
16

Backtracking Events as Indicators of Usability Problems in
Creation-Oriented Applications

DAVID AKERS, University of Puget Sound
ROBIN JEFFRIES and MATTHEW SIMPSON, Google, Inc.
TERRY WINOGRAD, Stanford University

A diversity of user goals and strategies make creation-oriented applications such as word processors or
photo-editors difficult to comprehensively test. Evaluating such applications requires testing a large pool
of participants to capture the diversity of experience, but traditional usability testing can be prohibitively
expensive. To address this problem, this article contributes a new usability evaluation method called back-
tracking analysis, designed to automate the process of detecting and characterizing usability problems in
creation-oriented applications. The key insight is that interaction breakdowns in creation-oriented applica-
tions often manifest themselves in backtracking operations that can be automatically logged (e.g., undo and
erase operations). Backtracking analysis synchronizes these events to contextual data such as screen cap-
ture video, helping the evaluator to characterize specific usability problems. The results from three exper-
iments demonstrate that backtracking events can be effective indicators of usability problems in creation-
oriented applications, and can yield a cost-effective alternative to traditional laboratory usability testing.

Categories and Subject Descriptors: H.5.2. [Information interfaces and Presentation]: User Inter-
faces—Evaluation/methodology

General Terms: Design, Information Systems

Additional Key Words and Phrases: Usability testing, backtracking analysis, undo, cost-effectiveness

ACM Reference Format:
Akers, D., Jeffries, R., Simpson, M., and Winograd, T. 2012. Backtracking events as indicators of usability
problems in creation-oriented applications. ACM Trans. Comput.-Hum. Interact. 19, 2, Article 16 (July
2012), 40 pages.
DOI = 10.1145/2240156.2240164 http://doi.acm.org/10.1145/2240156.2240164

1. INTRODUCTION

Creation-oriented software applications such as photo editors, 3D modeling programs,
and word processors can be difficult to comprehensively test with traditional labo-
ratory usability testing methods. A diversity of creation goals and strategies causes
different people to encounter completely different usability problems. This diversity
translates into the need for a large pool of participants in order to identify a high
percentage of the problems. However, testing a large pool of participants can be pro-
hibitively expensive, due to the high costs of traditional, expert-moderated think-aloud
usability testing.

D. Akers is now affiliated with Google, Inc.
Authors’ addresses: D. Akers, Google, Inc., Mountain View, CA; email: dakers@google.com; R. Jeffries,
Google, Inc., Mountain View, CA; email: jeffries@google.com; M. Simpson, Google, Inc., Mountain View, CA;
email: msimpson@google.com; T. Winograd, Computer Science Dept., Stanford University, Stanford, CA;
email: winograd@cs.stanford.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1073-0516/2012/07-ART16 $15.00

DOI 10.1145/2240156.2240164 http://doi.acm.org/10.1145/2240156.2240164

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:2 D. Akers et al.

To address this need, we introduce a usability evaluation method called backtrack-
ing analysis designed to automate the process of detecting and characterizing us-
ability problems in creation-oriented applications. The key insight is that interac-
tion breakdowns in creation-oriented applications often manifest themselves in simple
backtracking operations that can be automatically logged (e.g., undo operations, erase
operations, and abort operations). Backtracking analysis synchronizes these events to
contextual data such as screen capture video, helping to characterize specific usability
problems without requiring the active attention of a human moderator. A paired-
participant retrospective discussion provides additional context for each backtracking
event, providing further insight into the nature of the usability problems experienced.
The primary claim of this article is that backtracking events can be effective indicators
of usability problems in such applications, and that backtracking analysis provides a
cost-effective alternative to traditional laboratory usability testing.

There are several research challenges faced in demonstrating this claim. First,
simply detecting a backtracking event tells us nothing about the specific difficulty
encountered by a user. One must find a way to collect the contextual information
needed to characterize the nature of users’ difficulties without compromising the cost-
effectiveness of the approach. Second, it is clear that not all usability problems are
accompanied by backtracking events, and that not every backtracking event indicates
a usability problem. What if backtracking events yielded a low hit rate (percentage
of usability problems detected), and a high false alarm rate (percentage of events that
fail to indicate a usability problem) [Gray 1997; Swallow et al. 1997]? Finally, from a
practical standpoint, it might be difficult to integrate backtracking analysis into the
usability evaluator’s arsenal of tools.

These challenges can be expressed in the form of three primary research questions
addressed by this article.

Q1 (Capturing context). How do we design a usability testing protocol that provides
sufficient contextual information to clarify the nature of usability problems associated
with backtracking events?

Q2 (Effectiveness). How do backtracking events compare to other automatic indi-
cators of usability problems in terms of the hit rate (percentage of usability problems
identified) and the false alarm rate (percentage of events that fail to indicate usability
problems).

Q3 (Comparison to practice). What are the strengths and weaknesses of backtrack-
ing analysis compared with traditional laboratory usability testing practices? (How do
the methods compare in cost-effectiveness, and what types of problems are found by
each method?)

To set the stage for these questions, Section 2 provides a description of the back-
tracking analysis usability evaluation method and indicates when, based on the ex-
perience reported in this article, the method is appropriate to use. Section 3 situates
backtracking analysis within the usability evaluation literature, discussing related
work.

Section 4 addresses Q1, investigating the contextual information required to in-
terpret backtracking events and extract usability problems. We experimented with
four different levels of context (screen capture video only, screen capture plus concur-
rent think aloud, screen capture plus retrospective think aloud, and screen capture
plus paired-participant retrospective think aloud). The results of these studies sug-
gest that the fourth configuration was substantially more useful than the other three
for extracting usability problems from the episodes.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:3

Section 5 describes two experiments that evaluate the effectiveness of backtracking
analysis (Q2). These experiments compared backtracking analysis to the user-reported
critical incident technique [Hartson and Castillo 1998], a cost-effective usability eval-
uation method in which participants self-report their difficulties. The first experiment
evaluated the use of undo and erase events as indicators of usability problems in the
Google SketchUp 3D modeling application, measuring an indicator’s effectiveness by
the numbers and types of usability problems discovered. For the 35 participants in
the experiment, backtracking episodes revealed 5% more severe usability problems
than participants self-reported. The false alarm rate for backtracking episodes was
27%, compared to just 1% for self-reporting, but all of the backtracking false alarms
originated from erase events (none from undo events). It was surprising that back-
tracking analysis performed so comparably to self-reporting, a known cost-effective
technique. To see whether this surprisingly strong result generalized to other appli-
cations, we repeated this experiment with the Adobe Photoshop application. In this
second experiment, backtracking episodes identified the same number of severe prob-
lems as participants self-reported, and the false alarm rate for backtracking episodes
was 4.9% (compared to 3.1% for self-reporting).

Section 6 describes an experiment to compare backtracking analysis with tradi-
tional laboratory usability testing (Q3). In a between-subjects study of Adobe Photo-
shop with 48 participants, we compared backtracking analysis with traditional usabil-
ity testing conducted by a professional usability test moderator. The results indicate
that backtracking analysis may be approximately twice as cost effective as traditional
laboratory usability testing when testing with at least eight participants simultane-
ously. Backtracking analysis and traditional testing proved comparably effective at
identifying problems related to choosing parameters, executing actions, and perceiving
user interface state. However, backtracking analysis appears less effective at identify-
ing problems related to feature discoverability, and possibly strategy formation.

Finally, Section 7 reflects on these findings, suggesting ways in which backtracking
analysis might be combined with other methods such as other automatic detection
methods, or traditional usability testing. It also suggests avenues for future research.

2. BACKTRACKING ANALYSIS

2.1 Description of the Method

The description of backtracking analysis is divided into three sections: steps to be
taken before the study (2.1.1), during the study (2.1.2), and after the study (2.1.3).

2.1.1 Before the Study.

— Instrument the software to automatically record backtracking commands (undo,
erase, etc.). To facilitate retrospective analysis centered around each event, it must
be possible to record a timestamp associated with each command issued by a user.
Depending on the software architecture, this may be relatively easy; many appli-
cations provide an extensibility API relatively early in their lifespan, and this is a
natural “hook” from which to record events. If this is not possible, it is usually easy
to instrument the program directly to record the events of interest (assuming that
one has access to the application developers).

— Decide how many participants to include in each testing session. Each participant
requires a separate computer, but the cost effectiveness of backtracking analysis in-
creases substantially with the number of simultaneous participants (see Section 6).

— Equip each computer with screen capture software, and software for conducting ret-
rospective review of screen capture video episodes. Please contact the authors if in-
terested in obtaining the software used in our studies.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:4 D. Akers et al.

— Design the testing tasks that participants will attempt. Because participants will
typically differ widely in how long it takes them to complete a task, make available
“bonus” tasks to those who finish quickly. Otherwise, participants who finish early
will experience boredom while waiting for the others to finish (and, if they visibly
convey that they are finished, this may change the behavior of the others who are
still working). When it is important to include a variety of testing tasks, it is advis-
able to provide different testing tasks to different participants. (This is especially
important given the short task time, as follows.)

2.1.2 During the Study

— Introduce the experiment. As in any usability test, it is advisable to emphasize that
the goal is to test the software, not the participants.

— Administer testing tasks. Each participant works simultaneously (but in isolation)
on the set of testing tasks provided by the test moderator. While the participant
works, record screen capture video along with time-stamped log events each time a
participant uses a backtracking command. In a one hour session, we advise allotting
15-20 minutes for task time, to allow time for retrospective analysis.

— Process the screen capture video to extract backtracking episodes. Using the log
events to index into the screen capture video, automatically extract short (∼20
sec.) video episodes centered around each backtracking event. If two episodes over-
lap (e.g., a user repeatedly used undo), merge the episodes to form a single longer
episode. The individual backtracking events within each sequence can be marked
with a caption in the video.

— Pair up the participants, in preparation for retrospective discussions. We advise
matching those with the most episodes with those with the fewest, in an attempt
to reduce the variance in time required for each pair to complete the retrospective
review. If an odd number of participants are present in a session, the moderator
can become the listener for the participant with the most episodes. Assign roles to
each participant within a pair as “speaker” and “listener.” (The participants swap
roles halfway through and change computers.) The speaker’s job is to watch her
own episodes and attempt to answer the prompted questions. The listener’s job is
to ask follow-up questions until the answers are completely clear. The listener, not
the speaker, is responsible for deciding when to move on to the next question. En-
courage participants to use a shared mouse to point at objects (rather than using
their fingers), so that it is possible to capture these references in the screen capture
recording. For each 15 minutes of task time, we advise approximately 20 minutes of
retrospectives.

— Collect screen capture recordings of retrospective think-aloud commentary from each
pair. Our system provides a VCR-like interface to allow participants to explore each
of the screen capture video episodes, automatically prompting them with a list of
questions about each episode. Participants answer the questions by speaking into
their headsets, clicking on a button to indicate when they finish answering each
question. We recorded both screen capture video and audio from these retrospective
sessions, for use in the post-study usability analysis. In our experiments, we asked
participants to answer the following three questions about each episode.

(1) Please describe the events that led you to backtrack. Focus your answer on
recounting a “play-by-play” of what you were thinking and doing at the time. If
you can’t remember, just say so and move on to the next episode.

(2) In the events leading up to your backtracking command, did the behavior of the
software surprise you? If yes, explain the difference between your expectations
and what actually happened.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:5

(3) Did you find a way around the issue? If so, what did you do to get around it?

2.1.3 After the Study.

— Analyze the retrospective commentary, identifying usability problems. In our studies,
we followed the extraction process described by Howarth et al. [2007]: we extracted
usability problem instances, and merged these instances to form unique usability
problems.

— Rate the severity of each problem. In our studies, we rated problems by their im-
pact/persistence and frequency. See Section 5.2.2 for details on our approach.

— Report the usability issues back to the developers. We do not take a position on the
best way to do this.

2.2 When to Use Backtracking Analysis

Like any usability evaluation method, backtracking analysis is useful only in certain
circumstances, depending on the usability evaluation goals. One should consider using
backtracking analysis in the following circumstances.

— The application is creation-oriented. That is, the goal of the application is to create
content rather than to explore content. For creation-oriented applications, back-
tracking events may often indicate difficulty accomplishing a goal. (In contrast, in
a non-creation-oriented application such as web search, backtracking might occur
naturally as part of sensemaking.)

— Backtracking events such as undo or erase are frequently used commands in the
application. This is not true of all creation-oriented applications. For example,
the Adobe Lightroom application discourages the use of undo by visually exposing
command parameters and allowing them to be retroactively modified.

— The application can be instrumented to record time-stamped backtracking events.
Such event logs are necessary to facilitate the retrospective analysis of backtrack-
ing events. This often implies that the application has moved beyond the initial
prototype stage, since early prototypes may not include support for backtracking,
and may be difficult or impossible to instrument for event recording.

— Usability evaluation goals require testing directly with end users. Unlike usabil-
ity inspection methods such as cognitive walkthroughs [Wharton et al. 1992] and
heuristic evaluation [Nielsen and Molich 1990], backtracking analysis involves test-
ing directly with end users of the software. Other methods seek to save costs by
employing usability experts as reviewers of the interface.

— Usability evaluation goals require a large participant pool in order to find a high
percentage of the usability problems. A large participant pool may be warranted
when the goals require statistically significant results, when it is necessary to sam-
ple a variety of expertise levels [Law and Hvannberg 2004], when users are allowed
the freedom to choose their own task goals [Spool and Schroeder 2001], or when
there are many ways for users to accomplish the same goals (as with SketchUp and
Photoshop).

