
Uncertainty in Aggregate Estimates from Sampled Distributed Traces

Nate Coehlo, Arif Merchant, Murray Stokely

{natec,aamerchant,mstokely}@google.com
Google, Inc.

Abstract

Tracing mechanisms in distributed systems give impor-

tant insight into system properties and are usually sam-

pled to control overhead. At Google, Dapper [8] is

the always-on system for distributed tracing and perfor-

mance analysis, and it samples fractions of all RPC traf-

fic. Due to difficult implementation, excessive data vol-

ume, or a lack of perfect foresight, there are times when

system quantities of interest have not been measured di-

rectly, and Dapper samples can be aggregated to esti-

mate those quantities in the short or long term. Here we

find unbiased variance estimates of linear statistics over

RPCs, taking into account all layers of sampling that oc-

cur in Dapper, and allowing us to quantify the sampling

uncertainty in the aggregate estimates. We apply this

methodology to the problem of assigning jobs and data

to Google datacenters, using estimates of the resulting

cross-datacenter traffic as an optimization criterion, and

also to the detection of change points in access patterns

to certain data partitions.

1 Introduction

Estimates of aggregated system metrics are needed in

large distributed computing environments for many uses:

predicting the effects of configuration changes, capacity

planning, performance debugging, change point detec-

tion, and simulations of proposed policy changes. For

example, in a multi-datacenter environment, it may be

desirable to periodically “repack” users and application

data into different datacenters. To evaluate the effects

of different rearrangements of data, it is necessary to es-

timate several aggregates, such as the cross-datacenter

traffic created and the aggregate CPU and networking

demands of the applications placed in each datacenter.

Most organizations deploy telemetry systems [4, 5] to

record system metrics of interest but, quite often, we find

that some of the metrics required for a particular evalu-

ation were not recorded. Sometimes this occurs because

the number of possible metrics is too large for the prob-

lem of interest, other times it can be due to difficult im-

plementation and a lack of perfect foresight.

At Google, we deploy additionally a ubiquitous trac-

ing infrastructure called Dapper [8] that is capable of fol-

lowing distributed control paths. Most of Google’s inter-

process communication is based on RPCs and Dapper

samples a small fraction of those RPCs to limit overhead.

These traces often include detailed annotations created

by the application developers. While the primary pur-

pose of this infrastructure is to debug problems in the

distributed system, it can also be used for other purposes

like monitoring the network usage of services and the

resource consumption of users in our shared storage sys-

tems.

From any system with sampling, such as Dapper,

Fay [7], or the Dapper-inspired Zipkin [1], it is straight-

forward to get an estimate for aggregate quantities. How-

ever, assessing the uncertainty of an estimate is more in-

volved, and the contribution of this work is finding co-

variance estimates for aggregate metrics from Dapper,

based on the properties of Dapper sampling mechanisms.

Given these covariance estimates, one can attach confi-

dence intervals to the aggregate metrics and perform the

associated hypothesis tests.

In Section 2 we summarize the relevant statistical

properties of sampling in Dapper. Section 3 gives the

estimation framework and algorithm for covariance es-

timation, while the proof appears in Appendix A. Sec-

tion 4 gives two case studies of statistical analysis about

distributed systems using this framework, and Section 5

has concluding remarks.

2 Background on RPC Sampling

Estimating an aggregate quantity from a sampled system

is simple; for each measured RPC you have a result and a

sampling probability, so summing those results weighted



by the inverse of their sampling probability will give an

unbiased estimate of the quantity of interest. To calculate

the uncertainty (variance) of such an estimate, however,

it requires knowledge of the joint sampling probability of

any two RPCs, so a more detailed understanding of the

sampling mechanism is necessary.

RPCs in distributed systems can be grouped in terms

of an initiator, and we refer to this grouping as a trace.

