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Abstract—The online matching problem has received sig-
nificant attention in recent years because of its connections
to allocation problems in Internet advertising, crowd-sourcing,
etc. In these real-world applications, the typical goal is not to
maximize the number of allocations; rather it is to maximize
the number of “successful” allocations, where success of an
allocation is governed by a stochastic process which follows
the allocation. To address such applications, we propose and
study the online matching problem with stochastic rewards
(called the ONLINE STOCHASTIC MATCHING problem) in this
paper. Our problem also has close connections to the existing
literature on stochastic packing problems; in fact, our work
initiates the study of online stochastic packing problems.

We give a deterministic algorithm for the ONLINE STOCHAS-
TIC MATCHING problem whose competitive ratio converges to
(approximately) 0.567 for uniform and vanishing probabilities.
We also give a randomized algorithm which outperforms the
deterministic algorithm for higher probabilities. Finally, we
complement our algorithms by giving an upper bound on the
competitive ratio of any algorithm for this problem. This result
shows that the best achievable competitive ratio for the ONLINE
STOCHASTIC MATCHING problem is provably worse than that
for the (non-stochastic) online matching problem.

I. INTRODUCTION

The online matching problem has gained considerable
attention over the last few years, particularly because of
its connections to Internet Advertising. In this problem
(introduced in a celebrated paper of Karp, Vazirani, and
Vazirani [20]), the input comprises a bipartite graph G =
(U ∪ V,E), where the vertices in U (advertisers) are given
offline, and a new vertex v ∈ V (ad slot) and the set of
edges incident on it are revealed in each online step. The
algorithm can either match v to one of its available (i.e.
currently unmatched) neighbors in U or not match v at all,
with the overall goal of maximizing the number of matched
pairs. This problem applies to other online settings as well,
e.g. in matching tasks to users in crowd-sourcing (see e.g.
[15], [19]). However, in many of these applications, the real
objective is not the number of matched edges, rather it is the
number of “successful matches”. For example, the dominant
revenue model in Internet advertising is that of pay-per-click,
i.e. the advertiser pays only if the user clicks the ad. While
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the ad system has an estimate (called the click-through-rate)
of the probability that an ad will be clicked if shown in the
current ad slot, the actual clicking of the ad is governed by a
stochastic process that comes after the ad has been shown to
the user. Similarly, a crowd-sourcing system has an estimate
of the probability that a user will successfully complete a
job, but the actual completion is governed by a stochastic
process that comes after the task has been allocated. This
motivates us to study the online matching problem with
stochastic rewards (we call it the ONLINE STOCHASTIC
MATCHING problem and formally define it below). While
a rich body of work exists on multiple variants of the online
matching problem, we are not aware of any previous attempt
to study this problem in the presence of stochastic rewards.

From a modeling standpoint, our problem has close con-
nections to the class of stochastic packing problems that has
received significant attention in recent years. This area of
research was initiated by Dean, Goemans, and Vondrák [9]
who defined the stochastic knapsack problem and studied it
from an approximation algorithms perspective. Since then,
a series of papers have considered a variety of optimization
problems in this framework, including the knapsack prob-
lem [14], [4], variants of the matching problem on graphs
and hypergraphs [8], budgeted learning and multi-armed
bandit problems (see e.g. [13], [14]), etc. This setting can be
abstractly defined as follows: At the outset, the algorithm is
presented with a set of options and probability distributions
for the costs and rewards associated with each option. At
each step, the algorithm must choose one of the options,
after which the costs and rewards of the chosen option are
drawn from their respective distributions. The overall goal
of the algorithm is to maximize the rewards while obeying
the packing constraints on the costs. Clearly, the ONLINE
STOCHASTIC MATCHING problem fits this general frame-
work. However, previous work in this class of problems
has focused on offline problems, i.e. the distribution of the
input is given at the outset to the algorithm. Note that in the
ONLINE STOCHASTIC MATCHING problem, not only are the
rewards stochastic, but the distribution of the input is also
not known in advance, rather it arrives online. Therefore,
the ONLINE STOCHASTIC MATCHING problem belongs to
a broader class of online stochastic packing problems and
we hope our work will lead to further investigation in this



domain.
We are now ready to formally define the ONLINE

STOCHASTIC MATCHING problem.
The ONLINE STOCHASTIC MATCHING Problem. In the
online matching problem with stochastic rewards, every edge
(u, v) also has an associated probability of success puv .
When a new vertex v ∈ V arrives online, the algorithm
either chooses not to assign it at all, or assigns it to one of its
neighbors (these are the available options). If v is assigned
to u ∈ U using the edge (u, v), an independent random
coin is tossed and the edge (u, v) becomes a successful
assignment with probability puv . In this case, we say that
u was successful and remove it from the set of available
vertices. On the other hand, if the assignment (u, v) is not
successful, u remains available and a neighbor of u that
arrives later in the online order can be assigned to u (but
v cannot be assigned in the future). The overall objective
is to maximize the expected number of successful vertices
u ∈ U , or equivalently, the expected number of successful
assignments.

Optimal solution and Competitive Ratio. To quantify algo-
rithmic performance for the ONLINE STOCHASTIC MATCH-
ING problem, we need to define an optimum (henceforth
called OPT ) that we can compare against. Our goal is to
study the effect of both “online” input and “stochastic”
rewards on the bipartite matching problem. This motivates
us to introduce an offline, non-stochastic version of the
ONLINE STOCHASTIC MATCHING problem where the graph
is known beforehand, and the reward on edge (u, v) is
(deterministically) puv (i.e. equal to its expectation); this
corresponds to the well-studied BUDGETED ALLOCATION
problem [24], [6], [1].
The BUDGETED ALLOCATION problem. Let G = (U ∪
V,E) be a bipartite graph where edge (u, v) has weight puv .
For every vertex v ∈ V , we assign it to one its neighbors
u ∈ U using edge (u, v). The load Lu on a vertex u ∈ U
is defined as the sum of weights of assigned edges incident
on u. The objective is to maximize

∑
u∈U min(Lu, 1).

