaks. The discussion is Clo-
sure specific. However, as mentioned earlier, the problem is
general and can be found in any situation where auxiliary
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Figure 1. Relationship between memory bloat and latency outliers. The left y-axis is time measured in [ms]. The right y-axis
counts the number of DOM nodes, which correlates directly to memory usage. The x-axis is the running time of the experiment,
which was several hours.
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Figure 2. Memory growth for a single user over 4 days after
starting Gmail. The y-axis shows memory growing up to
1.5GB over those 4 days
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Figure 3. Increasing latency variability and magnitude
caused by memory bloat during the same time span as in
Figure 2. The y-axis denotes time per request in [sec], which
ranges from 0 up to 12 seconds.

data structures are being managed via matching API calls.
This pattern is very common and we find similar problems
in most of the major JavaScript development frameworks.

We refer to any memory that can not be reclaimed by the
garbage collector, but that does not serve any further purpose
in the business function of the application, as a memory leak.

3.1 Finding leaks
The memory leak patterns identified were the result of an
intensive and laborious manual code review. Memory usage
monitoring is enabled in the Gmail pre-release test suite,
ran for many hours at a time and the outcome of these tests
were used to direct the discovery of potential leaks. Once a
sequence of actions were identified that could lead to a leak
(e.g., clicking on Compose followed by clicking on a label)
the Chrome developer tools were used to triage the leak.

The Chrome Developer Tools Team suggested a three
snapshot approach to narrow down the source of memory
leaks. This approach, summarized in Figure 4, consists of

• Taking a heap snapshot #1;
• Performing the suspected memory leak triggering actions
x number of times;

• Taking another heap snapshot #2;
• Performing exactly the same actions x times again;
• Taking a final heap snapshot #3; and
• Filtering all objects allocated between snapshot 1 and 2

in snapshot 3. These objects are likely leaks. If objects
appear in multiples of x, the likelihood becomes almost
certainty.

As can be seen from the above description, finding leaks
is not a straight forward process, especially for application
without exhaustive set of tests exercising the UI. The process
is labor intensive, there is a high chance that leaks are being
missed, leaks can only be found at runtime, not as early as
compile time, and it will only work on regions of code that
were actually executed.
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Figure 4. The three snapshot approach to triaging memory
leaks.

In the following subsections we outline different typical
problem patterns, explain why they are introducing leaks,
and suggest solutions.

3.2 Create without dispose EventHandler
Closure objects of type EventHandler provide a simple
mechanism to group all events and listeners associated with
an object together. This allows for easy removal of listeners
when the events being listened to can no longer fire. Unfor-
tunately this is also one of the main sources of leaks.

Consider the following scenario. We wish to pop-up a
new dialog when the user presses a button. The DOM tree
representing the new dialog is created and an event listener
is added to the dialog containing the button, associating
the button click event with displaying the dialog. Here, a
link (reference) is created between the DOM object being
listened to, the DOM tree of the new dialog, the JavaScript
object model of the containing dialog and the EventHandler.

If the button can no longer be clicked, say the dialog has
been destroyed, then that event can no longer fire. But if
the programmer did not dispose of the EventHandler (e.g.,
by calling the Closure dispose() function), then the DOM

tree corresponding to the new dialog is still referenced and
cannot be reclaimed.

X.prototype.maybeEnable = function () {

if (this.user_.hasFeature(Y)) {

var eventHandler = new goog.events.←↩
EventHandler ();

this.setEventHandler(eventHandler);

}

};

Listing 1. Create without dispose EventHandler.

In Listing 1 we present an example of this pattern. In the
actual code this example was derived from, class X was a
UI element derived from type goog.Disposable which made
fixing this leak very easy: the lifetime of the EventHandler
was linked to the lifetime of the UI element by registering
eventHandler as disposable.

This example does also introduce one of the difficul-
ties with this analysis: What does the member function
setEventHandler do with eventHandler? We shall return to
this problem in Section 4.

This problem corresponds directly to the classic mem-
ory allocation pattern in C++, which requires matching new

and delete calls. But, as JavaScript is garbage collected, pro-
grammers are not necessarily aware of the requirements for
cleanup when disposing objects and simply forget, or over-
look, the need to make those matching calls.

3.3 Setting member to null without removing event
listeners

In JavaScript setting a variable to null is the idiomatic way
of providing a hint to the garbage collector that the mem-
ory allocated by an object can be reclaimed. But the Event-
Handler and event listeners attached to the object prevents
the garbage collector from disposing of the object and re-
claiming memory.

