
Science in the Cloud:
Accelerating Discovery in the 21st Century

February 17, 2012

Joseph L. Hellerstein, Kai Kohlhoff, and David Konerding, Google Inc.

Abstract
Scientific discovery is in transition from a focus on data collection to an emphasis
on analysis and prediction using large scale computation. These computations
can be done with unused cycles in commercial Clouds if there is appropriate
software support. Moving science into the Cloud will promote data sharing and
collaborations that will accelerate scientific discovery in the 21st century.

1 Introduction
Recent trends in science have made computational capabilities an essential part
of scientific discovery. This is often referred to as enhanced scientific discov-
ery, or eScience. A collection of essays about the shift to eScience, The Fourth
Paradigm [1], describes the evolution of experimentally driven science to collab-
orative, analysis-focused eScience.

eScience has been an integral part of high energy physics for several decades
due to the complexity and volume of data produced by experiments. In the
1990s, eScience became central to biology because of the computational demands
of sequencing the human genome. More recently, eScience has become integral
to brain science for modeling neural circuits and to astronomy for simulating
cosmological phenomena.

Biology provides an excellent example of how eScience contributes to sci-
entific discovery. Much of modern biological research is about relating DNA
sequences (called the genotype) to observable characteristics such as disease
(called phenotypes). For example, researchers look for variations in DNA that
promote cancer. The human genome has approximately three billion pairs of
nucleotides, the elements that encode information in DNA. These base pairs
encode common human characteristics, benign individual variations, and po-
tential disease-causing variants. Unfortunately, it is usually the case that indi-
vidual variation is much more common than disease-causing variants. So, un-

1



2 HARVESTING CYCLES FOR SCIENCE

derstanding how the genome contributes to disease is much more complicated
than looking at the difference between genomes. Instead, this analysis often
requires detailed models of DNA-mediated chemical pathways to identify dis-
ease processes. The size of the human genome and the complexity of modeling
disease processes typically requires large scale computations and often massive
storage as well [2].

A common pattern in eScience is to explore many possibilities in parallel.
For example, aligning a million DNA “reads” (produced by a DNA sequencer) to
a reference genome can be done by aligning each read to the reference genome in
parallel. The search for good models of brain activity can be done by evaluating
a large number of model parameters in parallel. And, the search for supernovae
can be done by analyzing different regions of the sky in parallel.

That a high degree of parallelism can advance science has been a starting
point for many efforts. For example, Folding@Home[4] is a distributed com-
puting project that enables scientists to understand the biochemical basis of
several diseases. At Google, the Exacycle Project provides massive parallelism
for doing science in the Cloud.

2 Harvesting Cycles for Science
Many science problems can be solved by running jobs that are structured as
a large number of independently executing tasks. Such jobs are referred to as
embarrassingly parallel.

The goal of the Exacycle Project is to find unused resources in the Google
Cloud to run embarrassingly parallel jobs at a very large scale. This is done by
creating a system that is both a simplification and a generalization of MapRe-
duce. Exacycle simplifies MapReduce in that all Exacycle tasks are essen-
tially mappers. This simplification enables more efficient resource management.
MapReduce restricts jobs to a single cluster. Exacycle generalizes MapReduce
by allowing a single job to use uses computational resources in multiple clusters.
This generalization enables massive scaling for embarrassingly parallel jobs.

Google is very efficient with its use of computing resources. Even so, resource
utilizations vary with time of day, day of the week, and season. For example, web
users most frequently use search engines during the day, and search providers
typically direct traffic to datacenters close to users to reduce latency. This leads
to low utilization for clusters during (local) nighttime.

Even when resource utilizations are low, it doesn’t mean that more tasks can
be run in the Cloud. To understand why, note that many tasks require consider-
able memory or require moderate amounts of memory and CPU in combination.
Such tasks can run in the Cloud only if there is at least one machine that satis-
fies all of the task’s resource requirements. One way to quantify whether tasks
can run is whether there are suitably sized “slots” available. For example, recent
measurements of the Google Cloud indicate that there are thirteen times more
slots for tasks requiring only 1 core and 4 GB of RAM than there are slots for
tasks requiring 4 cores and 32 GB RAM. In general, it is much easier to find

Submitted to IEEE Internet Computing



2 HARVESTING CYCLES FOR SCIENCE

Figure 1: Architecture of the Exacycle System.

slots for tasks that require fewer resources. An Exacycle task typically consumes
about 1 core and 1 GB of memory for no more than an hour.