— Usability evaluation goals include the identification of problems related to choos-
ing parameters, executing actions, and perceiving user interface state. Backtracking
analysis is not recommended for finding problems related to feature discoverability
and strategy formation, since these problems do not appear likely to elicit back-
tracking behavior (see Section 6.4.2). If there are concerns regarding these types
of problems, it is advisable to combine backtracking analysis with another method
that identifies such problems.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:6 D. Akers et al.

— Testing can be conducted in a laboratory environment. Backtracking analysis has
only been tested in the laboratory; future research may seek to adapt the technique
in other settings (see Section 7.3).

— Task goals can be clearly specified. If task goals are not clearly specified, then back-
tracking may indicate exploration of design alternatives rather than failure to ac-
complish a goal. While we have not experimented with the use of less specific task
goals, a theoretical discussion can be found in Akers [2010, Chapter 5].

3. RELATED WORK

Ivory and Hearst [2001] classified usability evaluation methods into five types: testing
methods (e.g., traditional laboratory usability tests [Dumas and Redish 1999; Rubin
and Chisnell 2008], remote usability tests [Hartson et al. 1996], log file analysis
[Hilbert and Redmiles 2000], and A/B tests [Kohavi et al. 2007]), inspection methods
(e.g., Cognitive Walkthroughs [Wharton et al. 1992], heuristic evaluations [Nielsen
and Molich 1990], and pluralistic walkthroughs [Bias 1991]), inquiry methods (e.g.,
contextual inquiry, questionnaires, or interviews), analytical modeling methods (e.g.,
GOMS [Card et al. 1983] and CogTool [John et al. 2004]), and simulation methods
(e.g., Petri net models [Rauterberg 1995] and information processing models
[Robertson et al. 1989]). Backtracking analysis falls into the first category (testing
methods); the technique involves performing detailed analysis of end-users, in an
attempt to capture the context necessary to characterize the nature of usability
problems.

Backtracking analysis is a derivative of the critical incident technique Flanagan
[1954], in which significant events during interaction (positive or negative) are
collected and analyzed by trained observers. (We chose to focus on negative incidents
in this work, since they are more likely to indicate usability problems.) Del Galdo
et al. [1986] adapted the critical incident technique for use in HCI, and Winograd
and Flores [1985] independently developed the theory of user breakdowns. Hartson
and Castillo [1998] devised the user-reported critical incident technique, in which the
users of the system are responsible for detecting and describing their own critical in-
cidents as they occur. While their technique was designed for use in remote situations,
some of their studies were performed in the lab. The comparison of our approach with
this technique forms the central theme of Section 5.

Capra [2002] developed and evaluated an augmented retrospective variant of the
user-reported critical incident technique, finding it to be similarly effective to a con-
temporaneous reporting strategy. In this variant, researchers showed participants a
video replay of their entire session, asking them to detect and describe critical inci-
dents as they observed them in the replay. Backtracking analysis uses a hybrid imple-
mentation of Hartson and Castillo [1998] and Capra [2002], separating the detection
and description phases. Participants detect critical incidents contemporaneously, but
description is delayed until a retrospective phase. We chose this approach to avoid
unnecessarily interrupting participants during their tasks.

One difficulty Hartson and Castillo found with their first implementation of the
user-reported critical incident technique was that users often initiated the reporting
long after they experienced a problem, making it more difficult to link the reported
incident to contemporaneous video or other context. The solution described in their
paper was to decouple the detection and description of incidents, which is exactly what
our own implementation does by combining contemporaneous detection of incidents
with retrospective description.

A legitimate concern for any usability evaluation method that relies extensively on
retrospective commentary is whether important information is lost due to the fallibil-
ity of human memory. We are encouraged by results from a study comparing current

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:7

and retrospective think aloud protocols for usability evaluation [Van Den Haak and De
Jong 2003], which found that these protocols produced similar outcomes when testing
an online library catalog. A recent eye-tracking study by Guan et al. [2006] provides
further evidence that retrospective protocols are effective.

The pairing of participants during retrospective sessions also builds upon prior
work. O’Malley et al. [1984] first described the idea of pairing participants during
the task phase of think-aloud usability testing, coining the term “constructive interac-
tion”. A more recent study by Hackman and Biers [1992] discovered that participants
generated more think aloud comments when working in pairs during a test. Note
that in constructive interaction participants are paired during the task, whereas in
backtracking analysis participants are paired only for the retrospective. (It would be
reasonable to try constructive interaction in place of retrospective pairing, but this
is left as future work.) While we certainly cannot claim to have invented the idea of
paired-participant usability studies, we did find a unique application of this approach
that proved to be surprisingly beneficial.

Our focus on backtracking events is closely related to a case study described by
Swallow et al. [1997]. They instrumented a direct-manipulation visual builder appli-
cation to record log data for a variety of indicators of critical incidents, including undo
and erase. However, their study focused mainly on the hit rate for each indicator (the
rate at which each indicator revealed actual usability problems). The authors per-
formed no severity analysis of problems, and did not compare their methods with any
other usability evaluation methods, as we do in Sections 5 and 6.

As in many recent studies [Bruun et al. 2009; Hartson et al. 2000], this article
measures the effectiveness of usability evaluation methods by estimating the number
and type of usability problems that each method identifies. But as Wixon [2003] has
observed, it does not matter how many problems one finds if these problems do not
get fixed in the software. During the past decade, Wixon and others have advocated
alternative metrics for success that more faithfully capture the “downstream utility”
of a usability evaluation method [John and Marks 1997]: how often do the findings
of a method lead to actual design changes that improve the software? A key element
of downstream utility not addressed by this article is persuasiveness; how effectively
does a usability evaluation method communicate its findings to developers, convincing
them to instigate changes? This is left as future work.

4. CAPTURING CONTEXT FOR BACKTRACKING EVENTS

Backtracking events, like any other event-based indicator of usability problems, are
not useful without the contextual information needed to interpret the meaning of these
events. For example, a usability evaluator would want to answer contextual questions
about any backtracking episode, in order to classify specific usability problems that
might have occurred.

— What happened before and after the backtracking event?
— Was the user surprised by the behavior of the software? If so, how?
— If there was a problem, was the user able to recover? How?

These types of questions are relatively easy to answer when a human moderator is
present during the test. If there is uncertainty about some aspect of a user’s problem,
the moderator can just ask questions about it, either during the task or afterwards
during a retrospective review. However, this approach does not scale well; we would
be limited to testing one participant at a time.

The solution employed by backtracking analysis is to pair up participants and ask
them to answer questions about the context of each backtracking episode, prompted

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:8 D. Akers et al.

Fig. 1. Usability testing tasks for testing with SketchUp. In the “room” task (left), we asked participants to
model the room, including the specified dimensions. In the “chair” task (middle), we asked participants to
model the chair, ensuring that its legs were the same height and shape. In the “furniture” task (right), we
asked participants to arrange the pre-made furniture within this room.

by screen capture video of the episode. We also considered three other approaches for
capturing context, which vary according to the quality of the contextual information
gathered and the participant time required to collect this information. We conducted a
series of exploratory experiments with each of these alternate approaches, concluding
that only the paired-participants approach provided the richness of data necessary for
interpreting backtracking episodes.

4.1.1 Experiment 1: Screen Capture Video. In the first experiment, we tried synchro-
nizing backtracking events with screen capture video recordings made during a lab-
oratory usability test of Google SketchUp. This approach was attractive because it
requires no additional time or effort on the part of participants. We recruited 54 partic-
ipants of varying SketchUp expertise, bringing them to a laboratory in groups of 10-15
at a time. During a 90 minute usability test, we asked them to attempt three simple
SketchUp tasks: a “room” task, a “chair” task, and a “furniture task” (see Figure 1).
Participants worked side by side, and their backtracking commands were logged using
a Ruby plug-in (see Akers [2010, Appendix C]).

At the end of the test, we used the time-stamped backtracking events to index into
the screen capture video, and showed the screen capture episodes to two SketchUp user
interface designers. We discovered that knowing the users’ end goals and viewing a
recording of their actions was helpful, but often insufficient to identify specific usability
problems. In nearly 50% of the episodes, it seemed likely that there was some usability
problem, but unclear what the problem might have been. These numbers motivated
the search for a more effective method to characterize the usability problems that
many of these backtracking events seemed to identify.

4.1.2 Experiment 2: Screen Capture Video + Concurrent Think Aloud. The next experiment
required participants to think aloud as they worked; it was expected that the audio
recording would provide the necessary context to interpret backtracking episodes. As
in the first experiment, this approach required no additional time from participants
(assuming that the verbalization would not slow them down). The results of this ex-
periment showed that participants often forgot to verbalize their thoughts, and the
commentary that they did provide was often broken and terse. Moreover, asking par-
ticipants to think aloud seemed to have detracted from their ability to model success-
fully. (We are unsure why this might have occurred.) Since the experiments were
conducted in large groups, it was not feasible to individually remind participants to
think aloud as they worked, which may have contributed to the reticence we observed.

4.1.3 Experiment 3: Screen Capture Video + Retrospective Think Aloud. In this experiment,
the computer automatically generated short screen-capture episodes centered around

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:9

each backtracking event. The computer prompted participants with three questions
about each episode (see Section 2.1.2). Participants answered these questions by
speaking aloud into a microphone, alongside other participants who were doing the
same.

The results of this study revealed that even this approach was insufficient. Par-
ticipants’ commentary was often abrupt, and generally did not help in describing the
underlying usability problems. They reported that it felt awkward talking to their
computer, especially when sitting alongside others who were doing the same. There
were sometimes awkward silences in the room when all of the participants happened
to fall silent simultaneously.

Another drawback of retrospective analysis is its increased cost, requiring substan-
tial time for participants to answer the questions about each episode. Complicating
matters, the cost proved to be highly variable; those with only a few backtracking
episodes finished quickly, while those with many episodes required as much as twice
the amount of time spent attempting the testing task. Since we typically compensate
each participant the same amount for taking part in a study, the uneven distribution
forced us to increase the standard compensation amount to account for outliers.

4.1.4 Experiment 4: Screen Capture + Paired Retrospective. The final exploratory study
paired up participants and asked them to discuss the questions together during the
retrospective. This is the approach used in backtracking analysis; it is summarized in
Section 2.1.2.

The result was a success; the commentary was greatly improved over the previous
experiments. Interestingly, listener participants rarely asked follow-up questions, but
their mere presence seemed to have changed the way that speakers responded to the
questions. Of the four techniques that we experimented with, only paired-participant
retrospectives approached the quality of a human-moderator working one-on-one with
each individual participant.

Pairing up participants for the retrospective analysis does increase the costs further,
since each participant must participate in two separate retrospective sessions (once as
a speaker, and once as a listener). However, by carefully pairing up participants, it is
possible to substantially reduce variability between pairs.

5. EFFECTIVENESS

This section asks how backtracking events compare in effectiveness to other automatic
indicators of usability problems. We define effectiveness as a combination of the hit
rate (percentage of usability problems identified) and false alarm rate (percentage of
events that fail to indicate usability problems). Section 5.1 elaborates upon the mo-
tivation for the studies of effectiveness. Sections 5.2 and 5.3 describe two empirical
studies that attempt to answer the question.

5.1 Study Motivation

It is not inherently obvious that backtracking events would make useful indicators of
usability problems. First, consider that usability problems can take on multiple forms.
One can experience difficulty while planning a sequence of actions, translating one’s
intent into an action, physically executing an action, or evaluating that action’s success
[Norman 1986]. It is not immediately clear which of these types of problems would be
indicated by backtracking events.

Second, it is also important to acknowledge that backtracking serves more than
one function in creation-oriented applications; backtracking events might not always
indicate usability problems. For example, in addition to helping users to recover
from errors, backtracking makes it easier to explore and learn the functionality of an

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:10 D. Akers et al.

interface. Learning difficulties can sometimes be attributed to usability problems in
the interface, but in some cases it is easier to learn by experimenting than by reading
a user manual. Such examples cast doubt on the effectiveness of backtracking events
as indicators of usability problems. Perhaps most backtracking events would indicate
false alarms from a usability perspective?

Accordingly, the studies described in Sections 5.2 and 5.3 address the following re-
search question.

Q2. How do backtracking events compare to the other indicators of usability problems
in terms of the hit rate (percentage of usability problems identified) and the false
alarm rate (percentage of events that fail to indicate a usability problem)?

To address this question, we chose to compare backtracking analysis with the user-
reported critical incident technique [Hartson and Castillo 1998], a usability evalua-
tion method in which participants report their own usability difficulties. We chose
this method for comparison because it has been found to be cost-effective compared to
traditional usability testing [Bruun et al. 2009] and is similar enough to backtracking
analysis in its procedure to allow for a tightly-controlled comparison.

5.2 Comparison to Self-Reporting: Google SketchUp

This first study (published in Akers et al. [2009]) compared backtracking analysis with
the user-reported critical incident technique, using Google SketchUp as the test ap-
plication. The following sections detail the experimental procedure, data processing,
and results. A more detailed discussion of the results and limitations is deferred until
Section 5.5.

5.2.1 Experimental Design and Recruitment of Participants.. We used a within-subjects de-
sign to compare usability testing methods; participants reported problems as they
worked (self-report data), and we simultaneously logged their undo and erase com-
mands (backtracking data). The retrospective interviews included both self-report and
backtracking screen-capture video episodes. We chose a within-subjects design in or-
der to eliminate variance from individual differences, and because it allowed us to ask
participants to speculate on why they failed to report problems that were detected by
backtracking analysis (see Section 5.2.4).

To facilitate the experiment, we instrumented SketchUp to record time-stamped oc-
currences of undo and erase events, and added an on-screen button for participants to
report critical incidents. As in the exploratory studies of Section 4, we used SketchUp’s
embedded ruby api to implement these extensions, thereby avoiding having to make
any modifications to the source code to SketchUp.