In all instances where the developer wishes to free an
EventHandler, he/she has to explicitly dispose of the ob-
ject rather than just setting the variable to null. From the
observed problem cases, we believe that programmers were
not fully aware of the explicit requirement to dispose of ob-
jects for cleanup. Instead they relied on the garbage collec-
tor, which is not able to free all resources ad listeners, which
led to memory leaks.

3.4 Undisposed member object has EventHandler as
member

In this pattern an object is created which creates an Event-
Handler that is only disposed when the created object is.

/** @constructor */

X = function () {

/** @type {!goog.events.EventHandler} */

this.eventHandler = new goog.events.←↩
EventHandler;

...

}

X.prototype.dispose = function () {



goog.dispose(this.eventHandler);

}

function () {

...

var dragListGroup = new X();

...

}

Listing 2. Object created has EventHandler as member.

In Listing 2 dragListGroup is an instance of type X which is
a class that has an EventHandler, eventHandler, as a member.
This EventHandler object only gets disposed of when the
instance of X that instantiated it does, but in this snippet the
local variable dragListGroup never gets disposed of.

From the manual analysis of these cases, we believe pro-
grammers simply overlook or are not aware of the need to
explicitly call dispose() on these objects.

3.5 Object graveyard
We refer to an object graveyard where objects with an Event-
Handler or event listeners attached, are added to an array/list
and remain in this data structure long past their lifetime/use.
In some of these cases the containing data structure is tra-
versed and these objects disposed of, but just because it will
get disposed of eventually, does not mean it won’t result in
memory bloat.

X.prototype.addNotification = function(t) {

if (!goog.array.contains(onInvalidate_ , t)) {

this.onInvalidate_.push(t);

}

};

Listing 3. Object graveyard.

This pattern is quite problematic, as it also corresponds
to many valid usage patterns. In fact, without further seman-
tic information as to the lifetime or use of the objects being
stored into the array, one could not determine if code corre-
sponding to the pattern was a leak or not.

From the manual analysis of the actual problem case we
found that these cases happened in a complicated, convo-
luted, and large cache management system with an unclear
object ownership model. Because of the source complexity,
these problems were very hard to spot.

3.6 Local EventHandler
A local EventHandler instance that does not escape scope,
e.g., a locally defined variable that is not assigned to a field
member, added to an array, or captured in a closure, can not
be disposed of later.

A.B = function (...) {

...

// Listen for browser resize events.

var handler = new goog.events.EventHandler(←↩
this);

...

}

Listing 4. Local EventHandler.

A common instance of this pattern is locally created
EventHandler objects which listen to events using the mem-
ber function listenOnce. The listenOnce call attaches an
event listener to an object such that event listener is removed
if the trigger action does occur. Conceptually this avoids
memory leaks as the event is automatically unlistened to and
the object can be reclaimed by the garbage collector. But this
is only true if the event is guaranteed to occur. If the event
never occurs then the event listener is never removed and the
object is never reclaimed.

3.7 Overwriting EventHandler field in derived class
Closure implements inheritance using a prototype-based ap-
proach [8], which can break the expectations of program-
mers coming from a more standard OOP language back-
ground (such as C++ or Java). For EventHandlers this can
cause memory leaks as the overwritten EventHandler cannot
be freed [8].

In such instances the developer should either use an ac-
cessor function to access the member of the base class, or use
a different member name for the variable. For EventHandlers
the former is normally desirable.

This problem is very tricky and extremely hard to spot in
code reviews because of the distributed location of base and
derived classes, as well as JavaScript inheritance rules.

3.8 Unmatched listen/unlisten calls
The semantics of the listen and unlisten calls require all
parameters to be the same. When the parameters do not
match, the event listener is not removed and a reference
to objects being listened remains, inhibiting the garbage
disposal. Unlistening to an event using a (newly created)
bound or anonymous function as callback function does
not work as intended. For a listen/unlisten to match, all
parameters in the calls must match, but two anonymous
functions are different and the result of goog.bind (a bound
function) is a new object. In both cases the calls won’t form
a matching listen/unlisten pair.

goog.events.listen(dialog , goog.ui.Dialog.←↩
EventType.SELECT , goog.bind(this.←↩
onContactSelectorClose_ , this , dialog , ←↩
callback));

...

goog.events.unlisten(dialog , goog.ui.Dialog.←↩
EventType.SELECT , goog.bind(this.←↩
onContactSelectorClose_ , this , dialog , ←↩
callback));

Listing 5. Unmatched listen/unlisten calls due to bound
functions.