Each trace at Google is given an identifier (ID), which

is an unsigned 64-bit integer, and all RPCs within a

trace share that one ID. The ID is selected randomly

over the possible values so collecting RPCs when ID <
(264 − 1) ∗ s will induce a sampling probability of s,

which we call the Server Sampling Probability. In

addition, as explained in Section 4.6 of [8], an inde-

pendent sampling stage can occur at some nodes which

reduces the RPCs collected, and we refer to this here

as Downsampling. Downsampling is based on a hash

of the trace ID, and makes the further requirement that

hash(ID) < (264−1)∗d, for downsampling factor d. In

effect, each trace ID can be mapped to a point (s′,d′)
on the the unit square, the distribution of those mapped

points is uniform, and an RPC within a trace is included

if that node has s′ ≤ s and d′ ≤ d. Figure 1 shows

an example trace and lists the possible RPCs returned

based on the value (s′,d′) drawn. Traces with several

sampling properties often arise when the execution path

spans many layers of infrastructure, since different lev-

els may have been configured differently by developers,

and since downsampling based on system pressure may

be present in some places and not others.

3 Estimation Results and Algorithms

Suppose we want to estimate a system quantity of inter-

est, θ , which can be represented as a sum of a function

of the RPCs in a distributed system. Given a sample of

RPCs available as described in the previous section, we

find θ̂ , an unbiased estimate of θ , and Σ̂, and unbiased

estimate of the covariance matrix of θ̂ , where the later

can be used to describe the uncertainty in our estimates

of θ . The unbiasedness of θ̂ and Σ̂ do not require any

assumptions on the distribution of RPCs or on the server

and downsampling factors. In detail:

• We represent RPC i by its trace ID, server and

downsampling factors, and let λ represent all other

information: RPCi = (IDi,si,di,λi).

• We apply a function f : λ −→ x to get (IDi,si,di,xi)

• Letting Ω represent all RPCs during our time period

of interest, we have θ = ∑i∈Ω xi.

• Letting S be the sample returned by Dapper, and

1i be the boolean random variable representing

User

Front

End

Mid

Tier

Mid

Tier

Backend

BackendBackend

A

1/6

1

B

1/6 

1

RPC

s

d

C

1/6

1

F

1/6

1/2

E

1/6 

1

D

1/3

1

Figure 1: Trace representation, where different subsets

of RPCs A-F will be returned depending on the value of

trace ID → (s′,d′). If s′ > 1/3 then none are returned,

and if 1/6 < s′ ≤ 1/3 then only D is returned. If s′ ≤ 1/6

and d′ ≤ 1/2 then all RPCs are returned. If s′ ≤ 1/6 and

d′ > 1/2 then all except F are returned.

whether RPCi was included in the sample S, we get

an unbiased estimate of θ from

θ̂ = ∑
i∈S

xi

si ∗di

= ∑
i∈Ω

xi1i

si ∗di

• The algorithm GetSigmaHat below produces Σ̂, an

unbiased estimate of Σ = Cov θ̂ .

In this paper we will use the normal approximation

for inference, θ̂ ∼N (θ , Σ̂), which is a generalization of

normal approximation to the binomial distribution. How-

ever, we believe that the considering the variance adds

substantial value and protection against false positives to

any analysis involving these estimates, even in the case

of small samples sizes with highly variable xi,si,di where

the normal approximation is not ideal.

The remainder of this section provides an outline for

proving Σ̂ is unbiased, gives a simple algorithm, and

finds its complexity. The next section applies these re-

sults to the statistical analysis of real distributed systems.

3.1 Calculation Overview

To find the an unbiased estimate of the population covari-

ance matrix Σ, we first find Σ, then appropriately weight

sample quantities and show the result is unbiased. A de-

tailed calculation is in the Appendix, and there it is di-

vided by these three ideas:

2



1. Within a trace, the boolean random variables 1i and

1 j must be the same if si = s j and di = d j, so we

can aggregate the values of x corresponding to the

same (s,d) tuple to y in our representation of θ̂ and

re-parameterize the problem in terms of the distinct

values of (ID,s,d) and the sums y. This simplifies

proof notation and improves the algorithm perfor-

mance, as discussed in section 3.2.

2. Letting y[ j]i denote component j of y for the (ID, s,

d) tuple i, we have

Σ( j,k) = Cov(θ̂ j, θ̂k) = ∑
i∈Ω

∑
i′∈Ω

x[ j]ix[k]i′

sisi′didi′
Cov(1i,1i′)

so the problem reduces to finding the covariance

between sampling any two tuples (IDi,si,di) and

(IDi′ ,si′ ,di′).