There was one experimental trial per participant. Each participant attended one
of six 90-minute group usability testing sessions, each consisting of 5–7 participants
who worked in parallel on independent laptops. Each of the laptops was an IBM
ThinkPad T61p, with identical software configurations including a development ver-
sion of SketchUp. Laptops were also equipped with screen capture recording software
and dual headsets with microphones for the paired-participant retrospectives.

The primary goal in recruitment was to attract participants of a variety of back-
grounds and SketchUp expertise levels. This variety increased the generality of the
study, and made inter-group comparisons possible. We recruited a total of 43 partici-
pants, of whom 35 provided usable data (see Section 5.2.3). Of these 35 participants,
most (29) responded to flyers posted at coffee shops and in academic buildings at the
university of colorado at boulder. To attract a higher percentage of SketchUp ex-
perts, we also enlisted six employees of Google who are specialists in 3D modeling
with SketchUp.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:11

Of the 35 participants in the experiment, 19/35 (54%) were a near-equal mix of un-
dergraduate and graduate students from a wide range of academic departments. Of
the participants, 10/35 (28%) had never used SketchUp before, 9/35 (26%) described
themselves as novices with the interface, 9/35 (26%) described themselves as interme-
diate users, and 7/35 (20%) described themselves as experts. For a 90 minute session,
participants were compensated with a $10 gift check, a short-term license to SketchUp
pro, and Google Swag.

5.2.2 Usability Testing Protocol. Each 90-minute session was divided into the following
sections: training in SketchUp (15 minutes), training in identifying critical incidents
(20 minutes), practice (10 minutes), modeling task (15 minutes), and retrospective
commentary (30 minutes).

Training in SketchUp (15 minutes). To familiarize participants with SketchUp,
participants watched three previously produced new-user training videos.1 The three
videos were: “New Users 1: Concepts,” “New Users 2: Drawing Shapes,” and “New
Users 3: Push/Pull.” participants were encouraged to take notes.

Training in Identifying Critical Incidents (20 minutes). To ensure that participants
were adequately trained in reporting critical incidents, we gave extensive instructions
and examples of incidents. For the purposes of a fair comparison, this study attempted
to mimic the style and content of the training described by Hartson and Castillo [1998].
We did make several changes motivated by an early pilot experiment. This experiment
(n = 12) revealed that participants seemed less likely to report problems when they
attributed the problems to themselves (rather than the software). We adjusted the
instructions to emphasize that we were testing the software, not the participants. We
also decided to refer to critical incidents as “interface issues,” hypothesizing that the
more neutral terminology would encourage reporting. (We did not test this hypothesis,
however.)

Practice (10 minutes). Participants were given 10 minutes to practice using
SketchUp and reporting critical incidents. Participants were told to explore interface
features and build whatever they wanted during these 10 minutes.

Modeling Task (15 minutes). We randomly assigned participants to one of two
tasks: some completed the bridge task (Figure 2, top), while others completed the room
task (Figure 2, bottom). Having a second task increased the generality of the study, but
there was not enough time to give both tasks to each participant. Each task had two
phases; if participants finished the first phase (shown at left), they could raise their
hand and receive printed instructions for the second, more difficult phase (shown at
right). This was intended to keep all participants busy throughout the session, regard-
less of their expertise level in SketchUp. See the caption for Figure 2 for descriptions
of the specific instructions provided to participants.

We asked participants to report critical incidents as they worked. To report an in-
cident, they clicked a “Report an Issue” button. Pressing this button triggered a log
message that was written to a file; it had no visible impact to the user. After the task
was finished, an automated system extracted video episodes around each marked event
and prompted participants to reflect on the episodes (see the next section on “Retro-
spective Commentary”). Here we deviated from the approach of Hartson and Castillo
[1998], in which the user was asked to fill out a form immediately upon experiencing
each incident. We chose to delay the commentary in order to minimize disruption to the

1http://www.youtube.com/user/SketchUpvideo.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:12 D. Akers et al.

Fig. 2. The two tasks used in the laboratory study of Google SketchUp. In the “bridge” task (top, left), we
asked participants to make all four legs the same height and shape. If participants finished early, they were
asked to resize the bridge to 5 ft. x 5 ft. and make three copies of it, laying them end to end (top, right). In
the “room” task (bottom, left), we asked participants to ensure that the room was 10 ft. high, and that the
doorway was 6 ft. 3 in. high. They did not need to model the bed; they could insert it from the “components
browser” and position it in the room. If participants finished early, they were asked to modify the bed to
form two single beds, and add shadows (bottom, right).

user during the task, and to facilitate a fair comparison with backtracking events (for
which commentary must be collected retrospectively to avoid intolerable disruption).

Retrospective Commentary (30 minutes). The retrospective session proceeded ac-
cording to the plan described in backtracking analysis, but included both backtracking
and self-report episodes. The first three questions were the standard questions from
backtracking analysis (see Section 2.1.2). For undo and erase episodes, we asked two
additional questions specific to this experiment.

(1) Did you report this as an issue?
(2) If you did not report this as an issue, why do you think that you didn’t?

Since there were different questions for each event type, the system displayed all
of the episodes of each event type together, rather than interleaving them. To avoid
confounding the results, we fully counterbalanced the order of the event types.

5.2.3 Usability Problem Identification. This section describes the analysis process em-
ployed to extract usability problems from the raw usability data. The extraction pro-
cess followed that of Howarth et al. [2007]: we extracted usability problem instances,
and merged these instances to form unique usability problems. But before we began
the extraction and merging process, we took several steps to prepare the data, de-
scribed as follows.

Step 1: Discarding participants whose data were unusable. From an original set
of 43 participants, we removed three participants because their microphones failed to
work properly. We also removed one more participant because he did not finish his

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:13

retrospective during the time allotted. We decided to remove three more participants
because they had been paired with the experimenter; we would like to run further
studies to evaluate how the quality of the commentary might differ in these cases.
Finally, we removed one participant because she could not even begin to answer the
questions about her episodes. (She was utterly lost with SketchUp. Her usability
problems were more of the “how do i use a mouse?” variety.) Removing the data from
these 8 participants left 35 participants, whose data proceeded to the next phase of
analysis.

Step 2: Extracting episodes and retrospective commentary. The 35 participants
produced 353 episodes (139 undo episodes, 113 erase episodes, and 101 self-report
episodes). This equates to an average of 10.1 episodes per person, or 0.67 episodes per
minute of SketchUp usage. The system automatically extracted these episodes, and
the associated retrospective commentary.

Step 3(a): Discarding unclear episodes. From this initial set of 353 episodes, we
discarded 25 episodes (7%) because the combination of commentary and screen capture
video was not clear enough for the researcher to extract a complete usability problem
instance. We discarded an additional 4 episodes (1%) in which the user could not
remember enough about the episode to answer any of the retrospective questions. This
left 324 episodes (129 undo episodes, 103 erase episodes, and 92 self-report episodes).

Step 3(b): Discarding false alarms. We identified 64 episodes (19.8%) that con-
tained no identifiable usability problems. All but one of these “false alarm” episodes
(98%) were triggered by erase events. Surprisingly, there were no false alarms trig-
gered by undo events. Only one false alarm was generated by self report, when a par-
ticipant accidentally pressed the button. This indicates that the overall false alarm
rate for backtracking episodes was 63/232 = 27%.

There were two varieties of erase false alarms. First, there were episodes in which
a user erased an extra edge that was a byproduct of the normal modeling process.
(This is specific to SketchUp; most other 3D drawing programs do not produce such
edges.) Second, there were episodes in which users created temporary construction
lines to help them align multiple pieces of geometry, and then erased these lines when
they were finished. Interestingly, this example could never have resulted in an undo
operation; there is no way to undo a temporary construction line without also undoing
the alignment action that follows it. This seems to be a general difference between
undo and erase, and would likely hold true for other applications besides SketchUp.

Step 3(c): Identifying usability problem instances. After all of the data preparation
steps described previously, 260 episodes remained. A single researcher analyzed these
episodes to extract 215 usability problem instances, using the definition of usability
problems provided by Jacobsen et al. [1998]. The mapping from episodes to usability
problems instances was many-to-many, as described next.

Sometimes, a single episode would correspond to multiple usability problem in-
stances. In identifying usability problem instances, we included both problems that
were found directly by a method, and those that were “incidental” to the method. For
example, if a user experienced some problem, pressed undo because of the problem,
and then experienced a second problem unrelated to the first, we would include both
problem instances. This process produced 35 additional problem instances.

Sometimes, a single usability problem instance would correspond to multiple
episodes. This happened only when multiple episodes overlapped in content. Of course,
episodes of the same event type cannot overlap in the screen capture video (since oth-
erwise the process would have merged them into a single longer episode). However,

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:14 D. Akers et al.

grouping the retrospective by event type necessitated that we avoid merging events of
different event types. Therefore, it was possible for episodes of different event types to
overlap in content. When participants saw the same interaction sequence for a second
time, their responses to questions during the retrospective session were likely to be
terse. (“I have already talked about that; refer to my previous answers.”) We resolved
such situations as follows: if a problem was mentioned during the commentary for an
episode, and that same problem was visible in the video of an overlapping episode,
then we counted it as a single problem instance discovered in both episodes. There
were 50 pairs of partially overlapping episodes, and 20 triples.

Step 4: Merging usability problem instances. Next, the researcher merged the 215
problem instances to form 95 unique usability problems. It is critical that we applied a
consistent merging strategy across all problems. Merging two problems requires gen-
eralization, since no two problem instances are exactly the same. Problem instances
may differ along many dimensions: for example, the level of granularity of the prob-
lem, the immediate cause of the problem, the circumstances under which the problem
occurred, the consequences of the problem, etc. We adopted a conservative merging
strategy, merging problems only if they differed superficially. Nevertheless, the merge
rate (2.26:1) was higher than we expected. This may be due to the degree of specificity
of the task goals; different users working on the same task tended to experience the
same problems because they were all working toward identical goals.

Finally, the researcher wrote descriptions for each of the 95 usability problems.
In describing each problem, the primary goal was to record what happened in the
episode(s), and what the user said about what happened. Examples of problem de-
scriptions include the following.

— After creating a hole, one user judged the result by what he could see through the
hole. Because the background (the other side of the hole) was similar to the material
surrounding the hole, he had low confidence in his success and spent 10 seconds
making sure that the action had the intended effect. (Found by self-report only).

— One user experienced difficulty resizing a rectangle with the move/copy tool. He said
that he was surprised that it distorted into non-rectangular shapes as he dragged on
an edge. He expected that SketchUp would remember that this shape was created
as a rectangle, and keep that rectangle constraint through the rest of the modeling
process. He worked around the problem by reversing his action and redrawing the
rectangle in the new shape. (Found by undo only) .

— Several users experienced difficulty when they tried to copy and paste a rectan-
gle, and align their copy to a point on an existing rectangle. The paste operation
automatically triggered a “move” command on the copied geometry, selecting a par-
ticular corner on the copied rectangle as the anchor point for the move. Users could
not find a way to “snap” the copied rectangle into alignment with the edges of the
target rectangle, since the anchor point did not correspond to any point on the ex-
isting rectangle. They could not find a workaround, and ended up with unaligned
geometry. (Found by all three methods)

The full list of usability problems can be found in Akers [2010, Appendix A]. Note
that we did not attempt to infer the root causes of these difficulties, which can require
complex causal reasoning [Koenemann-Belliveau et al. 1994]. Was the training video
unclear? Did users’ expectations stem from their prior use of other 3D modeling soft-
ware? This study avoided speculation on such possibilities; its goal was to provide
designers and developers with as much information as possible to evaluate the design
tradeoffs inherent in addressing the problems.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:15

Table I. Problem Severity Rating Scales Used in the SketchUp Experiment

Coding for Problem Severity. Three independent raters (three knowledgeable
SketchUp users, including two user interface designers from Google) coded each of
the 95 usability problems for severity. Raters evaluated each problem for its estimated
frequency in the general population (rated on a scale of 1–5), and a combination of
its estimated impact and persistence (also rated on a scale of 1–5). We modeled these
scales roughly after those of Karat et al. [1992], but chose to use five-point scales
rather than three-point scales to capture more resolution in the ratings. Frequency
was defined as the percentage of occurrence in the general population during an aver-
age modeling session. Impact was defined as the time it would take to recover from the
problem, while persistence was defined as the extent to which the problem recurred or
was difficult to work-around. The actual scales are shown in Table I.

Frequency and impact/persistence ratings were added, and the final severity rat-
ing was obtained by reducing this sum by one; this produced an ordinal scale from
1 (least severe) to 9 (most severe). We labeled severity as follows: 1–2: mild; 3–4:
medium; 5–9: severe (but 9 was never observed). We divided the 95 problems into three
sets: a training set (15 problems), a test set (10 problems), and an independent set
(70 problems). Coders used the training set to discuss the severity scales and resolve
differences in coding styles. Next, they independently rated the 10 problems from the
test set, and then discussed the differences and adjusted their ratings.

Before the discussion, Cronbach’s Alpha [Cronbach 1951] was 0.75; after coders ad-
justed their ratings, it increased to 0.90. Next, they independently rated the remaining
70 problems. For the final set of all 95 problems (using the adjusted ratings from the
test set), Cronbach’s Alpha was 0.82, indicating strong agreement amongst the coders.
To reduce the effect of individual outliers, we chose the median of the three ratings as
the severity statistic for each problem.

5.2.4 Results.
Comparison among Undo, Erase, and Self-Report. We define that a problem is de-

tected by a method if at least one participant experienced an instance of the problem,
as evidenced by video episodes and retrospective commentary associated with that
method (undo, erase, or self report). We define that a problem is detected by a set of

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:16 D. Akers et al.