Each listen call need not have an unlisten call as Closure
also provides the goog.events.removeAll function, which re-
moves all events associated with an object (EventHandler
objects have similarly a removeAll call). Furthermore, ob-
jects of type goog.events.EventTarget removes all event lis-



teners associated with them when disposed of. But an un-
listen call using an anonymous/bound function as callback
function does nothing.

This problem is also hard to spot in code reviews, because
the arguments to the listen and unlisten calls appear to
match. If one is not aware that the call to bind returns a new
object on each invocation, it is easy to introduce these leaks.

3.9 Avoiding memory leaks
Modern garbage collectors are capable of handling numer-
ous complicated scenarios. The above patterns serve as an
indication of what to avoid. Fundamentally the garbage col-
lector has to be conservative, it can never reclaim an object’s
memory that could be referenced later. In all of these patterns
the programmer/library inhibited the reachability analysis of
the garbage collector.

JavaScript application and library developers introduce
additional abstractions for compatibility across different
systems. But these abstractions, as well as legacy system-
s/browsers, can lead to the garbage collector being inhib-
ited. This requires the developer to think about the lifetime
of objects within his/her system, and where possible asso-
ciate the lifetime of an EventHandler with that of an object
which is disposed of when the events being listened to can
no longer occur. For example, associating the lifetime of
an EventHandler listening to button click to the lifetime of
that button or to the dialog containing that button. The W3C
DOM events model encourages a direct association between
the object being listened to and the event listeners. This
gives the garbage collector better visibility into the lifetime
of these objects.

4. Statically detecting memory leaks
The memory leaks, discussed in the previous sections, were
being discovered and triaged manually. This is a laborious
process and more importantly requires measuring memory
usage during actual execution. The earlier software defects
can be discovered, the better, as the cost of of finding and
fixing of software problems increases dramatically the later
the problems are being found in the software release cycle.
This led us to develop JSWhiz: a compiler pass to statically
detect as many of these patterns as we could safely do,
without flagging spurious errors.

JSWhiz’s detection centers around the concept of eventful
classes, which we shall describe next. A high-level overview
of the approach is outlined in Algorithm 1. Using this con-
cept we were able to track 5 of the 7 patterns described. We
do not handle the patterns from Section 3.3 and Section 3.5,
which require additional information to distinguish between
valid and bloat inducing uses.

4.1 Eventful classes
The above patterns we found could be encapsulated within
the concept of, what we shall call, an eventful class. Intu-
itively an eventful class is one which has events associated

input : Type-annotated AST G = (V,A, vtype)
output : List of potential leaks

// Seed eventful set

EC← {goog.events.EventHandler};
// Initialize eventize DAG

EG← (all types, ∅);
// Construct eventize DAG

foreach type t ∈ V do
Et ← {};
if t is eventful locally then EC← EC ∪ {t};
foreach type r that eventize t do

Et ← (r, t);
end
// Add eventize arcs of t to EG

A[EG]← A[EG] ∪ Et;
end
propagate eventful property using EG;

// Find potential leaks

foreach object o created in G do
skip if o is filtered;
if type[o] ∈ EC then

if o is private member overwritten or
o is not disposed

then record error
end

end
return errors reported

Algorithm 1: Overview of JSWhiz.

with it. But such a definition is both too broad and too re-
strictive, though it does serve the intuition. Instead we shall
define a class to be eventful either due to features local to the
class, or due to the composition or derivation (as supported
by Closure [8]) of the class as described next.

Denote the set of classes that are eventful by EC, then a
class, A, is considered eventful if

Intrinsically eventful
• A has an unmatched listen call (this includes A listen-

ing to events using an anonymous function or returned
from call to goog.bind);

• A removes event listeners/handlers during disposal;

Eventized
• A is of type goog.events.EventHandler (the seed mem-

ber of EC);
• A extends a class B ∈ EC; or
• A has a class member of type B ∈ EC which is

disposed of when A is disposed of.

The eventize relationship, describe above, forms a DAG
between the different types in the JavaScript application.
We shall refer to this DAG as the eventize graph, denoted
EG in Algorithm 1. The eventfulness property is propagated



/*

Assume classP extends goog.Disposable and

is eventized by classPF.