As described in Section 2, the trace ID is mapped

to two independent uniform random variables on

(0,1), which we denote by (Ui,Vi) and assume they

are independent across i. Therefore, if IDi 6= IDi′

then they are independent and the covariance is

zero. If IDi = IDi′ then we must have 1

Cov(1i,1i′) = E(1i1i′)−E(1i)E(1i′)

= (si∧ si′)∗ (di∧di′)− sisi′didi′

3. Finally, since the resulting population covariance

matrix depends on cross terms within the same

trace, weighting sampled cross-terms by their prob-

ability of inclusion, (si∧ si′)∗ (di∧di′), will give an

unbiased estimate.

3.2 Covariance Estimation Algorithm and

Complexity

Algorithm GetSigmaHat returns Σ̂, which is the sum of

the contributions over each trace ID 2:

Algorithm 1 GetSigmaHat

M← a J× J matrix of zeros.

for all ID ∈ S do

M+= ProcessSingleTrace(ID)
end for

return M

While there may be a large number of RPCs within a

trace, the number of distinct (s,d) tuples within a trace

1We use the notation min(a,b) = a∧b and max(a,b) = a∨b.
2We denote the outer product between two vectors as x⊗ y.

Algorithm 2 ProcessSingleTrace

Given a collection of (si,di,xi) corresponding to a

given ID, aggregate data over the unique tuples of

(s,d) to get (sk,dk,yk) where yk = ∑{ j|(s j ,d j)=(sk,dk)}
x j

and we let Kt be the number of distinct tuples resulting

form this aggregation.

M← a J× J matrix of zeros.

for all k ∈ 1 : Kt do

for all k′ ∈ 1 : Kt do

w =
1−max(sk,sk′ )∗max(dk,dk′ )

sksk′dkdk′

M += w∗ (yk⊗ yk′)
end for

end for

return M

is small; across all traces we collected there are less

than 20 distinct combinations. Given Nt RPCs within

a trace and Mt distinct combinations, aggregating in the

first step of ProcessSingleTrace before running the loop

scales as Nt log(Mt)+M2
t ∗J2 rather than N2

t ∗J2. Letting

M = maxMt and T be the number of traces, we sum over

traces for the bound

∑
t

Nt log(Mt)+M2
t ∗ J2 ≤ (∑

t

Nt)log(M)+T ∗M2 ∗ J2

= Nlog(M)+T M2 ∗ J2

Since M is bounded by a small number in practice, we

have linear scaling in the number of RPCs and Traces. In

addition, one could split GetSigmaHat over several ma-

chines, sharding by trace ID, with each returning their

component of the J× J covariance estimate.

4 Case Studies

4.1 Bin Packing and Cross-Datacenter

Reads

Large scale, distributed computing environments may

comprise tens of data centers, tens of thousands of users,

and thousands of applications. The configuration of stor-

age in such environments changes rapidly, as hardware

becomes obsolete, user requirements change, and ap-

plications grow, placing new demands on the hardware.

When new storage capacity is added — for example, by

adding or replacing disks in existing data centers, or by

adding new data centers — we must decide how to re-

arrange the application services, data, and users to take

best advantage of the new hardware.

3



An optimizer who bin-packs the application data and

the users into the data centers will use data from many

sources, may forecast growth rates of some parameters,

and will try to satisfy various constraints. One com-

ponent of such an optimization is to control the num-

ber of cross-datacenter reads that result from the pack-

ing, and simulation of this would require a full record of

all user/application pairs. However, maintaining a com-

plete record of the traffic for each user/application pair is

prohibitively expensive, since there are millions of such

pairs, so we can instead use the Dapper sampled traces

of RPCs to estimate the cross-datacenter traffic for each

scenario.

To illustrate the usefulness of our procedure for com-

paring policies over historical samples, we consider bin-

packing user data in three nearby data centers. There is

considerable work on the subject of file and storage al-

location in the literature [6, 2, 3]. We do not claim to

present optimal or useful bin-packing strategies here, but

we do claim to be able to evaluate the comparative ad-

vantage in terms of cross-datacenter reads.

Data in a storage system is written by some user,

which we call the owner, and is later read by that user,

or potentially by many other users. We decide to pack

data so each owner is only in one data center according

to two strategies.

Strategy 1: basic

From a snapshot of the three cells, we figure out the total

storage, and the percentage that goes to each user by

adding up their contributions over the three cells. Then

we partition the owners by alphabetical order so each

datacenter gets 1
3

of the total data.