Fig. 3. Two Venn diagrams depicting the number of usability problems detected in Google SketchUp by
each of the three methods. The left diagram shows the results for all problems, while the right diagram
focuses on problems rated as severe. Problems in the middle of each Venn diagram were detected by all
three methods, while those on the outsides were detected by only one method. Note that undo and erase
combined to detect more severe problems (23) than self-report (22).

methods if the given statement is true for each method in the set (even if no particular
participant would have contributed evidence of the problem from all of the methods in
the set).

Figure 3 depicts the number of problems detected by each method or set of methods.
On the left are the results for all problems, while on the right are the results for prob-
lems rated as severe (those whose severity rating is at least 5). In each figure, problems
identified by only one method are non-overlapping, while those that were found by a
set of methods are depicted as overlapping with the other methods. While there is
substantial overlap amongst the indicators, only 25 problems (26%) were detected by
all three indicators.

To compare these results with those discussed in the literature, we estimated the
average probability (λ) of a participant finding the average usability problem for back-
tracking analysis (λ = 0.042), self-reporting (λ = 0.027), and both methods (λ = 0.055).
Using a Poisson model [Nielsen and Landauer 1993], these values of λ imply that one
would need over 30 participants to discover 85% of the usability problems, even if
using a combination of backtracking analysis and self-reporting. This is hardly consis-
tent with the “magic number five” rule of thumb which claims that for many usability
tests, one can test only five participants and find 85% of the problems [Lewis 1994;
Nielsen and Landauer 1993; Virzi 1992]. Our numbers are more comparable to a re-
cent study of four web applications [Spool and Schroeder 2001] (λ ≈ 0.1), which also
questioned the universal applicability of the “magic number five” rule. It is difficult
to attribute these differences to specific aspects of the applications being tested, since

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:17

the value of λ also depends on the usability evaluation method employed and the tasks
used in the study, among other factors. Nevertheless, it seems likely that the diver-
sity of strategies available in SketchUp increased the diversity of usability problems
encountered by participants (just as the diversity of semantic content likely con-
tributes to the diversity of problems experienced in Web applications).

Reasons Problems Were Not Reported. Consider the problems in the top three sec-
tions of the Venn diagram: those that were detected by erase and/or undo, but not
detected by self-reporting. Why would people fail to report problems, when these prob-
lems were detected with other techniques? To begin to answer this question, we as-
sessed the data collected on question #5 in the retrospective session: for erase and
undo events that were not reported, why did the participant think that he did not
report it? Of those times when people ventured to speculate, the explanations were
revealing: 30/52 (58%) said that they did not report the problem because they blamed
themselves rather than SketchUp. (This happened despite repeated attempts to em-
phasize to participants that they should disregard the attribution of blame.) Another
16/52 (31%) said that the problem was too minor to report. The remaining 6/52 (11%)
said that they should have reported it, but simply forgot. While it is easy to draw
conclusions from these numbers, it is important not to over-interpret; people are no-
toriously bad at introspecting about their own high-level cognitive processes [Nisbett
and Wilson 1977]. However, the data combined with the subjective comments warrant
further investigation into the reasons people do and do not report problems.

5.3 Comparison to Self-Reporting: Adobe Photoshop

Encouraged by the positive results from the Google SketchUp study, we conducted
a second experiment to see if these results would generalize to another application,
Adobe Photoshop. Photoshop is an enormous application, with many use cases: cre-
ating digital artwork, retouching photographs, authoring flyers/posters, etc. Since it
was impossible to test all of these use cases in a single usability study, we decided to
focus the evaluation on Photoshop’s facilities for basic image retouching. The design
of this study was quite similar to the previous; the following sections describe only the
important differences.

5.3.1 Recruitment. For this study, we recruited 28 participants, of whom 24 provided
usable data (see Section 5.3.3). These participants covered all different experience
levels with image manipulation in Photoshop. All participants responded to flyers
posted in academic buildings at Stanford University.

Of the 24 participants in the experiment, there were 15 graduate students, 8 un-
dergraduate students, and one software engineer. Before beginning the experiment,
participants described their prior experience retouching images in Photoshop (fix-
ing colors, removing imperfections, etc.). Of the 24 participants, 3/24 (13%) said that
they had never used Photoshop for this purpose, 11/24 (46%) described themselves
as novices, 6/24 (25%) described themselves as intermediate users, and 4/24 (17%)
described themselves as experts. As compensation for a 90 minute session, each par-
ticipant received $20.

5.3.2 Usability Testing Procedure. As with the SketchUp experiment, there was only one
experimental trial per participant, and the experiment was divided into 90-minute
sessions. Due to laboratory space constraints, we recruited participants in smaller
groups (2 at a time, rather than the 5–7 in the SketchUp experiment). Each participant
worked on an identically configured installation of Photoshop CS3. The workspace was
configured according to the software defaults, with a few exceptions: we enabled the

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:18 D. Akers et al.

Fig. 4. The “tulips” task in the Adobe Photoshop usability test. Beginning with the image on the left,
participants first rotated and cropped the image. If they finished early, they attempted to increase the
saturation of the tulips, emphasize highlights on the statue, and change a tulip’s color from yellow to red.
[Photo by Andrew Faulkner, af.studio.com]

history palette, placing it between the navigation and color palettes. Also, we changed
the tool palette from one-column mode to two-column mode, to match the format used
in the video tutorial.

The instrumentation of Photoshop differed somewhat from that of SketchUp. Since
the tasks in this study were modification-oriented rather than creation-oriented, erase
was not a useful command to the participants. After pilot testing found no instances of
erase events, we decided to simplify the protocol instructions by removing erase events
from the retrospective session. We instrumented Photoshop to record undo operations
using the “history log” feature, thereby avoiding having to make any modifications to
the source code (see Akers [2010, Appendix C]).

The 90 minute experiment was divided into the same five sections as in the
SketchUp experiment: training in Photoshop (15 minutes), training in identifying crit-
ical incidents (20 minutes), practice (10 minutes), modeling task (15 minutes), and
retrospective commentary (30 minutes).

Training in Photoshop (15 minutes). To familiarize everyone with the basic layout
of the Photoshop interface, participants watched one 15-minute training video pre-
pared by the first author. The training video was modeled after the first chapter of the
Adobe Photoshop “Classroom in a book” [Faulkner and Walthers Von Alten 2007]. This
video covers a basic introduction to the tools, image adjustments, palettes, and filters.
It also includes the help system and undo functionality. A full transcript is included in
Akers [2010, Appendix B].

Training in Identifying Critical Incidents (20 minutes). The training was similar
to what was provided for SketchUp. a transcript of the training video is included in
Akers [2010, Appendix B].

Practice (10 minutes). Participants were given 10 minutes to practice using Photo-
shop and reporting critical incidents. Participants were provided with a “rubber duck”
image (the same image used in the training video), and were allowed to freely explore
the interface during this time.

Modeling Task (15 minutes). We randomly assigned participants to one of two
tasks: some completed the “tulips” task (Figure 4), while others completed the

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:19

Fig. 5. The “portrait” task in the Adobe Photoshop usability test. Beginning with the image on the left,
participants first changed the eye color from brown to blue, and brightened the teeth. If they finished early,
they removed both earrings, reduced eye shadows, and changed the background color from white to grey.
[Photo by Rick Hawkins]

“portrait” task (Figure 5). As in the SketchUp experiment, each task had two phases; if
participants finished the first phase, they received printed instructions for the second
(more difficult) phase. See the figure captions for descriptions of the specific instruc-
tions provided to participants.

Retrospective Commentary (30 minutes). Immediately following the completion of
the task, the system automatically processed the video to extract 20 second episodes
centered around each undo and self-reported incident.

5.3.3 Usability problem extraction. The data analysis process for this study was almost
identical to that of the SketchUp study. To facilitate controlled comparisons between
experiments, the same researcher was responsible for processing the data and extract-
ing usability problems.

Discarding Participants Whose Data Were Unusable. From an original set of 28
participants, we removed one participant because of a screen capture glitch. We also
removed one participant because he did not finish his retrospective during the time
allotted. We removed one participant because his partner did not show up, requiring
us to pair him with the experimenter during the retrospective. Finally, we removed one
more participant because his nonnative english commentary was often unintelligible
to the experimenter. Removing the data from these 4 participants left 24 participants,
whose data we used in the next phase of analysis.

Discarding Unclear Episodes. The 24 participants produced 255 episodes (130
undo episodes and 125 self-report episodes). Cumulatively, this equates to an aver-
age of 10.6 episodes per person, or 0.71 episodes per minute of Photoshop usage. From
this initial set of 255 episodes, we discarded 42 episodes (16%) because the combina-
tion of commentary and screen capture video was not clear enough for the researcher to
extract a complete usability problem instance. We discarded an additional 15 episodes

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:20 D. Akers et al.

(6%) in which the user could not remember enough about the episode to answer any of
the retrospective questions.

The number of unclear episodes was significantly higher for Photoshop than for
SketchUp. One possible reason is that Photoshop is a much more complex application
than SketchUp, with many hidden modes and settings that cannot be inferred from
screen capture. Another possibility is that the Photoshop tasks involved subtle modifi-
cations to images, making it much more difficult to infer the user’s progress in the task
by examining screen capture (in contrast to SketchUp, in which the user’s progress is
evident from the state of the 3D model).

This process left 198 episodes (102 undo episodes and 96 self-report episodes).

Discarding False Alarms. From the remaining set, we identified eight episodes
(4%) that contained no identifiable usability problems. Three of these false alarms
were from self-report episodes (two accidental presses of the ‘report issue’ button, and
one error induced by a window focus problem with the reporting button itself). The
remaining five false alarms were due to backtracking events that failed to indicate
usability problems. Thus, the overall false alarm rate for backtracking episodes was
5/102 = 4.9%.

Of the five backtracking false alarm episodes, two resulted from reversing purpose-
ful explorations, in which participants were simply experimenting with Photoshop
to learn its functionality. One false alarm occurred because the user continued to
work after he was told to stop. (He rushed his work, making a slip.) One false alarm
occurred when a user purposefully cleared his selection to get a better view of his
image, then used undo to recover the selection and continue working on it. Finally, one
false alarm was a duplicate of the window focus problem described in the preceding
paragraph.

Identifying Usability Problem Instances. After all of the data preparation steps
described previously, 190 episodes remained. A researcher analyzed these episodes to
extract 222 usability problem instances. As with SketchUp, the mapping from episodes
to usability problems instances was many-to-many. There were 14 problem instances
that were incidental to the triggering event, and 18 overlapping pairs of undo/self-
report episodes.

Merging Usability Problem Instances. Next, a researcher merged the 222 problem
instances to form 106 unique usability problems. Again, we took a conservative
approach to the merging process, matching instances only when their differences
were superficial. The merge rate was 2.09:1, which is similar to what was found for
SketchUp. The full list of usability problem descriptions can be found in Akers [2010,
Appendix A].

Coding for Problem Severity. Three knowledgeable Photoshop users coded each
of the usability problems for severity, and were compensated with gift checks worth
approximately $30 / hour. For rating impact/persistence, we reused the scale from the
SketchUp experiment (see Table I). Initially, we also planned to reuse the frequency
scale from the SketchUp experiment. However, piloting this approach for Photoshop
revealed a floor effect. Since Photoshop has so many features, only a small percentage
of which would be used during any particular session, almost all of the problems found
in the study would be rated a 1/5 or 2/5 on the frequency scale. To allow for better
resolution on the low end of the frequency scale, we replaced the 1-5 ordinal scale with
a 0-100 ratio scale. Raters were given the following instructions.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:21

Out of 100 Photoshop users, how many would experience this problem
during a typical session? (A rough estimate is fine.) Keep in mind that a
problem will not occur if the relevant application feature is not used.

Your answer should be between 0 and 100. Answer ‘0’ only if you think the
problem would almost never happen.

To calculate a single severity score for each rater, we multiplied the two scales to-
gether, resulting in a severity score between 0 and 500 for each problem. Raters could
see the effect of the scores on the relative severity rank for each problem. They ad-
justed their ratings until the relative ranks of all problems matched their intuition.
(This was a slight change to the severity rating process for SketchUp, in which raters
were unaware of how the frequency and impact/persistence scores would be combined
into a single rating.)

The 106 problems were rated as part of a larger set of 179 problems, including an
additional 73 problems found in the next study (see Section 6). We divided the 179
problems into three sets: a training set (7 problems), a test set (10 problems), and an
independent set (162 problems). Coders used the training set to discuss the severity
scales and resolve differences in coding styles. Next, they independently rated the
10 problems from the test set, and then discussed the differences and adjusted their
ratings. Finally, they independently rated the remaining 162 problems.

As in the SketchUp experiment, we used Cronbach’s Alpha [Cronbach 1951] to es-
timate the consistency of the three raters. Since the relative ordering of problems is
more relevant than the absolute scores, we estimated inter-rater reliability on the or-
dinal ranks of each set of problems. Before the discussion, Cronbach’s Alpha was 0.86;
after coders adjusted their ratings, it increased to 0.98. Coders then independently
rated the remaining 162 problems. For the final set of 106 problems in this study
(using the adjusted ratings from the test set), Cronbach’s Alpha was 0.82.

To reduce the effect of individual outliers, we chose the median of the three scores
as the severity score for each problem. We then ranked all problems according to the
median scores, producing an ordinal severity scale for all problems. (Problems with
the same score were assigned to the same rank.) Inspecting the final ranked list of
problems, we assigned categories to ranges of problems. Problems with median scores
from 0 to 9 (ranks 1−10) were labeled as mild, those between 10 and 19 (ranks 11–16)
were labeled as medium severity, and those with scores >= 20 (ranks 17−26) were
labeled as severe.