For technical reasons, we allow fractional solutions, i.e.
vertex v ∈ V can be assigned to its neighbors u ∈ U
with fractions xuv subject to

∑
u∈U xuv ≤ 1; then Lu =∑

u∈U xuvpuv . For any instance of the ONLINE STOCHAS-
TIC MATCHING problem, we define OPT to be the optimum
fractional solution for the corresponding BUDGETED ALLO-
CATION problem. The next lemma claims that the value of
OPT is at least the expected number of successes obtained
by any ONLINE STOCHASTIC MATCHING algorithm.

Lemma 1. For any instance of the ONLINE STOCHASTIC
MATCHING problem, the expected number of successes
produced by any (offline or online) algorithm is less than
or equal to the fractional optimum for the corresponding
instance of the BUDGETED ALLOCATION problem.

Proof: Suppose the ONLINE STOCHASTIC MATCHING
algorithm assigns vertex v ∈ V to a neighbor u with
probability quv . Then, the probability of success of u is
at most min(

∑
v quvpuv, 1). A fractional solution to the

corresponding instance of the BUDGETED ALLOCATION
problem where quv fraction of v is assigned to u has an
objective of min(

∑
v quvpuv, 1) at u, thereby proving the

lemma.
The competitive ratio of an ONLINE STOCHASTIC

MATCHING algorithm is now defined as the worst-case ratio
(over all input instances) between the expected number
of successful vertices u ∈ U in the algorithmic solution
and OPT . Note that the choice of OPT and competitive
ratio is consistent with the standard definition in the non-
stochastic case, which is a special case of our problem (when
puv = 1, ∀(u, v) ∈ E).

Our definition of OPT captures both the online and the
stochastic aspect of the problem, since it knows the entire
graph, and is not subject to stochastic rewards. We briefly
discuss other options for the optimum benchmark.
(A) Since the edge probabilities define an input distribution
over graphs, one option is to define OPT as the expectation
over the size of maximum matchings in these graphs. How-
ever, consider an instance where V = {v}, |U | = n , and
puv = 1/n for all u ∈ U . Any algorithm assigns v to some
vertex u ∈ U and achieves expected success of 1/n whereas
OPT = 1− (1− 1/n)n ≥ 1− 1/e. The primary shortcoming
of this definition is that the optimal solution is informed
about the success/failure of every edge while the algorithm,
even after it terminates, is provided such information only
for edges it used for assignment.
(B) This deficiency can be overcome by modifying OPT
to represent the expected number of successes of the best
assignment. (Recall that given an assignment, the probability
of success of a vertex u ∈ U is the probability that at
least one assignment made to u is successful.) However,
we have now made OPT too weak — unlike an adaptive
online algorithm, it does not know the outcome of previous
assignments before deciding on a new assignment (see more
discussion on adaptive and non-adaptive online algorithms
later in this section). For example, consider a complete
bipartite graph where U = {u1, u2}, |V | = 2n, and
puiv = 1/n for each v ∈ V, i = 1, 2. An algorithm that
assigns the current vertex v ∈ V to any of its available
neighbors achieves 2(1 − 2/e2) successes in expectation
whereas OPT = 2(1− 1/e) which is less.
(C) One way to introduce adaptivity is by modifying this to
now represent the maximum expected number of successes
where the optimal algorithm makes assignments for vertices
in V in the online order, and is provided the outcome of its
previous assignments in addition to the entire graph. While
this definition ensures that the expected number of successes
for any online algorithm is at most OPT , it captures only
the online aspect of the problem (and not the stochastic



aspect). If one further removes the offline knowledge, then
it degenerates to the best instance-wise online policy, which
is inconsistent with the standard notion of competitive ratio,
when puv = 1.

A. Our Contributions

In this paper we consider the special case of equal prob-
abilities, i.e. puv = p for all (u, v) ∈ E. Without loss of
generality, we restrict to algorithms that always assign a
vertex v ∈ V if there is at least one available neighbor;
we call such an algorithm opportunistic. We show that
every opportunistic algorithm has a competitive ratio of
at least 1/2. It can be shown that the GREEDY algorithm,
which assigns the arriving vertex to an arbitrary available
neighbor, does no better than 1/2. This is true even for
a simple random algorithm which chooses uniformly at
random between available neighbors. Our first result is to
provide a deterministic algorithm which improves over this
baseline of 1/2.

Theorem 1. There is a deterministic algorithm (which we
call the STOCHASTIC BALANCE algorithm) for the ONLINE
STOCHASTIC MATCHING problem with equal probabilities
(i.e. puv = p for all (u, v) ∈ E) that achieves a competitive
ratio of η(p), where η(p) = 1

2

(
1 + (1− p)2/p

)
. If p → 0,

η(p) = 0.5(1 + e−2) ' 0.567.

STOCHASTIC BALANCE assigns the next vertex to the avail-
able neighbor with the least number of failed assignments
in the past. Next, we show that our analysis is nearly tight.

Theorem 2. There is a family of instances of the ONLINE
STOCHASTIC MATCHING problem for which STOCHASTIC
BALANCE achieves a factor no better than 0.588.

We also show the following result for the (randomized)
RANKING algorithm (which was originally proposed for
online matching [20]).

Theorem 3. There is a randomized algorithm (called
RANKING ) for the ONLINE STOCHASTIC MATCHING prob-
lem with equal probabilities (i.e. puv = p for all (u, v) ∈ E)
that achieves a competitive ratio of κ(p) = (1−1/e)− (1−
2/e)(1 − p)1/p. For p = 1, κ(p) = 1 − 1/e ' 0.632, and
for p→ 0, κ(p) = 1− 2/e+ 2/e2 ' 0.534.

One can see that the ratio for STOCHASTIC BALANCE
deteriorates as p increases, while that for RANKING im-
proves. The former is better for p ≤ 0.26. The next natural
question is whether the stochastic aspect of the ONLINE
STOCHASTIC MATCHING problem hurts the competitive
ratio at all: in particular, can we design algorithms for
the ONLINE STOCHASTIC MATCHING problem that have a
competitive ratio of 1 − 1/e (recall that this is the optimal
ratio for the non-stochastic case [20], and our OPT reduces
to the OPT used there). We refute this possibility in the
following theorem.