Strategy 2: crossterm

This simple policy tries to put most cross user traffic in

the first cell. We define the adjacency between two users

as the estimated number of cross user reads divided by

their combined storage capacity. We then allocate pairs

of owners with the highest adjacency to the first cell until

it reaches 1
3

of the total data, then move on to the next

cell.

4.1.1 Results

We compare the cross datacenter traffic for the two

strategies above applied in simulation to three datacen-

ters that each store several tens of petabytes of data

belonging to over 1000 users. We use data collected

from May 6, 2012 through May 12 to train the policy

crossterm, then we evaluate the performance from pe-

riod from March 25th through June 5th by assuming that

a read by user A is initiated in the datacenter that stores

data for user A. Our collection period from Dapper has

millions of RPCs with a range of sampling probabilities

extending down to 5e−7.

To test whether there is a significant difference be-

tween the resulting cross-datacenter reads, we look at the

difference between the two estimates and form 95% con-

fidence intervals around that difference, noting that when

the interval does not cross zero it corresponds to rejecting

the Null hypothesis that there is no difference between

the strategies 3.

For each day, and for each policy, we get an estimate

of the resulting cross datacenter traffic. To decrease our

vulnerability to setting policy based on sampling aberra-

tions, we test against the Null hypothesis that they both

produce the same number of cross datacenter reads. In

Figure 2 we show these intervals, where the y-axis has

been scaled by the average for basic over the entire test-

ing period; crossterm is significantly better than basic on

every day, and we estimate it does over 20% better.

0%

20%

40%

60%

l

l

l

l

l
l l

l

l

l

l

l

May 25 May 30 Jun 04

Advantage for Crossterm

Figure 2: Estimate difference in number of daily cross

datacenter reads, plus or minus two Standard Errors. The

Y-Axis is normalized by the average number of cross dat-

acenter reads for strategy basic.

4.2 Change Point Detection

It is often useful for a monitoring tool to detect sudden

changes in system behavior, or a spike in resource us-

age, so that corrective action can be taken — whether

by adding resources or by tracking down what caused

the sudden change. In this case, we wanted to monitor

the number of disk seeks to data belonging to a certain

service, and to detect if the number of cache misses in-

creased suddenly due to a workload change. The system

logging available did not break out miss rates per service

at the granularity we needed, but we could estimate the

3Here, the function f : λ → x a 2-vector of booleans indicat-

ing whether that RPC would have caused each strategy to result in

a cross-datacenter read. The advantage for the crossterm strategy

is estimated as θ̂1 − θ̂2, and the corresponding variance estimate is

Σ̂1,1 + Σ̂2,2−2Σ̂1,2.

4



miss rates based on Dapper traces. However, we only

want to detect real changes, and hoped to have few false

positives induced by sampling uncertainty.

One alternative to alerting based on relative differ-

ences it to alert only if the difference is significantly dif-

ferent from zero. The problem with this approach is that

some services have higher sampling rates, and given a

high sampling rate, small true differences will be flagged

as significant. Since we expect that there to be some true

variation from day to day, we instead flag if we reject the

null that the number of seeks increased by less than 10%.

In particular, let µt be the number of seeks on day t,

and µ̂t be our estimated number 4 of seeks for day t, and

H0 :
µt

µt−1
≤ 1.1

z =
(

µ̂t −1.1µ̂t−1

)

∗
(

σ̂2
t +1.12σ̂2

t−1

)− 1
2

We test against the one sided null H0 by rejecting when

z > 1.64, and since this test has level 0.05 when
µt

µt−1
=

1.1 5, it is even more conservative when
µt

µt−1
< 1.1.

4.2.1 Results

l l

l

l

l
l l

l

l

l

l
l

l

Jun 21 Jun 25 Jun 29 Jul 03

0.2

0.5

1.0

2.0

5.0

10.0

20.0

50.0

100.0

200.0

a
c
c
e
s
s
e
s

−5

0

5

10

z
−

s
c
o
re

l accesses

z−score

Figure 3: Cache Misses to a particular partition of data

in blue, where the value on the first day is normalized to

1. Red shows the z-scores corresponding to the test that

the seeks increased less than 10%, and extending above

the red line corresponds to rejecting that hypothesis.