5.3.4 Results.
Comparison between Backtracking and Self-Report. Figure 6 depicts the number

of problems detected by each method or set of methods. On the left are the results for
all problems, while on the right are the results for problems rated as severe. The data
show that backtracking events detected 66 of the 106 problems, while self-reporting
detected 76. Focusing on the most severe problems, backtracking and self-reporting
each detected 14 problems.

Reasons Problems Were Not Reported. As in the SketchUp study, self-report failed
to detect some of the problems found by backtracking analysis. Of the 49 responses to
the retrospective question about reasons for not reporting, 19/49 (39%) indicated a fail-
ure to report because the participant blamed himself for the problem rather than Pho-
toshop. Another 14/49 (29%) said that the problem was too minor to report. Another
10/49 (20%) said that they should have reported the problem, but simply forgot. Inter-
estingly, 5/49 (11%) said that they did not report the problem because they thought the
testing task was not realistic. (This may reflect a difference between the testing tasks,

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:22 D. Akers et al.

Fig. 6. Two Venn diagrams depicting the number of usability problems detected in Adobe Photoshop by
each of the two methods or combination of methods. The left diagram shows the results for all problems,
while the right diagram focuses on problems rated as severe. Problems in the middle of each Venn diagram
were detected by both methods, while those on the outsides were detected by only one method. Note that
backtracking events detected the same number of severe problems (14) as self-report.

Table II. A Comparison of the Number of Usability Problems Found in Each Experiment

and how these particular participants use Photoshop in their daily life.) And finally,
one participant said that he did not report a problem because he could not imagine a
way to fix the software to avoid the problem. These results echoed the concerns with
attribution of blame identified in the SketchUp experiment. If anything, the failure
to self-report was worse in this study, as it extended to severe problems: self-report
detected only 14/19 (74%) of the severe problems, as opposed to 22/25 (88%) of the
severe problems in the SketchUp study.

5.4 Comparing SketchUp and Photoshop

Table II compares the key results from the Photoshop and SketchUp experiments. It
is evident from both studies that backtracking analysis and self-reporting detect com-
parable numbers of usability problems, and that this similarity is consistent across
problem severity levels. It is also evident that backtracking analysis performed some-
what better with SketchUp than with Photoshop. There are two possible reasons for
the difference in performance. First, consider that the numbers for backtracking anal-
ysis in this study include undo events only; since the tasks involved modification of
existing content, there were no erase events. Second, consider that Photoshop is a
much more complex, full-featured application than SketchUp. A much larger percent-
age of the problems in Photoshop involved feature discoverability. These problems
often failed to induce backtracking events, unless the participant did not know what

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:23

feature to look for (and therefore searched for the feature by trial-and-error, requiring
the repeated use of undo). Finally, it is apparent that SketchUp presented a much
higher percentage of severe problems than Photoshop. This is an unsurprising result,
given that Photoshop is a much older, more mature application.

The false alarm rate for backtracking analysis in this experiment was only 4.9%,
which is considerably lower than in the SketchUp experiment (27%). However, recall
that most false alarms in the SketchUp experiment could be attributed to two specific
uses of the erase command. In contrast, the false alarms found in Photoshop were
more varied, as described in Section 5.3.3.

5.5 Discussion

This section reflects on the results of the two studies, and discusses possible threats to
internal and external validity.

5.5.1 Interpreting the Results.. We were initially surprised to find that backtracking
events detected so many problems, compared to self-reporting. Many problems, for
example, do not seem likely to produce a backtracking event.

Upon reflection, there are two possible reasons why the problem detection rates for
backtracking events were so high. First, sometimes backtracking operations happened
in circumstances we would not have expected. Consider the following sequence from
the experiment: a user attempted to move a piece of geometry, and nothing happened
(because, unbeknownst to the user, the geometry was anchored to its position). While
it would seem that there was no reason to undo (since there was no actual change to
the geometry), the user still executed an undo just to make sure that he hadn’t changed
anything.

Second, recall that we recorded problem instances even when the discovery of the
problem was incidental to the method. Within the 20 second window of each screen
capture episode, we often detected participants having difficulties unrelated to the
backtracking event that triggered the episode. This accounted for nearly 20% of the
problem instances for SketchUp, and 6% of the instances for Photoshop.

5.5.2 False Alarms. We expected to see two types of false alarms from backtracking
events: purposeful uses of backtracking for design exploration, and purposeful uses
of backtracking associated with learning the interface. Neither study produced false
alarms related to the exploration of design alternatives. In hindsight, this is likely
due to the fact that the task goals were specified so precisely. More surprisingly, we
observed no learning-related false alarms in SketchUp, and only two such false alarms
(1% of all episodes) in Photoshop. We speculate that we saw so few false alarms be-
cause the study protocols included both a 15-minute training and a 10-minute explo-
ration period. By the time participants began the tasks, they were ready to work rather
than explore. We had also emphasized the availability of online help materials dur-
ing the study and provided users the option to review the training videos at any time
during the tasks. Participants were observed repeatedly referring to these resources,
instead of learning by exploring the interface.

Some false alarms we did find revealed categories of backtracking events that we
did not anticipate. The creation of construction lines in SketchUp is an example of a
“temporary action”: an action that doesn’t directly further a goal, but helps us to think
or work more efficiently. Backtracking events associated with temporary actions are
not indicators of usability problems, but rather indicate sophisticated uses of back-
tracking. The erasure of system-drawn lines is an example where the operation being
reversed is a system action. The system-drawn lines are only of aesthetic importance;
some participants decided to keep them, while others erased them.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:24 D. Akers et al.

5.5.3 Time on Task. Of the 90 minutes in each experiment, participants spent only 15
minutes working on the task. The task time is shorter than that of a typical usability
study. (In contrast, a real-world usability study of SketchUp allocated 20 minutes of
actual task time for a 60 minute study.) To some extent, the short task time reflects
the goals of these studies, which were to compare two usability evaluation methods
in an experiment rather than to use them in practice. Increasing the task time is a
direction for future work (see Section 7.3). However, it is also useful to note that 20 of
the 90 minutes were spent training participants in the use of the user-reported critical
incident method. While it may be possible to reduce the amount of training, this is a
fundamental difference between self-reporting and event-based methods. Event-based
methods can be employed without any up-front training (and even without users’ prior
awareness that they are being monitored).

5.5.4 Internal Validity Concerns. The study designs minimized several possible threats
to internal validity. Since we varied the method in a within-subjects manner, we coun-
terbalanced the order of the methods in the retrospectives to avoid learning or fatigue
effects. One other internal validity threat lies in the process of merging of usability
problem instances. If we were inconsistent in how we merged problems, problems
might end up at substantially different levels of granularity. (Consider the difference
between, “Users have trouble selecting objects” and, “Users have trouble understand-
ing how to select objects when using the scale tool.”) The former would likely attract
a higher severity rating, and would also be more likely to be detected by all three
methods. Aware of this potential threat, we tried to write problem descriptions that
were much more like the latter than the former, and took a conservative approach to
the merging of problems. Unfortunately, there is no simple test for success; merge
rates naturally vary with the frequency of a problem’s occurrence, as well as its level
of granularity. Future studies might seek to verify the validity of the merging process
by employing multiple researchers and assessing the inter-researcher reliability.

5.5.5 Generalizing to Other Tasks. The conclusions of these experiments may depend
to some extent on the chosen testing tasks. SketchUp (and especially Photoshop) are
large and complex applications; it is not possible to comprehensively evaluate their
usability by choosing a few tasks. That said, we tried to choose tasks that are repre-
sentative of new user goals.

5.5.6 Generalizing to Other Applications. These experiments showed that backtracking
analysis was effective for two creation-oriented applications. We were somewhat sur-
prised by the low incidence of learning-by-exploration false alarms for SketchUp and
Photoshop, but we cannot see anything specific about these applications (or our testing
tasks) that would discourage learning by exploration. We suspect that backtracking
analysis will generalize to work effectively with the broader class of creation-oriented
applications such as word processors and page layout tools, but such generalizations
are left as future work.

5.5.7 Generalizing to Other Evaluators. The evaluator effect [Jacobsen et al. 1998] for
traditional usability testing is also a concern for backtracking analysis. Since a sin-
gle evaluator was responsible for identifying usability problems, it is possible that
some of the findings of this study would not generalize to other evaluators. Hopefully,
this effect is smaller for backtracking analysis than for traditional testing (since in
backtracking analysis the episodes are automatically selected). The follow-up study
described in Section 6 employs multiple evaluators to mitigate this concern.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:25

5.5.8 Summary. This section described two experiments that compared backtracking
analysis with the user-reported critical incident technique. The experiments measured
the effectiveness of backtracking analysis in two ways: the hit rate (percentage of
problems detected), and the false alarm rate. In both studies, we found that the
number of problems detected by each method was comparable, and verified that
this result held for the problems rated as severe. Like most event-based approaches,
backtracking analysis did produce false alarms, but at lower rates than we expected
(27% in the SketchUp study, and 4.9% in the Photoshop study).

These results are particularly exciting because backtracking analysis may provide a
viable method in circumstances where self-reporting is not an attractive option. Con-
sider, for example, “in the wild” studies where users are often more interested in get-
ting their work done than reporting problems with the interface [Nichols and McKay
2003]. However, it should be noted that adapting backtracking analysis for use in the
wild presents its own challenges, as discussed in Section 7.3 (future work).

6. COMPARISON WITH TRADITIONAL USABILITY TESTING

This section describes an experiment designed to estimate the strengths and weak-
nesses of backtracking analysis as compared to traditional laboratory usability testing.
Many variants of traditional laboratory testing exist, differing in their recommenda-
tions for running the tests and analyzing the results. Complicating matters, there is
little data about which variants are used most often in practice. There is, however,
some commonly cited popular literature describing commonly-agreed best practices
for laboratory testing [Dumas and Redish 1999; Dumas and Loring 2008; Rubin and
Chisnell 2008]. This study’s implementation of traditional laboratory testing followed
these best practices.

The specific goals of the experiment were to estimate the cost-effectiveness of each
usability evaluation method, to compare the types of problems found by each method,
and to solicit the opinions of professional usability evaluators on the potential use
cases for each method.

6.1 Experimental Design and Recruitment

This experiment used Adobe Photoshop as the test application. Unlike in the exper-
iments from Section 5, for this experiment we varied the usability testing methods
in a between-subjects manner. This allowed us to reuse the raw data (episodes and
retrospective commentary) from the previous Adobe Photoshop study described in Sec-
tion 5.3. We recruited 24 new participants for the traditional laboratory study condi-
tion, taking care to match participants across conditions on their prior expertise with
Photoshop. After the new study was complete, three professional usability evaluators
identified usability problems from both conditions. Note that the evaluators performed
a fresh analysis of the raw data from the backtracking analysis study; we did not reuse
the usability problem descriptions found in the prior experiment by a different evalu-
ator. Keeping the evaluators consistent across conditions avoided introducing a signif-
icant confounding variable since different evaluators may identify different usability
problems [Jacobsen et al. 1998]. It also allowed the evaluators from this experiment
to speculate on the differences between methods (since they had experienced both).
The study resulted in two types of data: quantitative data (usability problem counts
and severity ratings), and qualitative data (semi-structured interviews with the pro-
fessional evaluators). These data were used to assess the strengths and weaknesses
of backtracking analysis in three ways. Section 6.2 offers a preliminary investigation
into the cost-effectiveness of backtracking analysis, suggesting that it may be substan-
tially more cost effective than traditional laboratory testing when usability testing is

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:26 D. Akers et al.

performed in groups of at least four participants. Section 6.3 compares the types of
usability problems found by backtracking analysis and traditional testing, revealing
that traditional testing may be better suited for identifying problems related to feature
discoverability (and possibly strategy formation). Section 6.4 investigates the practi-
cal applicability of backtracking analysis, finding that usability evaluators were most
excited about the use of paired-participant retrospectives.

The recruitment of testing participants for the backtracking analysis condition was
previously described in Section 5.3.1. For the traditional laboratory study condition,
we recruited an additional 24 participants from a variety of academic departments
at Stanford University. Participants in both conditions responded to flyers posted in
academic buildings at Stanford University.

We were careful to control for participants’ prior expertise in Photoshop in form-
ing the sample for traditional laboratory testing. To accomplish this, we recruited
the participants for testing within levels of Photoshop expertise, so as to match the
distribution of expertise in the backtracking sample. The 24 participants in each con-
dition had the exact same distribution of responses to the question asking them to
rate their prior experience retouching images in Photoshop. Of the 24 participants in
each condition, 3/24 (13%) had never used Photoshop before for this purpose, 11/24
(46%) described themselves as novices, 6/24 (25%) described themselves as intermedi-
ate users, and 4/24 (17%) described themselves as experts. For a 60 minute session,
each participant received a $15 gift check.

For the traditional condition, we recruited a professional usability test moderator to
run each session, and three professional usability evaluators to identify and report us-
ability problems. The moderator had two years of experience running usability tests as
a user experience researcher with two organizations (a design consulting company and
a software company). She also had formal training in conducting usability tests while
a Masters Student. The three usability evaluators (whom we will refer to as Evaluator
A, Evaluator B, and Evaluator C) had considerable industry experience in usability
evaluation, and varying degrees of experience with the Adobe Photoshop application.
Evaluator A was a user experience analyst with 18 months of experience conducting
and analyzing think-aloud usability tests. He described himself as an expert user
of Photoshop, with prior job experience developing Photoshop plug-ins for image re-
touching. Evaluator B was a freelance usability consultant, with general expertise in
design, rapid prototyping, and usability testing. He had 10 years of experience moder-
ating and evaluating think aloud usability tests, both in his role as a consultant, and
as an employee at a financial institution and a security startup company. Before the
test he was a beginning user of Photoshop, but had extensive experience with other
software for image editing and technical illustration. Evaluator C was a freelance us-
ability consultant with ten years of experience moderating and evaluating think-aloud
usability tests. She had the least experience of the three with Photoshop; she had only
used it occasionally to touch up her own personal photographs, and described herself
as a high-novice or low-intermediate user.