Theorem 4. No (randomized) algorithm for the ONLINE
STOCHASTIC MATCHING problem has a competitive ratio
of more than (1−11/(18e)−5/(6e2)−5/(6e3)) < 0.621 <
1−1/e, even in the case of equal and vanishing probabilities.

Adaptive and Non-adaptive Algorithms. As has been
observed in the literature, stochastic optimization problems
admit two distinct classes of algorithms: adaptive and non-
adaptive algorithms. While an adaptive algorithm for the
ONLINE STOCHASTIC MATCHING problem is allowed ac-
cess to the outcome (i.e. success/failure) of previous as-
signments, a non-adaptive algorithm is not provided this
information. Since a non-adaptive algorithm does not know
the set of available vertices in U , it may assign vertices in V
to neighbors in U that are currently unavailable, i.e., already
successful. But such an assignment does not count toward
any more successes. It has been previously observed that for
many stochastic packing problems, the expected approxima-
tion ratio of the best adaptive algorithm is provably better
than that of the best non-adaptive algorithm. It turns out
that this is indeed the case for the ONLINE STOCHASTIC
MATCHING problem. We show an upper bound on the
performance of non-adaptive algorithms for the ONLINE
STOCHASTIC MATCHING problem.

Theorem 5. No (deterministic or randomized) non-adaptive
algorithm for the ONLINE STOCHASTIC MATCHING prob-
lem can achieve a competitive ratio greater than 1/2.

It follows that the Adaptivity Gap (see [8]) for this problem
is at least max{η(p), κ(p)}/0.5, which is 1.13 for p → 0,
and the gap is at most 0.621/0.5 = 1.242.

B. Our Techniques

We will now outline the gist of our techniques towards
understanding the structure of the problem, and in particular
for Theorem 1.

An alternative view of the stochastic process. Our main
technical insight comprises of an alternative view of the
underlying probability space that is more amenable to an-
alytical tools. First, we make a conceptual transition by
viewing the probability space of the problem from the
perspective of the vertices in U . Fix any algorithm and focus
attention on a vertex u ∈ U . As the algorithm proceeds, u
gets allocated vertices vu1 , v

u
2 , . . . in V , until the first time

that the edge (u, vuτ ) becomes successful. We can visualize
this as u having a sequence of coins, each with probability
of heads equal to p, and u tossing all its coins in advance.
This determines a threshold τ for u, which is the index
of the first heads in the sequence. Then u succeeds if it
gets allocated τ vertices, and fails if it is allocated less
than τ vertices. Therefore, each vertex u ∈ U chooses a
threshold Θu independently from the probability distribution
Pr[Θu = pt] = p(1 − p)t−1 over positive integers t at the
outset. When the algorithm assigns v ∈ V to a neighbor



u, the assignment is successful iff the load on u reaches
Θu after this assignment. Clearly, this stochastic process
is exactly identical to that of the ONLINE STOCHASTIC
MATCHING problem.

Now, our problem resembles the ADWORDS problem [23]
which is exactly identical to the BUDGETED ALLOCATION
problem except that the vertices in V arrive online and
each vertex in U might have a distinct budget. A key
difference however is in the objective of the two problems:
while the ONLINE STOCHASTIC MATCHING problem aims
to maximize the expected number of vertices u ∈ U that
have a load equal to their threshold Θu (i.e. are successful),
the ADWORDS problem aims to maximize the total load on
the vertices in U . Our second key observation equates these
two apparently distinct objectives in the next lemma. For
any vertex u ∈ U , let Lu be the expected load on u and gu
be the probability that u is successful.

Lemma 2. For any adaptive algorithm for the ONLINE
STOCHASTIC MATCHING problem, the expected load on a
vertex u ∈ U is equal to its probability of success, i.e.
gu = Lu.

Proof: Let Xuv and Yuv be random variables defined
as follows: Xuv = 1 if vertex v ∈ V is assigned to vertex
u ∈ U , else Xuv = 0; Yuv = 1 if Xuv = 1 and the
edge (u, v) produces a success, else Yuv = 0. Clearly,
E[Yuv] = puvE[Xuv]. Note that the different X’s and Y ’s
are correlated because the algorithm is adaptive. But also,
due to adaptivity, u will not be given two successes, and so
gu = E[

∑
v Yuv]. Now the lemma follows by linearity of

expectation over all v ∈ V .
Remark. Observe that for non-adaptive algorithms for the
ONLINE STOCHASTIC MATCHING problem, g(u) = 1 −
e−L(u) = L(u) − L(u)2/2 + . . .; in fact, it is precisely
because of the trailing terms in this expression that non-
adaptive algorithms have provably worse performance than
adaptive algorithms.

In light of the above lemma, the objective of the ONLINE
STOCHASTIC MATCHING problem is exactly identical to
that of the ADWORDS problem; therefore, it would be tempt-
ing to declare that an instance of the ONLINE STOCHASTIC
MATCHING problem is identical to a probability distribution
over instances of the ADWORDS problem. However, this
is not accurate because of two reasons. First, while the
budget of every vertex in U is known in advance in the
ADWORDS problem (and is used by ADWORDS algorithms),
only the probability distribution of the thresholds is known in
the ONLINE STOCHASTIC MATCHING problem; the actual
threshold Θu is revealed only if the load on u reaches Θu.
Second, whereas the optimum in the ADWORDS problem
is defined as the maximum allocable load subject to budget
constraints, OPT for the ONLINE STOCHASTIC MATCHING
problem is defined as the maximum allocable load in the ex-

pected instance rather than the expected maximum allocable
load. This subtle difference is, in fact, quite significant —
the ratio of expected optimum of the ADWORDS instances
to OPT could be as small as 1− 1/e.