In Figures 3 and 4, we display normalized accesses in

blue, and the corresponding z-score for a change from the

previous day in red. The horizontal red line corresponds

4For a given data partition, D, and day t, f : λ → x would return a

binary indicating whether that RPC was a disk seek.
5Here we get independence by ignoring the rare traces that span

across midnight

l

ll
ll

l

l

l
l

l

ll
l

l

l

l

l

l

l

ll

l

l

l
l

l

May 21 Jun 04

5e−01
1e+00

5e+00
1e+01

5e+01
1e+02

5e+02
1e+03

a
c
c
e
s
s
e
s

−4

−2

0

2

4

z
−

s
c
o
re

l accesses

z−score

Figure 4: Same as Figure 3, but for a different data parti-

tion.

to a level 0.05 normal test, and we define our detection

algorithm as extending above that line.

In Figure 3, we see that the cache misses started in-

creasing on June 30th, then ended up 100 times higher

on July 1st - 3rd than is was in late June. Our z-score

detection algorithm flags this change in behavior on June

30th and July 1st, and this change ended up being a per-

sistent change in behavior of order 100×.

A spike much higher than 100× occurred on June 3rd

for the data partition in Figure 4, but this estimate had

such high uncertainty that the z-score was moderate, and

the change was not flagged. Unlike the case in Figure 3,

the higher level did not persist. It is possible that data

partitions could see real usage spikes on one day that

later disappear and it may be useful to know about those,

but after studying the variance, we find that this spike

does not present strong evidence of being more than a

sampling variation.

5 Conclusion

Many interesting system quantities can be represented as

a sum of a vector-valued function over RPCs, and we

present a method to obtain estimates of these quantities

and their uncertainty from Dapper. At Google, these

sampled distributed traces are ubiquitous, and are often

the only data source available for some system questions

that arise. Although arbitrary traces may have complex

sampling structures, we find an unbiased covariance esti-

mate that works in all cases and can be easily computed.

We demonstrate how this methodology can be used eval-

uate to the effectiveness of different bin-packing strate-

gies on Google data centers when evaluating over an ex-

tended period, and also for detecting change points in

quantities that are not directly logged.

5



A Appendix

Part 1: Notation and Aggregate Representation

We represent all RPCs in our time window of interest,

Ω, as a double subscript (i, j), which represents the jth

RPC corresponding to trace ID i. This allows us to write

θ =
N

∑
i=1

Ji

∑
j=1

x(i, j)

Letting S be the sample returned by Dapper, s(i, j) and

d(i, j) the server sampling and downsampling probabili-

ties for x(i, j), then our estimate can be re-written as

θ̂ = ∑
(i, j)∈S

x(i, j)

s(i, j) ∗d(i, j)

It is useful to re-parametrize the indices (i, j) in terms

of the distinct server sampling and downsampling fac-

tors:

0 < s1 < s2 < ... < sM ≤ 1

0 < d1 < d2 < ... < dL ≤ 1

We then define the (possible empty) index sets as

Ω(i,m,l)= {(i
′, j′)∈Ω | i′= i, s(i′, j′)= sm d(i′, j′)= dl}

the (possibly zero) trace-level sums by

y(i,m,l) = ∑
(i, j)∈Ω(i,m,l)

x(i, j)

We define weighted boolean variables

W(i,m,l) =
1(i,m,l)∈S

smdl

So that

T =
N

∑
i=1

M

∑
m=1

L

∑
l=1

y(i,m,l)W(i,m,l)

Part 2: The Population Covariance Matrix

Before expanding Cov(T ), we note that:

E(W(i,m,l)) = 1

Cov(W(i,m,l),W(i′,m′,l′)) = 0 If i 6= i′

And for i = i′, we define λ(m,l,m′,l′) by

Cov(W(i,m,l),W(i,m′,l′)) =

P

(

(i,m, l),(i,m′, l′) ∈ S

)

smsm′dldl′
−1

=
(sm∧ sm′)∗ (dl ∧dl′)

smsm′dldl′
−1

=
1− (sm∨ sm′)∗ (dl ∨dl′)

(sm∨ sm′)∗ (dl ∨dl′)

≡ λ(m,l,m′,l′)

so

Cov(y(i,m,l)W(i,m,l),y(i,m′,l′)W(i,m′,l′)) =
(

y(i,m,l)⊗ y(i,m′,l′)
)

λ(m,l,m′,l′)

Where ⊗ is the outer product resulting in a P× P

matrix.