The usability test moderator received $2,500 as compensation for conducting the
entire test, while usability evaluators each received $1,500 for their work. Evalua-
tor C volunteered to work without payment. All three evaluators received a copy of
Photoshop CS3, graciously donated by Adobe.

6.2 Usability Testing Procedure

For the backtracking condition, we reused the raw participant data from the experi-
ment described in Section 5.3. Please refer back to this previous section for a complete
description of the experimental protocol. The remainder of this section describes the

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:27

test procedure for the traditional laboratory testing condition. The study was per-
formed at Stanford University. The computer was configured with a copy of Adobe
Photoshop CS3, and screen capture recording software. We also placed a single video
camera behind the desk, aiming the camera to provide a clear view of the participant’s
face and body.

To facilitate comparison at the level of individual participants, we designed the ex-
perimental protocol for the traditional condition to approximately match the session
length of a typical session of backtracking analysis. Recall that each backtracking ses-
sion was 90 minutes in length, but approximately 30 minutes of that time was spent on
the self-reporting portion of the study (20 minutes of training in self-reporting, and ap-
proximately 10 minutes of retrospective commentary specific to self-report episodes).
Accordingly, we designed each laboratory testing session to last 60 minutes.

Each 60 minute laboratory test was divided into the following sections: greeting
(2 minutes), training in Photoshop (15 minutes), instructions on thinking aloud
(3 minutes), practice (10 minutes), tasks (25 minutes), and retrospective (5 minutes).

Greeting (2 minutes). Since the moderator plays a much more active role in tradi-
tional laboratory testing than in backtracking analysis, we devoted careful attention
to the initial greeting process. A rough transcript of the greeting is provided in
Akers [2010, Appendix B], but the moderator ad-libbed somewhat rather than reading
verbatim from the script.

Training in Photoshop (15 minutes). The training video was identical to that used
in the previous study. Please refer to Section 5.3 for details.

Practice (10 minutes). Participants were given 10 minutes to practice using Pho-
toshop. As in the backtracking condition, participants were provided a ”rubber duck”
image, and were allowed to freely explore the interface during this time. The moder-
ator purposefully did not ask participants to think aloud during the practice phase.
Pilot studies had also revealed a concern that participants might explore the inter-
face less thoroughly when their actions were being actively watched by an observer.
Accordingly, the moderator moved to the other side of the room during the practice
phase.

Training in Thinking Aloud (3 minutes). To prepare the participant to think aloud
while working on the task, the moderator provided some training in how to effectively
think aloud.. The moderator demonstrated the think aloud process while replacing the
staples in a stapler. She then asked the participant to practice thinking aloud while
refilling the tape in a tape dispenser.

Modeling Task (25 minutes). As in the backtracking analysis study, we randomly
assigned participants to one of two tasks (described in Section 5.3): half completed
the tulips task, while the other half completed the portrait task. Note that the time
allotted for the task was 10 minutes longer than the time allotted in the backtracking
condition; we did not make any attempt to control for task time across conditions. (It
would be difficult to devise a fair control for time on task even if we had wanted; the
think aloud process is likely to change the speed at which participants are able to
complete the task.)

The moderator followed the advice of Dumas and Loring [2008] in deciding how to
interact with each participant during the task. The complete instructions are included
in Akers [2010, Appendix B].

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:28 D. Akers et al.

Retrospective (5 minutes). Immediately following the completion of the task, the
moderator interviewed the participant. This interview provided a chance for the mod-
erator to ask follow-up questions, and to probe the participant’s understanding of fea-
tures used during the task. At the end of the interview, the moderator always asked
the participant for suggestions to improve the software.

6.3 Usability Problem Extraction

6.3.1 Training the Usability Evaluators. Usability evaluation is a subjective process; dif-
ferent evaluators may identify different usability problems even when reviewing the
same data [Jacobsen et al. 1998]. To help mitigate this effect, we provided some in-
structions to the evaluators. The complete set of instructions is included in Akers
[2010, Appendix B], highlights of which are described in the following.

To instruct evaluators in identifying usability problem instances, we provided a list
of criteria for identifying usability problems from Jacobsen et al. [1998]. We also pro-
vided Table 1 from Skov and Stage [2005], which classifies usability problems along
two dimensions: how the problem is detected, and how the problem impacts the user.
Hornbæk and Frøkjær [2008] used these same two resources to train usability evalua-
tors to identify usability problems in a recent study of problem matching techniques.

Identifying usability problems sometimes involved extra work in the backtracking
condition, because of a complication in reusing the data from the previous study. The
complication arose when a backtracking episode overlapped with a self-report episode,
and the commentary for the self-report episode was collected first. We resolved this in
the same manner that we handled overlapping episodes in the previous experiment;
we included the commentary from the overlapping self-reporting episode as additional
evidence. We asked evaluators to ensure that the evidence of a problem was visible
in the backtracking episode before reporting a problem described in the overlapping
self-report episode.

We also provided instructions on how to report usability problem instances. To
report a problem, evaluators filled out a form answering the following four questions.

(1) What actually happened in this episode, and what did the user say about it? (2–3
sentences)

(2) How did the user work around the problem, if at all? (1–2 sentences)
(3) What was the broader context in which the problem occurred? What was the user

trying to accomplish? (1–2 sentences)
(4) Provide a one-sentence headline for the problem.

We provided three “golden rules” for reporting usability problem instances.

(1) Focus on describing symptoms rather than inferring causes.
(2) Avoid trying to read users’ minds when describing their intentions or thoughts;

rely on evidence.
(3) Clearly distinguish between the user’s actions and explanations.

To ensure that evaluators had a chance to practice identifying and reporting usability
problem instances, we asked them first to evaluate a separate ”training set” of four
participants (two participants from each condition, balanced according to the testing
tasks). The data obtained during this training phase was not included in the final
results. After each evaluator had finished reporting problems for the training set, we
provided feedback on problem identification and reporting. Evaluators B and C seemed
to be classifying many learning-related difficulties as false alarms; we reminded them
that learnability should be considered an important goal. We also needed to remind

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:29

Evaluator C that it was not necessary to report a problem for every backtracking
episode; some might represent false alarms.

6.3.2 Collecting Usability Problem Reports. After the training was complete, we parti-
tioned the original set of 48 participants into 3 sets of 16 participants, one set for each
evaluator. We randomly assigned participants to evaluators, taking care to balance for
condition, task, and prior Photoshop expertise of participants. To mitigate learning
effects during evaluation, we required the evaluators to alternate between conditions
as they worked (participant 1 from backtracking, participant 2 from traditional, par-
ticipant 3 from backtracking, participant 4 from traditional, etc.)

This process resulted in 219 problem reports, including 72 backtracking reports and
147 traditional reports. Most of these reports originated from Evaluators A (94/219,
43%) and B (97/219, 44%); Evaluator C, who had considerably less experience with
Photoshop, submitted only 13% of the reports (28/219).

Generating Usability Problem Instances. A researcher inspected all 219 problem
reports to generate usability problem instances. In most cases, the mapping was one-
to-one; we simply copied the report description to form an instance of a usability prob-
lem. There were a few exceptions, described as follows.

In some cases, there was no clear description of a difficulty apparent in the report.
(The evaluator was not clear what had happened, and could not pinpoint the difficulty.)
We discarded these 13 reports (5 backtracking reports, and 8 traditional reports). We
discarded one additional traditional report because the evaluator had misinterpreted
the task instructions, blaming a user for failing to accomplish a subtask that was not
required. Discarding these 14 reports yielded 205 problem reports (67 backtracking
reports and 138 traditional reports).

In some cases, a single problem report contained more than one usability problem.
We split such reports into individual usability problem instances. This process re-
sulted in an additional 13 usability problem instances (9 backtracking instances and
4 traditional instances). After the splitting process, we had compiled a final list of 218
usability problem instances.

Merging Usability Problem Instances. A single researcher merged the 218 problem
instances to form 134 unique usability problems. As in the studies from Section 5, we
took a conservative approach to the merging process, matching instances only when
their differences were superficial. The merge rate was 1.63:1, which is somewhat lower
than what we found in previous studies. The full list of usability problems can be found
in Akers [2010, Appendix A].

Coding for Problem Severity. Three knowledgeable Photoshop users coded each
of the usability problems for severity and were compensated with gift checks worth
approximately $30/hour. Using a similar process to that described in the Google
SketchUp study, we used the median severity rating from the three coders to rank
the severity of each problem (using a 24-point scale instead of an 8-point scale). We
then classified each problem as mild, medium, or severe. Of the 134 problems, 91 were
classified as mild, 20 as medium, and 23 as severe. Cronbach’s alpha [Cronbach 1951],
a measure of inter-rater consistency, was 0.83, which is nearly identical to the value
observed in the SketchUp study (α = 0.82). A breakdown of how many problems of each
type were discovered by each method (including an analysis of overlap) is contained in
Akers [2010, p. 106].

Interviews of Usability Evaluators. To supplement the quantitative data, we inter-
viewed each of the evaluators individually to capture the qualitative aspects of their

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:30 D. Akers et al.

experience with the two methods. The interviews followed a semi-structured format,
and lasted for approximately one hour each. We structured the interviews around the
following questions.

— What do you see as the overall strengths and weaknesses of backtracking analysis?
— What types of problems do you think backtracking analysis is best for finding? What

types of problems does it tend to miss?
— How do you think backtracking analysis could be improved?
— As an evaluator, how hard do you think that backtracking analysis is to learn to do

well?
— What experience do you think an evaluator needs for backtracking analysis, and

how does this compare to the experience required for traditional lab testing?
— Would you recommend backtracking analysis as a technique to a colleague? For

what kind of a product/problem/situation?
— What other techniques would you combine backtracking analysis with (in a single

session, or in a set of studies on a single product)? In what ways do you see those
techniques being complementary?

— Suppose someone asked you to do a cost benefit analysis of backtracking analysis
compared with traditional usability testing, to help them decide which to use. How
would you describe the cost/benefit tradeoffs for backtracking analysis vis-à-vis tra-
ditional lab testing?

6.4 Results

This section presents a preliminary analysis of cost effectiveness (Section 6.4.1), a
characterization of the problems found and missed by backtracking analysis (Section
6.4.2), and a discussion of the usability evaluation contexts in which backtracking
analysis might be most useful (Section 6.4.3).

6.4.1 Cost Effectiveness of Backtracking Analysis.
Measuring Costs and Benefits. To analyze cost-effectiveness, we first chose met-

rics for benefits and costs. As in the rest of this article, we measured the benefits
of a usability evaluation method by computing the total number of unique usability
problems discovered. We measured the per-participant cost of a usability evaluation
method in terms of test moderation (expert hours spent overseeing the running of the
test), and test evaluation (expert hours spent analyzing and reporting the results). We
purposefully did not include the costs of recruiting, recognizing that these costs will be
consistent across methods and will vary greatly depending on the setting and location.

When measuring moderation costs, there is a key difference between traditional
laboratory testing and backtracking analysis. In traditional laboratory usability test-
ing, per-participant test moderation costs are fixed, but in backtracking analysis they
depend on a single parameter (k): the number of participants that can be tested si-
multaneously with a single human moderator. Doubling k effectively halves the cost
of moderating the test. In this particular experiment, limitations of laboratory space
and computer hardware forced us to run only two participants at a time (k = 2). How-
ever, we have found it possible to test with as many as 8 participants simultaneously
with no significant strain placed on the moderator. The following cost-benefit analysis
projects moderation costs for k = 4 and k = 8 and reports the observed moderation costs
for k = 2.

To account for evaluation costs, each of the three evaluators for this study recorded
the amount of time that they spent reviewing the videos and writing problem reports.
In the backtracking condition, evaluators recorded the time that they spent reviewing
each individual episode (regardless of whether the evaluator reported any problems

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:31

Table III.

An aggregate cost-benefit analysis comparing traditional laboratory testing and backtracking
analysis. Moderation costs for backtracking analysis are projected for different group sizes (k).
The bottom row shows the aggregate time required to discover each unique usability problem;
when k = 8, backtracking analysis is approximately twice as efficient as traditional lab test-
ing. Note that evaluation time was much shorter for backtracking analysis (in part because
there was less video to watch, and in part because evaluators reported fewer problems in this
condition).

for that episode). In the traditional condition, evaluators reported the total time they
spent reviewing the entire video for a participant.

Aggregate Cost-Benefit Analysis. An initial cost-benefit analysis, which aggregates
results across all evaluators, is shown in Table III At k = 2 (two participants per ses-
sion, as in this study), the cost-effectiveness results were comparable across condi-
tions (35 minutes per problem in backtracking analysis, compared to 40 minutes per
problem with traditional testing). As the number of participants per session increases,
backtracking analysis would perform substantially better. At k = 8, backtracking anal-
ysis would be approximately twice as efficient as traditional laboratory testing. Since
we have not yet tested with group sizes bigger than 8, it would be inappropriate to
extrapolate beyond k = 8. (It is certainly possible that a large enough group would re-
quire multiple moderators to coordinate, effectively preventing the cost from scaling.)