In spite of these differences, we show that the insight
gained from the alternative view of the ONLINE STOCHAS-
TIC MATCHING problem via the ADWORDS problem is
quite useful. In particular, we propose the STOCHASTIC
BALANCE algorithm for the ONLINE STOCHASTIC MATCH-
ING problem where we assign the arriving v ∈ V to its
available neighbor with the least load, i.e., the least number
of failed attempts (breaking ties arbitrarily). While the above
algorithm is inspired by the ADWORDS algorithm (more
precisely, by the BALANCE algorithm for b-Matching [17],
since this is the case when probabilities are equal), its
analysis (and similarly the analysis for RANKING ) is much
more complicated since the input is stochastic and we are
comparing ourselves against a stiffer OPT . We outline our
proof technique for Theorem 1 below.

Proof Techniques. The overall proof technique is to encode
the adversary strategy as a primal-dual LP pair (called a
factor-revealing LP [16]) and use weak duality to derive
bounds on the competitive ratio of the algorithm. We sum-
marize the key properties of STOCHASTIC BALANCE below;
these appear as constraints in the LP.

Let g(t) (resp. f(t)) be the expected number of vertices
which succeed (resp. fail) with a load of t (i.e. after t/p
assignments). We first note that for any vertex in U , there
is a relationship between its contributions to the g(t) and
f(t). This relationship can be seen by using the alternative
view of the probability space: Keeping all other Θ values
fixed, vary the value of Θu and run the algorithm. Let L∞u
be the load on u when Θu = ∞. Use the monotonicity of
the algorithm to claim that if Θu ≤ L∞u , then u succeeds
with a load of Θu; otherwise, it fails and has a load of L∞u .
Noting that the expected number of successful vertices plus
failed vertices is simply n = |U |, we get our first constraint:∫∞

0
etf(t)dt = n.

This constraint by itself has a bad solution, by setting
f(0) = n and saying that all vertices fail with load 0, which
is clearly an impossibility. For the next constraint we start
with the identity that the total load obtained by the algorithm
is the load from vertices in V that were allocated in OPT
to vertices u ∈ U that failed during the algorithm, plus the
load from the vertices in V allocated in OPT to vertices u
that succeeded. Now observing that if a vertex u fails, then
all its vertices in V are allocated, and using the relationship
between expected load and number of successes (Lemma
2), we see that the number of successes is the number of
failures plus the load from the vertices in V allocated in
OPT to vertices u that succeeded. Thus we need to lower
bound the latter quantity. For this, we again appeal to the
alternative view of the probability space: Keeping rest of the



Θ values fixed, consider the lowest threshold Θ∗u for a vertex
u so that it fails. If the threshold decreases by some amount
δ from this value, then u succeeds and at most δ amount of
vertices in V from the OPT for u could be left unallocated.
This gives a second constraint on the performance of the
algorithm.

We note that both these constraints are new, in the sense
that they exist only because the budgets are stochastic.
Indeed, they do not hold in the non-stochastic case. For
example, the ADWORDS algorithm may deterministically
end up not assigning any of the vertices in V assigned by
OPT to a vertex u which succeeds, i.e. finishes its budget.

Finally, we use the form of STOCHASTIC BALANCE itself:
this ensures that for any vertex u ∈ U that has a load of Lu
at the end of the algorithm, one of the following must hold:
either u was successful, or each neighbor v ∈ V of u must
have been assigned to a vertex in U that had a load of at most
Lu when v arrived. We use this property of the STOCHASTIC
BALANCE algorithm to obtain our third constraint.

Note. For simplicity, we will assume that p = 1/s for some
integer s. (Violation of this assumption leads to rounding
errors depending on the value of p.) Under this assumption,
the constraints of the BUDGETED ALLOCATION problem
represent a matching polytope; therefore, wlog, we will
assume that there is an optimal integer solution to any
instance of the BUDGETED ALLOCATION problem.

Open problem for unequal probabilities. We may try to
extend our techniques for the general case of arbitrary puv .
The case of large puv is well known to be hard even if
we are trying to maximize the expected load, and is open.
For the unequal but vanishingly small probabilities case,
one may guess at an algorithm inspired by the scaled bids
algorithms in [23] or [5]. In particular, we believe that the
following algorithm should perform well: assign the arriving
vertex v ∈ V to the neighbor u which maximizes puve−Lu
where Lu is the current load on u. We can obtain a global
“generalized balance” equation for this, but the difficulty is
in obtaining a bound on the load from the OPT allocation of
successful vertices. Without this extra constraint, just as in
the case for Theorem 1, we can not obtain a bound better
than 1/2. We leave this as an interesting open question.

C. Related Work

There is a growing literature on non-stochastic online
matching (e.g., [20], [17], [23], [5]), pointers to which are
distributed throughout the paper. We point out two closely
related problems: First, the Online Bipartite Matching prob-
lem, which is a special case of our problem, where all the
probabilities are 0 or 1, and for which RANKING achieves a
ratio of 1−1/e [20]. Second, the ADWORDS problem which
is the online version of BUDGETED ALLOCATION and has
deterministic algorithms [17], [23], [5] achieving ratios of
1− 1/e.

A set of previous results that also goes by online stochas-
tic matching makes distributional assumptions on the input
graph in online matching (see e.g. [10], [2], [22], [21], [18]).
In these problems it is the structure of the input graph that
is stochastic, whereas the rewards are deterministic (i.e. all
edge probabilities are 1). In fact, these problems are easier
that online matching, and often yield competitive ratios
greater than 1 − 1/e. Our problem, on the other hand, is a
strict generalization of online matching, and our competitive
ratios are therefore less than 1− 1/e.

Another related line of work is that of Chen et al. [7]
and Bansal et al. [3]. They consider an offline matching
problem on general random graphs, with query budgets. We
observe that the offline version of the ONLINE STOCHASTIC
MATCHING problem is indeed a special case of this problem.
The only online problem considered in this line of work is
by Bansal et al. [3], who study a hybrid of online stochastic
arrivals (which is weaker than the classical online model)
and stochastic rewards (similar to our problem), but with
multiple trials, and achieve a competitive ratio of of about
0.13.

