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Today's Talk
F1 - A Hybrid Database combining the
● Scalability of Bigtable
● Usability and functionality of SQL databases

 
Key Ideas
● Scalability: Auto-sharded storage
● Availability & Consistency: Synchronous replication
● High commit latency: Can be hidden

○ Hierarchical schema
○ Protocol buffer column types
○ Efficient client code

 
Can you have a scalable database without going NoSQL?  Yes.



The AdWords Ecosystem

One shared database backing Google's core AdWords business
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Our Legacy DB: Sharded MySQL

Sharding Strategy
● Sharded by customer
● Apps optimized using shard awareness
 

Limitations
● Availability

○ Master / slave replication -> downtime during failover
○ Schema changes -> downtime for table locking

● Scaling
○ Grow by adding shards
○ Rebalancing shards is extremely difficult and risky
○ Therefore, limit size and growth of data stored in database

● Functionality
○ Can't do cross-shard transactions or joins

 



Demanding Users

Critical applications driving Google's core ad business
● 24/7 availability, even with datacenter outages
● Consistency required

○ Can't afford to process inconsistent data
○ Eventual consistency too complex and painful

● Scale: 10s of TB, replicated to 1000s of machines
 
Shared schema
● Dozens of systems sharing one database
● Constantly evolving - multiple schema changes per week

 
SQL Query
● Query without code



Our Solution: F1

A new database,
● built from scratch,
● designed to operate at Google scale,
● without compromising on RDBMS features.

 
Co-developed with new lower-level storage system, Spanner



Underlying Storage - Spanner
Descendant of Bigtable, Successor to Megastore
 

Properties
● Globally distributed
● Synchronous cross-datacenter replication (with Paxos)
● Transparent sharding, data movement
● General transactions

○ Multiple reads followed by a single atomic write
○ Local or cross-machine (using 2PC)

● Snapshot reads
 
 
 



F1

Architecture
● Sharded Spanner servers

○ data on GFS and in memory
● Stateless F1 server
● Pool of workers for query execution

 
 
 
Features
● Relational schema

○ Extensions for hierarchy and rich data types
○ Non-blocking schema changes

● Consistent indexes
● Parallel reads with SQL or Map-Reduce
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How We Deploy

● Five replicas needed for high availability
● Why not three?

○ Assume one datacenter down
○ Then one more machine crash => partial outage

 
Geography
● Replicas spread across the country to survive regional disasters

○ Up to 100ms apart
 

Performance
● Very high commit latency - 50-100ms
● Reads take 5-10ms - much slower than MySQL
● High throughput



Hierarchical Schema
Explicit table hierarchies.  Example:

● Customer (root table): PK (CustomerId)
● Campaign (child): PK (CustomerId, CampaignId)
● AdGroup (child):   PK (CustomerId, CampaignId, AdGroupId)
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Clustered Storage

● Child rows under one root row form a cluster
● Cluster stored on one machine (unless huge)
● Transactions within one cluster are most efficient
● Very efficient joins inside clusters (can merge with no sorting)
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Protocol Buffer Column Types
Protocol Buffers
● Structured data types with optional and repeated fields
● Open-sourced by Google, APIs in several languages
 

Column data types are mostly Protocol Buffers
● Treated as blobs by underlying storage
● SQL syntax extensions for reading nested fields
● Coarser schema with fewer tables - inlined objects instead
 

Why useful?
● Protocol Buffers pervasive at Google -> no impedance mismatch
● Simplified schema and code - apps use the same objects

○ Don't need foreign keys or joins if data is inlined
 



SQL Query
● Parallel query engine implemented from scratch
● Fully functional SQL, joins to external sources
● Language extensions for protocol buffers

 
 
 
 
 
 
 
Making queries fast
● Hide RPC latency
● Parallel and batch execution
● Hierarchical joins

 

SELECT CustomerId
FROM Customer c PROTO JOIN c.Whitelist.feature f
WHERE f.feature_id = 302 
  AND f.status = 'STATUS_ENABLED'



Coping with High Latency

Preferred transaction structure
● One read phase: No serial reads

○ Read in batches
○ Read asynchronously in parallel

● Buffer writes in client, send as one RPC
 
Use coarse schema and hierarchy
● Fewer tables and columns
● Fewer joins

 
For bulk operations
● Use small transactions in parallel - high throughput

 
Avoid ORMs that add hidden costs



ORM Anti-Patterns
● Obscuring database operations from app developers
● Serial reads

○ for loops doing one query per iteration
● Implicit traversal

○ Adding unwanted joins and loading unnecessary data
 

These hurt performance in all databases.
They are disastrous on F1.



Our Client Library

● Very lightweight ORM - doesn't really have the "R"
○ Never uses Relational joins or traversal

● All objects are loaded explicitly
○ Hierarchical schema and protocol buffers make this easy
○ Don't join - just load child objects with a range read

● Ask explicitly for parallel and async reads



Results
Development
● Code is slightly more complex

○ But predictable performance, scales well by default
● Developers happy

○ Simpler schema
○ Rich data types -> lower impedance mismatch

 
User-Facing Latency
● Avg user action: ~200ms - on par with legacy system
● Flatter distribution of latencies

○ Mostly from better client code
○ Few user actions take much longer than average
○ Old system had severe latency tail of multi-second transactions

 



Current Challenges

● Parallel query execution
○ Failure recovery
○ Isolation
○ Skew and stragglers
○ Optimization

 
● Migrating applications, without downtime

○ Core systems already on F1, many more moving
○ Millions of LOC

 



We've moved a large and critical application suite from MySQL to F1.
 
This gave us
● Better scalability
● Better availability
● Equivalent consistency guarantees
● Equally powerful SQL query

 
And also similar application latency, using
● Coarser schema with rich column types
● Smarter client coding patterns

 
In short, we made our database scale, and didn't lose any key 
database features along the way.

Summary