Putting it together, we have

Σ = Cov(T )

= ∑
i

∑
(m,m′,l,l′)

(

y(i,m,l)⊗ y(i,m′,l′)
)

λ(m,l,m′,l′)

Part 3: Unbiased estimate of Σ

Since

E
[ 1(i,m,l)∈S1(i′,m′,l′)∈S

(sm∧ sm′)∗ (dl ∧dl′)

]

= 1

If follow that an unbiased estimate for y(i,m,l)⊗y(i,m′,l′)
is given by

E
[y(i,m,l)⊗ y(i,m′,l′)1(i,m,l)∈S1(i′,m′,l′)∈S

(sm∧ sm′)∗ (dl ∧dl′)

]

So an unbiased estimate of Σ is given by

Σ̂ = ∑
i∈S

∑
(m,m′,l,l′)∈S

λ(m,l,m′,l′)

(

y(i,m,l)⊗ y(i,m′,l′)
)

(sm∧ sm′)∗ (dl ∧dl′)

= ∑
(m,m′,l,l′)

1− (sm∨ sm′)∗ (dl ∨dl′)

smsm′dldl′
∑
i∈S

y(i,m,l)⊗ y(i,m′,l′)

Equivalence to GetSigmaHat follows since ProcessS-

ingleTrace produces the above result for a single trace.

A simple case occurs if you are interested in a scalar and

each trace shares the same server sampling and down-

sampling probability. Letting pi = si ∗di, the result sim-

plifies to

Σ = σ2 = ∑
i

1− pi

pi

y2
i

Σ̂ = σ̂2 = ∑
i∈S

1− pi

p2
i

y2
i

6



References

[1] Available 20120720: http://engineering.twitter.com/

2012/06/distributed-systems-tracing-with-zipkin.

html.

[2] ALVAREZ, G. A., BOROWSKY, E., GO, S., ROMER, T. H.,

BECKER-SZENDY, R., GOLDING, R., MERCHANT, A., SPASO-

JEVIC, M., VEITCH, A., AND WILKES, J. Minerva: An auto-

mated resource provisioning tool for large-scale storage systems.

ACM Trans. Comput. Syst. 19, 4 (Nov. 2001), 483–518.

[3] ANDERSON, E., SPENCE, S., SWAMINATHAN, R., KALLA-

HALLA, M., AND WANG, Q. Quickly finding near-optimal stor-

age designs. ACM Trans. Comput. Syst. 23, 4 (Nov. 2005), 337–

374.

[4] BARTH, W. Nagios: System and Network Monitoring. No Starch

Press, San Francisco, CA, USA, 2006.

[5] BERTOLINO, A., CALABRÒ, A., LONETTI, F., AND SABETTA,

A. Glimpse: a generic and flexible monitoring infrastructure. In

Proceedings of the 13th European Workshop on Dependable Com-

puting (New York, NY, USA, 2011), EWDC ’11, ACM, pp. 73–78.

[6] DOWDY, L. W., AND FOSTER, D. V. Comparative models of the

file assignment problem. ACM Comput. Surv. 14, 2 (June 1982),

287–313.

[7] ERLINGSSON, U., PEINADO, M., PETER, S., AND BUDIU, M.

Fay: extensible distributed tracing from kernels to clusters. In

Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (New York, NY, USA, 2011), SOSP ’11, ACM,

pp. 311–326.

[8] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M., STEPHEN-

SON, P., PLAKAL, M., BEAVER, D., JASPAN, S., AND

SHANBHAG, C. Dapper, a large-scale distributed systems tracing

infrastructure. Tech. rep., Google, Inc., 2010.

7

http://engineering.twitter.com/2012/06/distributed-systems-tracing-with-zipkin.html
http://engineering.twitter.com/2012/06/distributed-systems-tracing-with-zipkin.html
http://engineering.twitter.com/2012/06/distributed-systems-tracing-with-zipkin.html

	Introduction
	Background on RPC Sampling
	Estimation Results and Algorithms
	Calculation Overview
	Covariance Estimation Algorithm and Complexity

	Case Studies
	Bin Packing and Cross-Datacenter Reads
	Results

	Change Point Detection
	Results


	Conclusion
	Appendix