Finally, as noted earlier, the (offline) stochastic packing
framework was introduced via the stochastic knapsack prob-
lem by Dean et al [9]. Subsequently, various optimization
problems have been considered in this framework (e.g. [8],
[4], [14], [12]), some of which have been mentioned earlier.
A related line of work is that of Multi-Armed Bandits and
Budgeted Learning (see e.g. [13], [14]). In this problem,
there is a set of arms, each with a known Markov chain
of states. Pulling an arm yields a random payoff as well
as a probabilistic transition in the chain, and the goal is to
maximize the expected payoff.

Roadmap. In the next section, we analyze some general
properties of adaptive algorithms for ONLINE STOCHASTIC
MATCHING . In Section III, we analyze the STOCHASTIC
BALANCE algorithm (Theorem 1) and show that our analysis
is nearly tight (Theorem 2). In Section 4 we analyze the
RANKING algorithm (Theorem 3). We provide an uncondi-
tional upper bound in Section 5 (Theorem 4). We finally end
with an upper bound on non-adaptive algorithms in Section
6 (Theorem 5).

II. PROPERTIES OF ADAPTIVE ALGORITHMS

In this section, we will discuss some general properties
of adaptive algorithms that will be used later in analyzing
our algorithm.

Definition 1. The load on a vertex u ∈ U , denoted by Lu,
is defined as the sum of probabilities associated with the as-
signed edges incident on u (this includes all the assignments
that did not succeed and, in case u was successful, the one
assignment that succeeded). Let fu(x) (resp., gu(x)) denote
the probability that vertex u ∈ U failed (resp., is successful)
at the end of the algorithm and has a load of x. Further, let



f(x) =
∑
u∈U fu(x) (resp., g(x) =

∑
u∈U gu(x)) be the

expected number of failed (resp., successful) vertices in U
with a load of x.

Recall that Lemma 2 asserts that the expected load on a
vertex u ∈ U equals

∑
x gu(x). Further, recall the alternative

view of the ONLINE STOCHASTIC MATCHING problem as
an ADWORDS problem where the budget Θu of every vertex
u ∈ U is drawn i.i.d. from the distribution

Pr[Θu = pt] = p(1− p)t−1.

Definition 2. Let Θ be the vector of Θu for all u ∈ U , and
let Θ−u denote the entire vector Θ except Θu. For any fixed
(n− 1)-dimensional vector θ, let

pu(θ) := Pr[Θ−u = θ]

Further, let L∞u (θ) be the load on vertex u when Θ−u = θ
and Θu =∞; correspondingly, let

qu(x) :=
∑

θ:L∞u (θ)=x

pu(θ)

Lemma 3. For any adaptive algorithm and for every vertex
u ∈ U ,

gu(x) = p(1− p)x/p−1
∑
y≥x

fu(y)(1− p)−y/p.

Proof: By definition, vertex u fails with a load of x
if and only if Θu > L∞u (Θ−u) = x. Increasing Θu to ∞
does not change any assignment, and therefore, the load on
u remains x. Thus,

fu(x) = Pr[(Θu > x) ∧ (L∞u (Θ−u) = x)]

= Pr[Θu > x] · Pr[L∞u (Θ−u) = x]

= (1− p)x/pqu(x).

Similarly, vertex u succeeds with a load of x if and only if
L∞u (Θ−u) = Θu = x. Increasing Θu to ∞ cannot decrease
the load on u. Therefore,

gu(x) = Pr[(Θu = x) ∧ (L∞u (Θ−u) ≥ x)]

= Pr[Θu = x] · Pr[L∞u (Θ−u) ≥ x]

= p(1− p)x/p−1
∑
y≥x

qu(y).

The lemma follows from the above equations.
The next lemma follows from the above lemma using the
fact that

∑
u∈U

∑
x(fu(x) + gu(x)) = n.

Lemma 4. For any adaptive algorithm,
∑
x f(x)(1 −

p)−x/p = n.

Opportunistic Algorithms. Recall that an adaptive algo-
rithm is said to be opportunistic if it always assigns a vertex
v ∈ V provided it has a currently unsuccessful neighbor in
U . Let OPT be a fixed offline optimal solution that achieves
an objective value of L∗u on vertex u ∈ U . Let opt(v)

denote the vertex in u ∈ U that v is assigned to by OPT
(if v is not assigned by OPT , then opt(v) is undefined).
Similarly, let opt(u) = {v ∈ V : opt(v) = u}. Finally, let
E denote the total expected load due to vertices v ∈ V for
which opt(v) is successful. We also use gu =

∑
x gu(x) and

fu =
∑
x fu(x).

Lemma 5. For any opportunistic algorithm for the ONLINE
STOCHASTIC MATCHING problem, the expected number of
successes

∑
u∈U gu =

∑
u∈U L

∗
ufu + E.

Proof: We define random variables Xu, Yu, and Zu as
follows:
• Xu = 1 iff vertex u is successful; Xu = 0 otherwise.
• Yu is the total load due to vertices in opt(u).
• Zu = Yu iff Xu = 1; Zu = 0 otherwise.

In any execution of an opportunistic algorithm, either u is
successful or all the vertices in opt(u) are assigned, i.e. Yu =
L∗u whenever Xu = 0. On the other hand, Yu = Zu when
Xu = 1. Therefore, the total load due to vertices in opt(u)
is E[Yu] = L∗ufu + E[Zu]. The lemma now follows from
Lemma 2.
The following corollary is an immediate consequence of the
above lemma.

Corollary 1. Any opportunistic algorithm for the ONLINE
STOCHASTIC MATCHING problem has a competitive ratio
of at least 1/2.

III. THE STOCHASTIC BALANCE ALGORITHM

Now, we describe the STOCHASTIC BALANCE algorithm
and prove Theorem 1. The algorithm is simple:

STOCHASTIC BALANCE : Assign the new vertex
v ∈ V to its currently unsuccessful neighbor in
U that has the least load.

We now prove a generic property that is satisfied by the
STOCHASTIC BALANCE algorithm.