Exacycle tasks are often preempted by higher priority work. Preempted
tasks are re-run. Although task preemptions are common, Exacycle throughput
is excellent because of the high degree of parallelism that Exacycle provides.

As displayed in Figure 1, Exacycle is structured into multiple layers. The
top layer is the Daimyo global scheduler that assigns tasks to clusters. The
second layer is the Honcho cluster scheduler that assigns tasks to machines.
The third layer is the Peasant machine manager that encapsulates tasks. The
bottom layer provides caching of task results. Note that both the Honcho and
Peasant are stateless. This simplifies the handling of failures.

Exacycle implements the same communication interfaces between adjacent
layers. Communication from an upper to a lower layer involves having the upper
layer cut data into pieces that are provided to lower layers. Typically, this com-
munication provides data to tasks within the same job. Communication from
a lower layer to an upper layer involves bundling data to produce aggregations.
These inter-layer interfaces have proven to be scalable and robust with minimal
requirements for managing distributed state.

The primary mechanism Exacycle uses to scale is to eliminate nearly all
inter-cluster networking and machine-level disk IO. An Exacycle task typically

Submitted to IEEE Internet Computing



2 HARVESTING CYCLES FOR SCIENCE

cannot move more than 5 GB of data into or out of the machine on which the
tasks executes. Exacycle reduces network usage by managing data movement on
behalf of tasks. Typically, the thousands to millions of tasks in an Exacycle job
share some of their input files. Exacycle uses knowledge of shared input files
to co-schedule tasks in the same cluster. This strategy improves throughput
by exploiting the high network bandwidths between machines within the same
cluster. Further, Exacycle uses caching so that remote data are copied into a
cluster only once.

When a task is assigned to a machine, there is a timeout and retry hierarchy
to handle failures. The combination of timeouts and retries handles most sys-
temic errors. Tasks have unique identifiers. The Exacycle retry logic assumes
that two tasks with the same unique identifier compute the same results.

For the most part, Exacycle does not employ durable cluster-level or machine-
level storage because of the engineering costs and performance penalties. In-
stead, Exacycle optimistically keeps nearly all state in RAM. Robustness is
provided by the combination of a single authoritative store and spreading state
across many machines. If an individual machine fails, the task it was executing
is resubmitted to another machine. In case of failure, the cluster-level scheduler
recovers state by listening to messages from a discovery service.

The Exacycle Project began two years ago. The system has been running
eScience applications in production for about a year, and has had continuous,
intensive use over the last six months. Recently, Google donated one billion
core hours to scientific discovery through the Exacycle Visiting Faculty Grant
Program[3]. To achieve this, Exacycle consumes approximately 2.7M CPU hours
per day, and often much more. As of early February, visiting scientists
completed 58M tasks.

Exacycle visiting faculty are addressing a variety of scientific problems that
can benefit from large scale computation. The next section describes one prob-
lem in detail–discovering the operation of a trans-membrane protein that plays
a critical role in many drug therapies. Below is a summary of other efforts that
are underway.

• The enzyme science project seeks to discover how bacteria develop resis-
tance to antibiotics, a growing problem for public health.

• The molecular docking project seeks to advance drug discovery by using
massive computation to identify “small molecules" that bind to one or
more of the huge set of proteins that catalyze reactions in cells. The
potential here is to greatly accelerate the design of drugs that interfere
with disease pathways.

• The computational astronomy project is playing an integral role in the
design of the 3200 Megapixel Large Synoptic Survey Telescope. For ex-
ample, the project is doing large scale simulations to determine how to
correct for atmospheric distortions.

• The molecular modeling project is expanding the understanding of com-
putational methods for simulating macromolecular processes. The first

Submitted to IEEE Internet Computing



3 SIMULATING MOLECULAR DYNAMICS

application is to determine how molecules enter and leave the cell nucleus
through a channel known as the nuclear pore complex.

These projects have been selected based on the opportunity to produce scientific
results of major importance. One measure of impact will be publishing in top
journals such as Science and Nature.

3 Simulating Molecular Dynamics
The opportunities afforded by science in the Cloud are best understood by
example.

One research project undertaken by Exacycle relates to a class of molecules
called G protein-coupled receptors or GPCRs. GPCRs are critical to many drug
therapies. Indeed, about a third of pharmaceuticals target GCPRs. Despite
this, the molecular basis of GPCR action is still not understood well.