*/

/**

* @constructor

* @extends {classP}

*/

classA = function () {

goog.base(this);

/**

* @type {! classFa}

*/

this.fieldA = new classFa ();

/**

* @type {! classFb}

*/

this.fieldB = new classFb ();

this.registerDisposable(this.fieldB);

/**

* @type {! classFc}

*/

this.fieldC = new classFc ();

}

goog.inherits(classA , classP);

/** @inheritDoc */

classA.prototype.disposeInternal=function () {

goog.base(this , 'disposeInternal ');

goog.dispose(this.fieldA);

}

Listing 6. Eventize relationship.

ClassP

ClassA

ClassFc

goog.Disposable

ClassPF

ClassFa

ClassFb

Figure 5. Eventize graph for the code example in Listing 6.

along the arcs by iterating across EG’s vertices in topological
order.

An example of an eventize graph is given in Figure 5 for
the code snippet listed in Listing 6. Note that this snippet
is annotated with Closure-style type annotations which al-
low the Closure compiler to make more precise statements
about objects’ possible types. This example shows the ways
in which one class can eventize another due to composi-
tion or derivation. While ClassPF does, transitively, eventize
ClassA, this is not explicitly captured in the eventize graph.

Furthermore whether ClassFc is eventful or not does not af-
fect ClassA as fieldC is not disposed of when an object of
type classA is disposed.

In this example, if classFc was eventful, but classA was
not intrinsically eventful and none of classP, classFa or
classFb were, then JSWhiz would flag an error that fieldC

was not being disposed of. Fixing this, i.e., disposing of
fieldC, would then result in classA being eventful which
might lead to modification of code using classA. Potentially
fixing one memory leak identified could lead to uncovering
a whole host of other leaks.

The eventize graph for Gmail is shown in Figure 6.

4.2 Find undisposed eventful objects
During the above AST traversal the set of eventful classes
were determined using both intrinsic and extrinsic properties
of the class. In the second pass JSWhiz identifies instances
of eventful classes that are created but not disposed.

An object is considered eventful if it is an instance of an
eventful class. JSWhiz was intended to be used frequently
and it needed to execute quickly enough not to interfere
with the developer’s process. We therefore decided to detect
undisposed eventful objects in a flow-insensitive manner by
performing a single AST traversal.

Doing the analysis in a flow-insensitive manner is equal
to assuming that an eventful object is disposed of if there
exists a disposal instruction in the AST tree. This assump-
tion is further necessitated by 1) the dynamic nature of Java-
Script, 2) most disposals resulting from runtime events (user
actions, that may or may not occur) and 3) the computational
demands associated with full program/inter-procedural anal-
ysis.

4.3 Limitations of the current analysis
The set of eventful objects tracked is restricted to:

• Objects with fully qualified name. The primary target of
this analysis is object properties, such as, application.

window.toolbar, which have fully qualified names. Re-
stricting the analysis to variables with fully qualified
names excludes objects stored in arrays, lists or other
data structures. Tracking such instances would require
keeping track of where each element of the structure is
defined and disposed. We considered multiple different
approaches to statically track such cases but these at-
tempts all resulted in false-positives without detecting
additional leaks.
Locally defined eventful objects were handled specially
by tracking if they escape scope or get assigned to a
globally visible property.

• Objects never returned. To track an eventful object that
is returned JSWhiz would need to consider every call
site and track the object across multiple functions. Track-
ing such instances is possible but results in the same ob-



Figure 6. Eventize graph for Gmail. The graph consists of all the classes in Gmail with an arc between two classes denoting
that the class at the tail eventizes the class as the head of the arc. Eventful classes, and arcs connecting eventful classes, were
colored blue (primarily to the left) while the remainder was colored yellow.

ject corresponding being referred to by multiple different
names.

• Objects not captured in closures. Events can be listened
to using the listenOnce call, as well as custom created
versions of listenOnce, where the eventful object is cap-
tured in the scope and disposed of after the event fires.
This leads to the disposal of the object, but only if the
listened to event ever fires.

Considering only this subset of eventful objects was not
sufficient. A function could be called with an eventful ob-
ject as argument, resulting in said eventful object being dis-
posed of, or stored in an array. JSWhiz does not yet have
a mechanism to automatically detect such functions—inter-
procedural analysis would be required to fully determine
what happens to an eventful object passed into a function.
But considering the basic, application independent, calls
known to store eventful objects in arrays, lists, etc. (push
, enqueue, add, etc.) was found to be sufficient in practice
without incurring significant overhead.