Lemma 6. Consider the STOCHASTIC BALANCE algorithm.
If the value of Θu for some vertex u ∈ U is reduced by
kp for any integer k, then (a) Every vertex v ∈ V that
was previously unassigned remains unassigned, and (b) The
decrease in overall load on all vertices u ∈ U is at most
kp.

Proof: We will assume k = 1; this is wlog by repeated
invocation. We will show that the load on any vertex u′ ∈ U
at any stage of the algorithm is at least as much as the load
on u′ at the same stage previously, except if u′ = u and
u has already succeeded. This follows by induction on the
vertices in V . Clearly, the property holds at the outset. At
any intermediate stage, consider an arriving vertex v ∈ V .
If v was unassigned earlier, then the property holds trivially.
Therefore, suppose v was assigned to a neighbor u′ with
load Lu′ earlier where either u′ 6= u or u′ = u but u has



not succeeded yet. Then, by the inductive hypothesis, either
the load on u′ is at least Lu′ + p and the property holds
trivially, or the load on u′ is exactly Lu′ and the load on
every other available neighbor of v is at least Lu′ leading
to v being assigned to u′. If u′ = u and u has already
succeeded, then the property holds by definition.

The above property implies that the set of successful
vertices at any stage of the algorithm contains all vertices
that has succeeded by the same stage earlier. Therefore,
a previously unassigned vertex continues to be unassigned
now since all its neighbors have already succeeded. Further,
the decrease in overall load can only be due to a decrease
of p in the load on u.
The next lemma (proof details deferred to full paper) uses
Lemmas 5 and 6 to derive a bound on the function f(x).

Lemma 7. Let

Au = (1− p)−L
∗
u/p

∑
x≥L∗u

fu(x)

Bu =
∑
x<L∗u

(1 + L∗u − x)(1− p)−x/pfu(x).

For the STOCHASTIC BALANCE algorithm,∑
u∈U

(Au +Bu) ≤ n.

Proof: (Sketch) Recall that we fixed the value of Θ−u
to a vector θ, and denoted the load on vertex u is Θu =∞
by L∞u (θ). As observed earlier, if Θu > L∞u (θ), then all
vertices in opt(u) are assigned by an opportunistic algo-
rithm. Now, consider the case Θu ≤ L∞u (θ). If L∞u (θ) ≥ 1
and 0 ≤ L∞u (θ) − Θu ≤ 1, then by Lemma 6, the volume
of assigned vertices in opt(u) (i.e. their contribution to E)
is at least L∗u − (L∞u (θ) − Θu). On the other hand, if
L∞u (θ) < 1, then the above statement holds for the range
0 ≤ Θu ≤ L∞u (θ).

Let

Au(x) =

x/p∑
y=(x−L∗u)/p+1

p(1− p)y−1(L∗u − (x− py))

Bu(x) =

x/p∑
y=1

p(1− p)y−1(L∗u − (x− py))

Since
qu(x) =

∑
θ:L∞u (θ)=x

pu(θ),

we have

E ≥
∑
u∈U

∑
x≥L∗u

qu(x)Au(x) +
∑
x<L∗u

qu(x)Bu(x)


Using Lemma 5 and after some algebraic manipulations, we
complete the proof.

Next, we prove another key property of the STOCHASTIC
BALANCE algorithm.

Lemma 8. For the STOCHASTIC BALANCE algorithm,∑
y≤x

∑
u∈U

(1+L∗u)fu(y)+(1−p)x/p
∑
y>x

(1−p)−y/p
(∑
u∈U

fu(y)

)
is at most n.

Proof: Consider a vertex u ∈ U . If u failed and
had a load of x at the termination of the algorithm, then
every vertex v ∈ opt(u) must have been assigned by the
STOCHASTIC BALANCE algorithm to a neighbor in U that
had a load of at most x when v arrived online. Therefore,∑
y≤x

∑
u∈U

fu(y)L∗u ≤
∑
y≤x

y(f(y)+g(y))+x
∑
y>x

(f(y)+g(y)).

From Lemma 3, we can substitute for g(y) in terms of the
f(), and rearrange the terms to get:∑

y≤x

∑
u∈U

(1 + L∗u)fu(y)

+ (1− p)x/p
∑
y>x

(1− p)−y/p
(∑
u∈U

fu(y)

)
≤

∑
y

f(y)(1− p)−y/p = n,

where the last equality follows from Lemma 4.
We use the above properties of the STOCHASTIC BAL-

ANCE algorithm to derive its competitive ratio using what is
called a factor-revealing LP. Recall that

∑
x(f(x)+g(x)) =

n, and that the expected number of successful assignments is∑
x g(x). Therefore, we visualize the adversary strategy as

that of maximizing
∑
x f(x) subject to the constraints im-

posed by Lemmas 4, 7, and 8. Now, a feasible dual solution
provides an upper bound on the number of failed vertices in
U , yielding a competitive ratio of η(p) = (1+(1−p)2/p)/2,
thereby proving Theorem 1 (details deferred to full paper).

A. Upper Bound on the Competitive Ratio of the STOCHAS-
TIC BALANCE Algorithm

In this section we prove Theorem 2 by showing that
our analysis for STOCHASTIC BALANCE is nearly tight, by
describing a family of graphs on which it performs no better
than 0.588. The graph is based on the expanded “z-graph”
which is often used to construct difficult examples for online
matching. For our purposes, we need to keep the two parts
of the graph of different sizes.

The graph is G(U1 ∪ U2, V1 ∪ V2, E), where U1 =
{U1

1 , . . . , U
αn
1 }, U2 = {U1

2 , . . . , U
n
2 }, and V1 (resp. V2)

consists of αn (resp. n) batches of vertices, each with 1/p
vertices each. The ith batch of vertices in V1, called V i1
all have edges to U i1, as well as to all vertices in U2. The
ith batch of vertices in V2, called V i2 all have edges to U i2.



Thus we have a perfect matching between U and V , plus a
bipartite clique between U2 and V1. The value of α will be
determined later. All edges have a probability of p, which
we will take to be vanishingly small.