Visualizing Cost vs. Benefit. Figure 7 provides a more detailed view of the data,
plotting cost (hours of moderation and evaluation time) vs. benefit (number of unique
usability problems found). Each curve shows a particular usability evaluation method;
there is one curve for traditional usability testing, and there are three curves for back-
tracking analysis (k = 2, k = 4, k = 8). The shape of each curve was estimated by
randomly sampling subsets of the original set of 24 participants in each condition, and
computing the costs and average benefits for each subset size (see Akers [2010, Ap-
pendix D]). One can interpret these curves as meaning, “For a given amount of time
one is willing to spend on evaluation method X, how much benefit is expected?” Note
that each curve terminates at a different point along the cost axis; this is because the
analysis is limited to the 24 participants for each condition (and the cost of running all
24 participants depends on the evaluation method and its parameters).

6.4.2 Types of Problems Found and Missed by Backtracking Analysis.
Classifying Problems by Severity. Did the median severity of usability problems

differ between backtracking analysis and traditional laboratory testing? If backtrack-
ing analysis was only better for detecting mild problems, then the cost-benefit results
of the preceding section would carry little meaning. To investigate, we computed the
median severity rank of problems discovered with each method. The median severity
for problems found with traditional laboratory testing (6) was slightly higher than that
of backtracking analysis (5). The result, however, was not statistically significant by a
Mann-Whitney U test (z = 0.901, p = 0.34).

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:32 D. Akers et al.

Fig. 7. A detailed cost-benefit analysis comparing backtracking analysis with traditional usability testing.
This chart plots costs (expert hours moderating and evaluating) vs. benefits (number of unique usability
problems found). Costs for backtracking analysis are projected for three different test group sizes (k). To
estimate the shape of each curve, we randomly sampled subsets of the original set of 24 participants in each
condition, and computed the costs and average benefits for each subset size. For clarity of illustration, we
have divided the costs of running each backtracking analysis session evenly amongst the participants in
the session; a plot of the raw data would include discontinuities at multiples of the group size. Note that
each curve terminates at a different point along the cost axis, since the costs of running all 24 participants
depends on the evaluation method and its parameters. The termination points correspond to the values
listed in Table III (aggregate analysis).

Employing Other Problem Classification Schemes. Classifying usability problems
only by their predicted severity leaves something to be desired; a usability evalua-
tor considering the use of backtracking analysis might want to know more about the
nature of the problems found and missed. To address this issue, we invented our own
classification scheme, modeled loosely after the top level of the User Action Framework
hierarchy [Andre et al. 2001].

— Forming strategies: difficulty developing a high-level strategy for accomplishing a
goal.

— Finding features: difficulty locating an application feature (even if the desired fea-
ture is not known).

— Choosing parameters: difficulty choosing the right parameters for an action (e.g.,
tolerances).

— Executing actions: difficulty executing an action, resulting in surprise or
frustration.

— Perceiving state: difficulty interpreting and/or remembering application state.

We set aside 28 problems that did not clearly fit into one of these categories. We classi-
fied the remaining 106 problems (61 uniquely found by think aloud, 32 uniquely found
by backtracking, and 13 found by both methods); the results are shown in Figure 8.

Two conclusions are apparent from the figure. The first is that difficulties form-
ing strategies were absent with backtracking analysis. (It should be noted that only
three problems related to strategy formation were found by the think-aloud method,

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:33

Fig. 8. An informal comparison of the types of usability problems found by traditional laboratory testing
and backtracking analysis. Traditional laboratory testing detected a higher percentage of problems related
to forming strategies and finding features.

so the differences are certainly not statistically significant.) However, theory also sug-
gests that backtracking analysis would have difficulty detecting such problems, since
they generally manifest as ”menu-cruising” behavior or long pauses of inactivity - not
as backtracking operations. Also apparent from the figure is that difficulties related
to finding features are much more commonly detected by think-aloud testing than
by backtracking analysis. Backtracking analysis only detected feature discoverability
problems when the user did not know what s/he was looking for and experimented by
trial-and-error.

We also asked each of the three usability evaluators to speculate on the types of
problems found and missed by backtracking analysis. Evaluator A volunteered that
backtracking analysis might systematically fail to detect feature discoverability issues,
confirming what was evident in the data. He admitted that it did find some of these
issues, however.

Evaluator B speculated that backtracking analysis might be particularly useful for
identifying problems during fast-paced interaction episodes where participants’ ac-
tions are triggered by muscle memory rather than conscious thought. He also indi-
cated that backtracking analysis may be particularly ill-suited for finding “big picture”
problems, because the short, automatically selected episodes don’t always give a com-
plete picture of the participants’ experience. He suggested that it might be possible
to partially address this context issue by providing a short general purpose question
period at the beginning of the retrospective section. One might ask participants about
the hardest parts of the task, for example.

Evaluator C found it impossible to speculate on this topic, indicating that she did
not have enough examples to generalize.

6.4.3 How Backtracking Analysis Fits into Practice. During the interviews, we also probed
evaluators on how they thought backtracking analysis might fit into usability evalua-
tion practice. Their responses are summarized here.

Suitability for Different Application Types and Usability Evaluation Goals. Evalu-
ator B indicated that he thought backtracking analysis would work better for released
applications than for early prototypes. He suggested that it would not be good for an-
swering basic questions like, “Do the users even understand our interaction model?”
This relates to his earlier comment that backtracking analysis might tend to miss
“big picture” problems. In contrast, Evaluator A said that backtracking analysis was
unsuitable for summative evaluations of complete systems, because it might systemat-
ically fail to detect certain types of problems. (As an example, he noted problems with
feature discoverability.) He recommended it only for informal, formative evaluations

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:34 D. Akers et al.

of software. Evaluator C focused on the expertise of the participants, reasoning that
backtracking analysis tended to work better with expert participants than for novices.
She said that experts tended to “talk about their difficulties more effectively”. These
comments from Evaluator C might have been influenced by her own lack of experience
with Photoshop.

Expertise Required to be an Evaluator. There was no consensus amongst the eval-
uators concerning the usability or domain expertise required to be an evaluator. Eval-
uators A and C thought that the expertise required to evaluate would be roughly the
same as for traditional usability testing. Evaluator B said that he believes that prior
usability evaluation experience is less important in backtracking analysis. He claimed
that backtracking analysis is less subjective and more systematic, and indicated that
even an engineer with no usability experience might be able to function as an effec-
tive evaluator. He did provide a caveat: a less-trained evaluator would need to have
an open mind about usability problems; backtracking analysis would not help any-
one who was ”determined to be skeptical” of the existence of usability problems in the
interface.

Combining Backtracking Analysis with Other Methods. Both Evaluators A and B
suggested combining backtracking analysis with real-world usage log data. Among
other things, this would indicate which system commands are most often reversed,
giving a real-world context for the usability problems found by backtracking analysis.

For Evaluator B, the chief concern when choosing between usability evaluation
methods was not cost-effectiveness, but thoroughness. Backtracking analysis might
provide a way to catch problems that would otherwise be missed during traditional
testing. He suggested building support for retrospective analysis of undo episodes into
usability testing software tools like Morae. He also suggested that a positive attribute
of backtracking analysis is that it does not interfere with a participant’s natural in-
teraction with the software. Since backtracking events are logged without the partic-
ipant’s knowledge, quantitative measures such as task time or error counts are not
tainted by the experimental manipulations.

Evaluator C suggested combining backtracking analysis with eye tracking data;
she thought that this additional context would help her to interpret the episodes, and
might also help the participant to remember what was happening in the episode during
the retrospective.

Paired Participant Retrospectives. While we did not ask for feedback on the use of
paired-participant retrospectives, all three evaluators expressed excitement about this
technique. Evaluator B was particularly keen on the idea. Pairing up the participants,
he said, makes participants more comfortable in admitting their mistakes. Since each
participant has attempted the same task, they can empathize with each other and
understand the context of each others’ difficulties.

Evaluator B did raise a concern about the retrospective nature of the commentary
in backtracking analysis. There is, he explained, a ”theatrical” aspect to convincing
developers that usability problems should be addressed, and it often helps to extract
video clips showing evidence of users having emotional responses to a problem. He no-
ticed that participants were often laughing about their problems when they reviewed
them in the retrospective for backtracking analysis, whereas participants were more
often annoyed or frustrated in the concurrent think-aloud condition. He speculated
that participants become detached from their emotional involvement over time, and
that any usability evaluation method purely based on retrospective analysis would
fail to capture their original, raw emotion.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:35

6.5 Discussion

Interpreting the Cost-Effectiveness Comparison. Since backtracking analysis
turned out to be so much less expensive than traditional testing, we could only com-
pare the methods for costs on the low end of the spectrum (see Figure 7). Nevertheless,
these comparisons are meaningful. The 24 participants in the backtracking condition
cost the same as it would to test 11.5 participants in the traditional condition (when
k = 2), 8.1 traditional participants when k= 4, and 6.5 traditional participants when
k = 8. These sample sizes (611) are within the typical range of scales for traditional
usability tests, indicating that the comparisons are still relevant to practitioners.

As mentioned in Section 3, it is worth exploring other metrics for effectiveness be-
sides problem counts and severities. The analysis in this study does not account for
possible differences in the downstream utility of backtracking analysis and traditional
laboratory testing. As described in Section 6.4, one of the professional usability eval-
uators speculated that backtracking analysis might be less persuasive because of its
extensive reliance on a retrospective protocol, which may artificially distance partici-
pants from the negative emotions they felt while experiencing usability problems. Fur-
ther studies would help to determine the extent to which this is indeed a limitation of
backtracking analysis.

Construct Validity. In choosing a single way to operationalize traditional labora-
tory testing, this study has a mono-operation bias. One cannot know how the study
results might have been different if we had provided different instructions to the us-
ability test moderator, or the three evaluators. Even the choice to recruit different
individuals to perform the testing and the evaluation can be questioned; it is certainly
possible that there is an efficiency gain when the moderator and the evaluator are the
same person. (The moderator-evaluator could then make use of her notes during the
evaluation phase.) However, it is also possible that moderator-evaluators would make
more mistakes during evaluation, in the process of reconstructing what happened from
partial memories and hastily-scribbled notes.

Internal Validity. As previously mentioned, reusing the backtracking analysis
data from a previous study made it impossible to randomly assign participants to con-
ditions. Without random assignment, it cannot be certain that the participants in each
condition were similar along all important dimensions. We attempted to compensate
for this shortcoming by applying tight statistical controls on what we considered to
be the most significant individual difference factor: the prior Photoshop expertise of
participants. The 24 participants in each condition had the exact same distribution of
prior experience, as measured by self-report.

External Validity. This study is limited in scope. Researchers should be cautious
when generalizing from the success observed with backtracking analysis from usabil-
ity testing experiments in a laboratory setting with three evaluators, two tasks, and a
single application.

However, a broader perspective emerges when one considers the successes of this
study in combination with those of previous studies described in Section 5. Together,
these studies show that backtracking analysis has proved effective for evaluating two
different applications, with two different types of tasks (creating content vs. modifying
content), with a total of four evaluators with differing backgrounds. This is reason
for optimism among practitioners who consider experimenting with backtracking
analysis.

One additional concern about generalizability specific to this study is the reliance on
a single usability test moderator to run all of the studies in the traditional laboratory

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:36 D. Akers et al.

testing condition. It is possible that the test results would have differed if we had
chosen a moderator with a different style of interacting with participants. (We are not
aware of any formal studies of the “moderator effect,” but it seems likely that meaning-
ful differences could exist among moderators.) It is at least encouraging that all three
evaluators gave positive feedback on the job performed by the moderator in this study.

6.6 Summary

The results of this third experiment touch upon some the strengths and weaknesses of
backtracking analysis compared to traditional laboratory usability testing. Data from
the experiment indicate that backtracking analysis can be significantly more cost
effective than traditional laboratory usability testing, when one takes into account
the ability to test participants in large groups. However, an analysis of the problems
found by each method suggests that traditional laboratory testing is better suited
for detecting problems related to feature discoverability, and perhaps strategy for-
mation as well. Interviews with the three evaluators provided information about the
practical applicability of backtracking analysis; evaluators were most excited about
the use of paired-participant retrospectives, even outside the context of backtracking
analysis.

7. CONCLUSIONS AND FUTURE WORK

The results from these experiments have convinced us that backtracking analysis pro-
vides a promising approach to detect problems in creation-oriented applications such
as Google SketchUp and Adobe Photoshop. We have been particularly encouraged by
the problem detection rates, especially for severe problems, and by the positive com-
ments of the professional usability evaluators who experimented with backtracking
analysis.

7.1 Summary of Experimental Findings

First, a series of experiments showed that it is possible to automatically characterize
usability problems from backtracking events using a paired-participant retrospective
technique (Section 4). We experimented with three other usability testing protocols
(screen capture alone, screen capture plus concurrent think aloud, and screen capture
plus retrospective think aloud), but none of these alternative methods provided enough
contextual information to identify usability problems.

A set of two experiments with the Google SketchUp and Adobe Photoshop applica-
tions (Section 5) demonstrated that backtracking analysis is comparable in effective-
ness to the user-reported critical incident technique [Hartson and Castillo 1998]. In
the Google SketchUp experiment, backtracking events detected 5% more severe prob-
lems than self-reporting, and the false alarm rate for backtracking episodes was 27%
(compared to just 1% for self-reporting). While this false alarm rate might seem high,
it is noteworthy that all of the backtracking false alarms in this first study were re-
lated to the erase operation; none were associated with undo. In the Adobe Photoshop
experiment, backtracking analysis found exactly the same number of severe problems
as self reporting, and the false alarm rate for backtracking episodes was comparable
(4.9% for backtracking vs. 3.1% for self-reporting).