Another limitation of our analysis is that we do not check
for the potential of double-disposal. For example, program-
mers might be omitting calls to dispose out of fear (or po-
tential) of introducing a double disposal. Since our analysis
is neither path- nor context-sensitive, we cannot find such
scenarios.

Henceforth we shall refer to the class of eventful objects
defined above simply as eventful.

4.4 Miscellaneous checking
The majority of JSWhiz’s execution is spent in checking
for the disposal of eventful objects. The remaining time is
checking for 1) eventful members being overwritten in the
derived class and 2) unlistening with a bound/anonymous
function.

Overwriting eventful members during inheritance is prob-
lematic as JavaScript (Closure) uses prototype-based inheri-
tance [8] and therefore the base class’s member is also over-
written. The base class’s eventful object can then no longer
be disposed of as there is no reference to it. This is actually
well understood and was not among the class of leaks orig-
inally identified during code review, but JSWhiz did find 3
instances of this pattern across the 7 applications.

4.5 Asymptotic runtime
For the asymptotic runtime analysis of JSWhiz we shall
only consider the sections specific to JSWhiz, excluding the
runtime used by other parts of the Closure compiler (such as
type inference and liveness analysis).

JSWhiz consists of two AST post-order traversals of G
where the computation cost for each vertex (representing an
AST node) is constant with regards to the number of vertices



Application Leaks identified
Gmail 30
Books 14
Closure 3
Drive 10
Docs 4
Presentation 21
Spreadsheet 7

Table 1. Memory leaks identified by JSWhiz.

and arcs. The computation cost of a vertex does depend
linearly on the inheritance depth [13] but that is independent
and several orders of magnitude smaller than the number of
vertices. Computing the set of eventful classes consists of a
topological sort of EG post the first AST transversal.

But |V [EG]| ≤ |V [G]| and |A[EG]| ≤ |E[G]| hence
the runtime of the AST traversal dominates JSWhiz’s run-
time asymptotically, therefore the runtime of JSWhiz is
O(|V [G]|+ |E[G]|).

5. Results
JSWhiz was implemented as a command-line option of the
internal version of the Closure compiler and activated within
the build system of Gmail, Google Books, Drive, Docs,
Presentation, Spreadsheet and Closure. JSWhiz identified 89
leaks across these applications (see Table 1 for a breakdown
across application). The leaks identified by JSWhiz across
these applications were manually evaluated and verified.

Figure 7 shows the measured memory footprint for all
Gmail users in the time from middle of February to middle
of May 2012. This graph aggregates data for the web client
for all users, all browsers, and all operating systems. Since
we use a new browser interface to measure memory footprint
(console.memory), the user distribution is biased towards
users of Chrome. This explains why a Chrome garbage col-
lection regression had the visible, large negative impact on
the high percentiles. The leaks identified in Gmail were fixed
during an week-long internal code review (“Hackathon”).
This contributed to a reduction of memory usage of over
75% in the 99th percentile, and over 50% at the median.
Again, these improvements are across all browsers, which
allows to correlate the improvements with the fixing of the
leaks themselves.

In regards to user perceived latency, during the time span
shown in Figure 7 we could observe a ±10% improvement
of client latency at the 95th percentile, and slightly higher
at the 99th percentile. These numbers are usually noisy and
improvements can, for example, be caused by a profitable
change in the browser mix, or machine mix. While we can-
not exactly attribute the percentage of the improvements that
were caused by reducing memory bloat, we are certain it did
contribute and had a positive impact.

JSWhiz is currently used during pre-production testing
for Gmail within Google, several other Google teams are
evaluating its utility as well. Newly introduced memory
leaks that can be identified by JSWhiz are now found at
compile time, even before testing. From the time of writing
this paper to finally enabling the analysis in production, a
time span of about three months, six additional leaks were
introduced by developers and flagged by the tool.

The asymptotic runtime of JSWhiz was given in Sec-
tion 4.5. The implementation was found to incur between 3%
and 14% compilation runtime overhead over plain JavaScript
compilation for these applications, some of which consists
of many thousands of classes and more than a million lines
of JavaScript code. The tests are only enabled in a handful
of “Compile All” test cases and are therefore no burden to
developers in their everyday work.

6. Related Work
Memory leaks and memory bloat have been researched ex-
tensively in the past. Besides publications, there are many
open-source tools and commercial solutions. Much of this
work targets C++, or Java and other garbage collected lan-
guages.