The optimal allocation in the corresponding BUDGETED
ALLOCATION problem is to allocate all vertices in V ji to
the vertex U ji (for all existing (i, j)). This gives OPT =
(α + 1)n. We analyze the performance of STOCHASTIC
BALANCE via an iterative calculation (details deferred to
full paper). It finds the value of α which minimizes the final
competitive ratio, giving α = 0.42, and a competitive ratio
of 0.588, thereby proving Theorem 2.

IV. A RANDOMIZED ALGORITHM

In this section, we describe a randomized algorithm for the
ONLINE STOCHASTIC MATCHING problem. Our algorithm
is simple — we fix a random permutation σ of the vertices
in U , and for each arriving vertex v ∈ V , we match it to its
highest unmatched neighbor in the permutation σ. Observe
that this was the original algorithm proposed in [20] for the
online matching problem — following their nomenclature,
we call it the RANKING algorithm.

As earlier, let |U | = n and let OPT be a fixed optimal
offline solution. For simplicity of notation, we assume
that OPT has an objective value of n. Further, let opt(v)
denote the neighbor in U that OPT matches v ∈ V to;
correspondingly, let opt(u) denote the set of neighbors in
V that are mapped to a vertex u ∈ U . Our proof will
follow the structure of, and use some lemmas from, the
proof of the RANKING algorithm presented in [11] for the
online matching problem. In addition we will need to use the
structure of the probability space defined by the stochastic
process. For this purpose, we will use the view of the
probability space from the perspective of the vertices u ∈ U
as earlier. Recall that Θu is a random variable that denotes
the load on vertex u when it is successful.

The following definitions (which were introduced in [11]
but have been modified for our purpose) are crucial.

Definition 3. Permutation Groups. Let Ω be the set of all
permutations of U . For a permutation σ ∈ Ω, σ(s) denotes
the vertex in U at position s, and σ−1(u), the position of
vertex u. For a fixed vertex u ∈ U , we partition the set
of all permutations Ω into (n − 1)! disjoint groups of n
permutations each, such that in each group, the relative
positions of all vertices in U \ {u} are fixed. Let Ωu denote
one such group. Let σt ∈ Ωu be the permutation which has
vertex u at position t.

Definition 4. Good and Bad matches. Consider a run
of RANKING with a fixed threshold vector θ, and a fixed
permutation σ ∈ Ω. A matched edge (u, v) is said to
be a bad match if opt(v) is at a position below u, i.e.
σ−1(opt(v)) > σ(u). Otherwise, we call it a good match,

i.e. when σ−1(opt(v)) ≤ σ(u). For s ∈ [n], b ∈ [n], we
define
• badθσ(s, b) as the load on the vertex in U at position s

due to bad matches with vertices in opt(b).
• goodθσ(s, b) as the load on the vertex in U at position
s due to good matches with vertices in opt(b).

• matchθσ(s) =
∑
b

(
goodθσ(s, b) + badθσ(s, b)

)
as the

total load on the vertex in U at position t.
We also define the above variables averaged over the
randomness in the stochastic matches (i.e. over θ) and the
randomization of the algorithm (i.e. σ):

bad(s) = Eθ

[
Eσ

[∑
b

[badθσ(s, b)]

]]
.

good(s) = Eθ

[
Eσ

[∑
b

[goodθσ(s, b)]

]]
.

match(s) = Eθ
[
Eσ
[
matchθσ(s)

]]
.

Observe that for any θ and σ, and for any vertex u ∈ U ,
we have matchθσ(s) ≤ θu; further, vertex u is successful
iff matchθσ(s) = θu. The next lemma is a generalization of
Lemma 2.2 in [11].

Lemma 9. Fix a vertex u ∈ U , a permutation group Ωu,
and a threshold vector θ. Then, for all t ∈ [n],

min(1, θu)−matchθσt(t) ≤
∑
σ∈Ωu

∑
s<t

badθσ(s, u)

n− s
.

Proof: If vertex u was successful in σt, then
matchθσt(t) = θu, and the lemma holds trivially. Suppose u
was not successful in σt. Then, every vertex v ∈ opt(u) must
be matched to some neighbor in V (call it alg(v)) in some
position s ≤ t in σt since u at position t was unmatched
when v arrived online. Since u has an overall load of
matchθσt(t), there is a set of vertices opt′(u) ⊆ opt(u) of
load at least 1−matchθσt(t) that are matched to neighbors
in positions strictly above t. Let v ∈ opt′(u) be matched to a
vertex alg(v) ∈ U at position s < t. We make the following
observations:
• For any r > s, consider the run on σr and θ (recall that

this means moving u to position r). Vertex v continues
to be matched to alg(v) which is at position s in each
of these runs, and this match is a bad match (since u
is at a position r > s).

• For any r ≤ s, consider the run on σr and θ. Vertex v
is either unmatched or in a good match, since it cannot
be matched above r.

From the above observations, v contributes to badθσr (s) only
when r > s, i.e. in n− s permutations in Ωu. Since opt′(u)
has a total load of at least 1−matchθσt(t), we conclude that
1−matchθσt(t) is at most

∑
σ∈Ωu

∑
s<t

badθσ(s,u)
n−s .

The next lemma is a straightforward generalization of
Lemma 2.3 in [11].



Lemma 10. Fix a vertex u ∈ U , a permutation group Ωu,
and a threshold vector θ. Then, for all t ∈ [n],∑

σ∈Ωu

∑
s≤t

badθσ(s, u)
s

n− s
≤
∑
σ∈Ωu

∑
s≤t+1

goodθσ(s, u).

We now aggregate the inequalities in the two lemmas above
over the random choice of θ ∈ Zn+ and σ ∈ Ω. Lemma 9
aggregates to

∀ t ∈ [n] : Eθ [Eu [min(1, θu)]]−match(t) ≤
∑
s<t

bad(s)

n− s
.