Finally, an experiment with the Adobe Photoshop application compared back-
tracking analysis with traditional laboratory usability testing (Section 6). An initial
cost-effectiveness study suggested that backtracking analysis using groups of eight
participants is approximately twice as cost-effective as traditional laboratory us-
ability testing. Both backtracking analysis and traditional testing proved capable of

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:37

identifying usability problems related to choosing parameters, executing actions, and
perceiving user interface state. However, backtracking analysis failed to detect any
problems relating to strategy formation, and performed poorly at detecting problems
related to feature discoverability. This limitation may be remedied by combining
backtracking analysis with other usability evaluation methods, as described here.

7.2 Implications for Usability Evaluation Practice

When designing a usability testing strategy, the size of the participant pool is not the
only consideration (e.g., consider the goal of frequent iteration of testing and software
modification [Medlock et al. 2002], or the importance of task coverage [Lindgaard and
Chattratichart 2007]). But for situations when study scale is a limitation, we hope
that our approach is of interest.

In some cases, backtracking analysis might be used as a cost-effective replace-
ment for traditional laboratory usability testing. The results from our initial
cost-effectiveness study were promising, with the major caveat that backtracking
analysis may be limited in the types of problems that it can identify. If the study is not
concerned with identifying problems related to feature discoverability and/or strategy
formation, then backtracking analysis could be a good choice.

Backtracking analysis may also be useful in combination with other techniques. To
identify a wider variety of usability problems, one might combine backtracking anal-
ysis with a separate small scale traditional laboratory study targeted at identifying
problems with feature discoverability and/or strategy formation. Employing a hybrid
study of this form would be lower cost than a similarly-sized traditional study, and
would likely prove more effective. One might also consider combining backtracking
analysis with other methods like the user-reported critical incident technique.

7.3 Directions for Future Work

The results of this study have also suggested a number of open research questions.

— Is it possible to adapt backtracking analysis for use with less constrained tasks? How
well would backtracking analysis work when task goals are less clearly specified?
Backtracking commands can also be used to explore design alternatives; if a de-
sign change is undesirable, one can backtrack to reverse the change and implement
a different solution. Will this substantially decrease the cost effectiveness of the
technique, since unconstrained goals might induce more false alarms?

— Is it possible to adapt backtracking analysis for use outside of the laboratory? How
would we adapt the paired-participant retrospective technique to work in a remote
setting? Is it possible to extend backtracking analysis to study users “in the wild,”
who are not even aware that they are being studied? If so, how can we address the
privacy concerns that would emerge? And, how would we capture sufficient context
to interpret the event data?

— Is it possible to increase the proportion of time on task without compromising the
quality of the data? In the current version of backtracking analysis, participants
spend only about 25% of the time attempting usability testing tasks. A longer time
on task might allow the evaluator to include several different testing tasks, increas-
ing the comprehensiveness of the evaluation. Increasing task time would require
decreasing the length of the retrospective sessions. Is it possible to capture suffi-
cient context without pairing participants?

— How well does backtracking analysis generalize to other application domains? Would
backtracking analysis be useful for evaluating tasks such as word-processing or web
search?

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:38 D. Akers et al.

— What other automatic indicators of usability problems might be useful? Possibil-
ities include detection of repeated patterns of events [Siochi and Ehrich 1991],
application-specific events that indicate difficulty (e.g., accidental suicides in a game
[Thompson 2007]), or even behavioral or physiological indicators [Andreassi 2006;
Tullis and Albert 2008]. Such automatic indicators might enable identification of a
wider variety of problems, including those that backtracking analysis fails to detect.

In the long term, we also plan to explore other ways to reduce the costs of usability
evaluation. What if one could automatically detect false alarms, and automatically
group similar problem instances? The first is a classification problem, and the second
is a clustering problem; it may be possible to pose each of these as a machine learning
problem (perhaps using the data from studies like ours to train the models). If we could
succeed in solving these problems, we could begin to define processes for automated
usability evaluation in which the cost becomes a function of the number of problems
in the interface, instead of a function of the number of participants. This is a vision
worth pursuing.

REFERENCES
AKERS, D. L. 2010. Backtracking events as indicators of software usability problems. PhD Dissertation,

Stanford University.
AKERS, D., SIMPSON, M., JEFFRIES, R., AND WINOGRAD, T. 2009. Undo and erase events as indicators

of usability problems. In Proceedings of the Conference on Human Factors in Computing Systems. ACM
Press, 659–668.

ANDRE, T. S., HARTSON, H. R., BELZ, S. M., AND MCCREARY, F. A. 2001. The user action framework: A
reliable foundation for usability engineering support tools. Int. J. Hum.-Comput. Stud. 54, 1, 107–136.

ANDREASSI, J. L. 2006. Psychophysiology: Human Behavior and Physiological Response. Lawrence Erlbaum
Associates.

BIAS, R. 1991. Interface-Walkthroughs: Efficient collaborative testing. IEEE Softw. 8, 5, 94–95.
BRUUN, A., GULL, P., HOFMEISTER, L., AND STAGE, J. 2009. Let your users do the testing: A comparison

of three remote asynchronous usability testing methods. In Proceedings of the Conference on Human
Factors in Computing Systems. ACM Press, 1619–1628.

CAPRA, M. 2002. Contemporaneous versus retrospective user-reported critical incidents in usability evalu-
ation. In Proceedings of the Human Factors and Ergonomics Society. 1973–1977.

CARD, S. K., MORAN, T. P., AND NEWELL, A. 1983. The Psychology of Human-Computer Interaction.
Erlbaum.

CRONBACH, L. J. 1951. Coefficient alpha and the internal structure of tests. Psychometrika 16, 3, 297–334.
DEL GALDO, E. M., WILLIGES, B. H., AND WIXON, D. R. 1986. An evaluation of critical incidents for

software documentation design. In Proceedings of the Human Factors Society. 19–23.
DUMAS, J. AND REDISH, J. 1999. A Practical Guide to Usability Testing. Intellect Books.
DUMAS, J. S. AND LORING, B. A. 2008. Moderating Usability Tests: Principles and Practice for Interacting.

Morgan Kaufmann.
FAULKNER, A. AND WALTHERS VON ALTEN, J. 2007. Classroom in a Book: Adobe Photoshop CS3. Adobe

Press.
FLANAGAN, J. C. 1954. The critical incident technique. Psych. Rev. 54, 4, 327–358.
GRAY, W. D. 1997. Who ya gonna call! You’re on your own [software usability design]. IEEE Softw. 14, 4,

26–28.
GUAN, Z., LEE, S., CUDDIHY, E., AND RAMEY, J. 2006. The validity of the stimulated retrospective think-

aloud method as measured by eye tracking. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 1253–1262.

HACKMAN, G. S. AND BIERS, D. W. 1992. Team usability testing: Are two heads better than one? In Pro-
ceedings of the 36th Annual Meeting of the Human Factors Society. 1205–1209.

HARTSON, H. R. AND CASTILLO, J. C. 1998. Remote evaluation for post-deployment usability improvement.
In Proceedings of the International Conference on Advanced Visual Interfaces.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

Backtracking Events as Indicators of Usability Problems in Creation-Oriented Applications 16:39

HARTSON, H. R. CASTILLO, J. C., KELSO, J., AND NEALE, W. C. 1996. Remote evaluation: The network as
an extension of the usability laboratory. In Proceedings of the Conference on Human Factors in Comput-
ing Systems. ACM Press, 228–235.

HARTSON, R., ANDRE, T. S., AND WILLIGES, R. C. 2000. Criteria for evaluating usability evaluation meth-
ods. Int. J. Hom. Comp. Interact. 13, 4, 373–410.

HILBERT, D. M. AND REDMILES, D. F. 2000. Extracting usability information from user interface events.
ACM Comput. Surv. 32, 4, 384–421.

HORNBÆK, K. AND FRØKJÆR, E. 2008. Comparison of techniques for matching of usability problem de-
scriptions. Interact. Comput. 20, 6, 505–514.

HOWARTH, J., ANDRE, T. S., AND HARTSON, R. 2007. A structured process for transforming usability data
into usability information. J. Usability Stud. 3, 1, 7–23.

IVORY, M. Y. AND HEARST, M. A. 2001. The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33, 4, 470–516.

JACOBSEN, N. E., HERTZUM, M., AND JOHN, B. E. 1998. The evaluator effect in usability tests. In Proceed-
ings of the Conference on Human Factors in Computing Systems. ACM Press, 255–256.

JOHN, B. E. AND MARKS, S. J. 1997. Tracking the effectiveness of usability evaluation methods. Behav. Inf.
Techn. 16, 4, 188–202.

JOHN, B. E., PREVAS, K., SALVUCCI, D. D., AND KOEDINGER, K. 2004. Predictive human performance
modeling made easy. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. 455–462.

KARAT, C.-M., CAMPBELL, R., AND FIEGEL, T. 1992. Comparison of empirical testing and walkthrough
methods in user interface evaluation. In Proceedings of the Conference on Human Factors in Computing
Systems. ACM, 397–404.

KOENEMANN-BELLIVEAU, J., CARROLL, J. M., ROSSON, M. B., AND SINGLEY, M. K. 1994. Comparative
usability evaluation: Critical incidents and critical threads. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 245–251.

KOHAVI, R., HENNE, R. M., AND SOMMERFIELD, D. 2007. Practical guide to controlled experiments on the
web: Listen to your customers not to the hippo. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 959–967.

LAW, E. L.-C. AND HVANNBERG, E. T. 2004. Analysis of combinatorial user effect in international usability
tests. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 9–16.

LEWIS, J. R. 1994. Sample sizes for usability studies: Additional considerations. Human Factors 36, 2,
368–378.

LINDGAARD, G. AND CHATTRATICHART, J. 2007. Usability testing: what have we overlooked? In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. 1415–1424.

MEDLOCK, M. C., WIXON, D., TERRANO, M., ROMERO, R., AND FULTON, B. 2002. Using the RITE method
to improve products: A definition and a case study. In Proceedings of the Usability Professionals Associ-
ation Conference.

NICHOLS, D. M., AND MCKAY, D. 2003. Participatory Usability: supporting proactive users. In Proceedings
of the 4th Annual Conference of the ACM Special Interest Group on Computer Human Interaction: New
Zealand Chapter (CHINZ’03). ACM SIGCHI, 63–68.

NIELSEN, J. AND LANDAUER, T. K. 1993. A mathematical model of the finding of usability problems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, 206–213.

NIELSEN, J. AND MOLICH, R. 1990. Heuristic evaluation of user interfaces. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 249–256.

NISBETT, R. E. AND WILSON, T. D. 1977. Telling more than we can know: Verbal reports on mental pro-
cesses. Psych. Rev. 84, 231–259.

NORMAN, D. A. 1986. Cognitive engineering. In User Centered System Design, D. A. Norman and S. W.
Draper Eds., Lawrence Erlbaum Associates, 31–61.

O’MALLEY, C. E., DRAPER, S. W., AND RILEY, M. S. 1984. Constructive interaction: A method for studying
human-computer-human interaction. In Proceedings of IFIP Interact. 84, 269–274.

RAUTERBERG, M. 1995. From novice to expert decision behaviour: A qualitative modelling approach with
Petri nets. Adv. Human Factors Ergonomics 20, 449–449.

ROBERTSON, G., CARD, S. K., AND MACKINLAY, J. D. 1989. The cognitive coprocessor architecture for
interactive user interfaces. In Proceedings of the 2nd Annual ACM SIGGRAPH Symposium on User
Interface Software and Technology. ACM, 10–18.

RUBIN, J. AND CHISNELL, D. 2008. Handbook of Usability Testing. 2nd Ed. Wiley.

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

16:40 D. Akers et al.

SIOCHI, A. C. AND EHRICH, R. W. 1991. Computer analysis of user interfaces based on repetition in tran-
scripts of user sessions. ACM Trans. Inf. Syst. 9, 4, 309–335.

SKOV, M. B. AND STAGE, J. 2005. Supporting problem identification in usability evaluations. In Proceedings
of CHI Australia. ACM Press, 1–9.

SPOOL, J. AND SCHROEDER, W. 2001. Testing web sites: Five users is nowhere near enough. In Extended
Abstracts on Human Factors in Computing Systems (CHI’01). ACM, 285–286.

SWALLOW, J., HAMELUCK, D., AND CAREY, T. 1997. User Interface instrumentation for usability analysis:
A case study. In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research.

THOMPSON, C. 2007. Halo 3: How Microsoft Labs invented a new science of play. Wired 15, 9.
TULLIS, T. AND ALBERT, B. 2008. Measuring the User Experience: Collecting, Analyzing, and Presenting

Usability Metrics. Morgan Kaufmann.
VAN DEN HAAK, M. J. AND DE JONG, M. D. T. 2003. Exploring two methods of usability testing: concur-

rent versus retrospective think-aloud protocols. In Proceedings of the IEEE International Professional
Communication Conference.

VIRZI, R. A. 1992. Refining the test phase of usability evaluation: How many subjects is enough? Hum.
Factors 34, 4, 457–468.

WHARTON, C., BRADFORD, J., JEFFRIES, R., AND FRANZKE, M. 1992. Applying cognitive walkthroughs to
more complex user interfaces: Experiences, issues, and recommendations. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 381–388.

WINOGRAD, T. AND FLORES, F. 1985. Understanding Computers and Cognition. Ablex.
WIXON, D. 2003. Evaluating usability methods: Why the current literature fails the practitioner. Interac-

tions 10, 4, 28–34.

Received July 2011, revised December 2011, accepted March 2012

ACM Transactions on Computer-Human Interaction, Vol. 19, No. 2, Article 16, Publication date: July 2012.