For C++ the prominent Purify [16] and Valgrind [22]
use conservative garbage collection to find leaks. Novark
et al. [23] presents Hound, which uses data sampling and a
staleness tracking approach to find leaks and bloats precisely
and efficiently for C++. SWAT [17] also uses a sampling
based approach.

FastCheck [11] performs inter-procedural analysis on C
programs to track allocation and deallocation points using a
sparse representation consisting of a value flow graph con-
taining guards to model program flow. Memory leak anal-
ysis thus becomes a reachability problem. They were able
to detect 60 memory leaks in SPEC2000 alone, while keep-
ing the false positive rate below 20%. Sparrow [19] uses a
summary based, fix-point iteration approach to find leaks
via abstract interpretation. They are as fast as FastCheck, yet
claim to find more leaks, with a lower false positive rate (less
than 13%). Finally, Saber [26] uses a full-sparse value-flow
analysis for leak detection. They exploit field-, flow-, and
context-sensitivity and also solve a graph reachability prob-
lem. On the benchmarks used by FastCheck and Sparrow,
they are as accurate as Saber, but 14.2x faster. They also re-
port 41% more leaks as FastCheck, with a slightly higher
false positive rate and runtime overhead of 3.7x.

Saturn [5] is a sophisticated tool for static analysis of
programs. It is summary based, analyzing each function in
isolation and only utilizing summary information at call
sites. Analyzes are formulated as constraints and a logic
programming language is used to construct constraints and
to access results. We believe that a system like this can
perform analysis similar and even more powerful than the
ones presented in this paper. Impressive results have been



Figure 7. Improvements in Gmail memory footprint.

reported for a parallelized version running on the Linux
kernel [28].

These tools cannot, however, find leaking objects that are
reachable, or look beyond C++, e.g., into the JavaScript VM.

For Java and other garbage collected languages, Leak-
Bot [20] identifies Java data structures that may be poten-
tial leaks. Cork [18] uses points-to analysis and graph to
infer sources of leaks. Bond and McKinley [9] introduces
Bit-Encoding Leak Location, a statistical approach that en-
codes per-object sites to a single bit per object, utilizing large
sample sizes and a brute-force decoding approach to recover
leaking sites with high accuracy. This smart, compact encod-
ing is part of Sleigh, an instrumentation based approach to
finding leaks, which improves over similar previous work on
SWAT for C/C++ [17]. We believe these tools are also lim-
ited to their language environments and cannot bridge, e.g.,
between a JavaScript VM and the browser’s DOM bindings
and event system to identify leaks.

FindBugs [6] is a static Java analysis tool which finds
hundreds of coding problems mostly via simple pattern
matching techniques. It also includes several sophisticated
inter-procedural analyses. However, FindBugs doesn’t ap-
pear to specifically target finding of Java memory leaks.

We are not aware of any systematic research to identify
memory leak patterns in JavaScript statically. We believe
that because of the complex browser embedding of Java-
Script the types of memory leaks we were observing are not
possible to catch with the approaches targeting either C++
or garbage collected languages. Rather, a general solution
needs to take both environments into account. Static anal-
ysis, as presented in this paper, is a first step, but can only

target know patterns and problems. This is subject to inter-
esting future research.

The JavaScript developer community is aware of the po-
tential for leaks in JavaScript. There are many web pages
and blog posts describing specific problems, for example,
[2–4, 7] or [27]. Several of the documented patterns describe
issues in browsers itself. For example, the issue with Internet
Explorer 6 described in [25] was actually the motivation for
the current design of Closure’s event system.

7. Conclusion
In this paper we have presented patterns that lead to mem-
ory leaks in JavaScript applications, approaches to finding
and fixing them, and recommended practices for avoiding
them in the first place. We introduced JSWhiz, a tool to stat-
ically analyze JavaScript applications and identify potential
memory leaks. JSWhiz was tested across 7 major JavaScript
applications and found 89 bugs in production code. Fixing
of the bugs identified by JSWhiz contributed to more than
75% reduction in 99th percentile memory usage of Gmail,
and more than 50% at the median. The latency impact at the
higher percentiles is impossible to break out, but removing
leaks certainly contributed to an observed 10% improvement
at the 95th percentile. JSWhiz is currently being used in pre-
release testing for Gmail and being evaluated by many other
Google application teams.

Our discussion is mostly specific to Closure. However,
the problem is not and the observed patterns are general in
nature. Similar problems exist in many other JavaScript de-
velopment frameworks. We hope our work raises awareness
in the community and hope that open-sourcing our imple-
mentation will spawn interesting further research.
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