Recall that for every vertex u ∈ U , Θu is drawn i.i.d. from
the distribution Pr[Θu = pt] = p(1 − p)t−1 over positive
integers t. Then, Eθ [Eu [min(1, θu)]] evaluates to 1− (1−
p)1/p and the above equation becomes

∀ t :
1− (1− p)1/p

p
− match(t) ≤

∑
s<t

bad(s)

n− s
.

On the other hand, Lemma 10 aggregates to

∀ t :
∑
s≤t

bad(s)
s

n− s
≤

∑
s≤t+1

good(s).

The final ingredient in our proof is the a global counting
lemma that follows immediately from Lemma 5 in Sec-
tion II.

Lemma 11.
∑
tmatch(t) ≥ 1

2 +
∑
t good(t)

2 .

Remark 1. The above lemma holds in the case of (non-
stochastic) online matching as well but this inequality is not
explicitly required in the analysis that proves the optimal
competitive ratio. In our problem, without the inequality,
we can only prove a factor of (1− 1/e)2 ' 0.4, and adding
the inequality improves the competitive ratio substantially.

Similar to the analysis of the deterministic algorithm in
the previous section, we now use a factor-revealing LP
(where the constraints are given by the above lemmas)
to bound the competitive ratio of our algorithm (details
deferred to the full paper).

V. AN UPPER BOUND LESS THAN 1− 1/e

We will now give an upper bound on the performance
of any algorithm for the ONLINE STOCHASTIC MATCH-
ING problem. Let Gk be a family of graphs where U =
{u1, u2, . . . , uk} and V = V1 ∪ V2 ∪ . . . ∪ Vk with each
Vi containing 1/p identical vertices that are connected to
ui, ui+1, . . . , uk via edges with probability p → 0. The
STOCHASTIC BALANCE algorithm for an input instance
Gk assigns vertices in V in round-robin fashion among its
available neighbors. The next lemma claims optimality of
this algorithm for the input graph family Gk.

Lemma 12. The STOCHASTIC BALANCE algorithm is op-
timal for input graph Gk (for any k).

Proof: We will show a key symmetry property: on any
graph Gk, there exists an optimal algorithm that equally
distributes the expected load due to vertices in Vi (for
any i) among its neighbors. Before proving the property,
we show that it implies the optimality of the STOCHAS-
TIC BALANCE algorithm. Let Li be the expected load
on vertices ui, ui+1, . . . , uk after the arrival of vertices in
V1 ∪ V2 ∪ . . . ∪ Vi. We will show that Li is maximized by
the STOCHASTIC BALANCE algorithm (for each i) among
all algorithms satisfying the symmetry property. The lemma
then follows from Lemma 2 since the final expected load on
vertex ui is Li for each i. We prove this optimality property
by induction on i using the fact that the STOCHASTIC
BALANCE algorithm is opportunistic. For i = 1, the property
follows immediately. Suppose the property is true for Li−1;
then we need to show that Li − Li−1 is maximized by
the STOCHASTIC BALANCE algorithm, which is again an
immediate corollary of the opportunistic property.

Now, we prove the symmetry property by induction on
i. If the expected load on vertices in U are unequal after
the assignment of vertices in V1, then the adversary strategy
would be to define the vertex with the least expected load
as u1. Observe that a modified algorithm that moves an
arbitrarily small amount ε of expected load from any other
vertex ui to u1 does not decrease the sum of expected load
on the vertices in U (and therefore the expected number
of successes by Lemma 2) since u1 does not have any
neighbors in the remaining input whereas ui does. Repeating
this operation ultimately leads to equal expected load on all
neighbors of V1.

By the inductive hypothesis, assume that the ex-
pected load on vertices ui, ui+1, . . . , uk due to vertices in
V1, V2, . . . , Vi−1 are equal. Therefore, all the neighbors of
Vi are identical at this point. This allows the adversary to
again choose the vertex that has the minimum expected load
due to vertices in Vi as ui, and by the above argument,
the expected number of successes does not decrease if we
modify the algorithm to equalize all the expected loads.

The proof of Theorem 4 now follows by calculating the
competitive ratio of the STOCHASTIC BALANCE algorithm
for input graph G3 (details deferred to the full paper).
A natural direction would be to consider graphs Gk with
larger values of k but it turns out the bound is minimized
for k = 3. Considering alternative input graph families is
another possible direction for improving the bound; however,
the analysis of other graph families is significantly more
complicated because it is challenging to define an optimal
algorithm in such cases.

VI. UPPER BOUND ON NON-ADAPTIVE ALGORITHMS

We will give an input distribution for which the expected
competitive ratio of any deterministic non-adaptive algo-
rithm for ONLINE STOCHASTIC MATCHING is at most 1/2,
and apply Yao’s minmax principle to conclude Theorem 5.



U contains n vertices that are permuted uniformly at random
and called u1, u2, . . . , un; V contains n/p vertices that are
organized into n groups V1, V2, . . . , Vn of 1/p vertices each.
Each vertex in Vi is a neighbor of ui, ui+1, . . . , un. The n
groups of vertices in V arrive online in numerical order;
internal to a group, the vertices arrive in arbitrary order.
Clearly, the optimal solution matches all vertices in Vi to ui
and has an objective of n for any permutation of the vertices
in U .

The next lemma (proof deferred to full paper) bounds the
expected load on each vertex u ∈ U .

Lemma 13. For any deterministic algorithm for the ONLINE
STOCHASTIC MATCHING problem with the input drawn
from the distribution described above, let Lj denote the ex-
pected load on the vertex denoted uj . For any i,

∑i
j=1 Lj ≤∑i−1

j=0
i−j
n−j .

For non-adaptive algorithms, the probability of success of
a vertex u ∈ U that has an overall load of Lu is 1− e−Lu
for p → 0. The concavity of the function 1 − e−x implies
that the expected number of successful vertices in U is
maximized when the load on each vertex ui is deterministic,
and Lemma 13 is tight for every i. It follows that the
expected number of successful vertices in U is at most
Sn =

∑n
i=1

(
1− e−

∑i−1
j=0

1
n−j

)
. To complete the proof, we

observe that limn→∞ Sn = 1/2.
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