A bit of science is needed to appreciate the computational problem that
Exacycle is addressing. GPCRs are critical to trans-membrane signaling, an
important part of many disease pathways. It is known that GPCRs embed
in cell membranes to provide communication between extracellular signals and
intracellular processes. This communication occurs when certain molecules
bind to sites on GPCRs that are accessible from outside the membrane. How-
ever, scientists do not understand well the sequence of changes that then lead
to communication across the cell membrane.

To gain a better understanding of GPCR activity, Exacycle is doing large
scale simulations of GPCR molecular dynamics. This is a challenging under-
taking because of the detail that is required to obtain scientific insight. In
particular, biomolecules at body temperature undergo continuous fluctuations
in the location of atoms and the molecule’s three dimensional shape. Many
changes occur at a time scale of femto- to nanoseconds. However, most chemi-
cal processes of interest take place at a time scale of micro- to milliseconds. The
term trajectory refers to a sequence of motions of a set of atoms under study
over time. Figure 2 depicts the insights possible with trajectories of different
durations. Understanding GPCR actions requires simulations that generate
data over milliseconds.

Exacycle simulates the trajectories of approximately 58,000 atoms, the num-
ber of atoms in a typical GPCR system, including the cell membrane and water
molecules. This is done at femtosecond precision over trillions of time steps by
computing trajectories using embarrassingly parallel jobs.

Trajectories are used in two ways. The first is to construct models of GPCR
behavior. For example, trajectories can be used to create a Markov model whose
states are defined by the pair-wise distances between atoms in the GPCR and
by the kinetic proximity of atoms. Second, trajectories are analyzed for changes
that are important for the activation of signaling across the cell membrane.

It takes approximately one core-day to simulate half a nanosecond of a single
trajectory on a modern desktop. So, obtaining scientific insight requires mil-

Submitted to IEEE Internet Computing



3 SIMULATING MOLECULAR DYNAMICS

Figure 2: G protein-coupled receptors (GPCRs) are critical to the effectiveness
of many drugs because of their role in communicating signals across cell mem-
branes. The top x-axis is trajectory duration, and the figure indicates what
insights are possible for trajectory durations. The bottom x-axis is the core
hours needed to compute trajectory durations. Computing one millisecond of
trajectory data requires millions of core days on a modern desktop computer.
Exacycle can do these computations in a few days.

Submitted to IEEE Internet Computing



4 WHAT’S NEXT

lions of core days to generate a millisecond of trajectory data. Clearly, massive
computational resources are required.

Exacycle provides such massive computational resources to compute trajec-
tories in parallel. However, some thought is required to use Exacycle effectively.
For GPCR trajectories, the challenge is that it takes millions of core hours to
compute an interesting trajectory, but an Exacycle task typically executes for
no more than a core hour. So, trajectories are constructed by executing a series
of task. This requires passing partially computed trajectories from one task to
the next in a way that maintains high throughputs.

The approach used to compute trajectories has several parts. A driver script
generates tens of thousands of tasks, and submits them to Exacycle. The script
also monitors task states, and registers events such as task completions or fail-
ures. Partial trajectories computed by tasks are propagated to other tasks to
ensure that Exacycle maintains high throughput. Exacycle provides mecha-
nisms to monitor task executions and to support investigating and resolving
task and system failures.

More than 150,000 trajectories with durations totaling more than 4 mil-
liseconds have been computed. At peak, Exacycle simulates approximately
80 microseconds of trajectory data per day. This corresponds to roughly 600
TFLOP/s.

Exacycle has produced 100s of terabytes of trajectory data. The analysis
of these data presents a huge challenge. One approach is to use MapReduce
to calculate summary statistics of trajectories and then place the results into
a relational database of trajectory tables. Much insight has been obtained by
doing SQL queries against the trajectory tables. However, doing so requires the
database to have the scalability of technologies such as Dremel [5] that provide
interactive response times for ad hoc queries on tables with billions of rows.

4 What’s Next
Amazon, Microsoft, Google, and others offer capabilities for running science ap-
plications in the Cloud. There is a good reason for this. By using the Cloud,
scientists do not buy expensive, dedicated clusters. Instead, scientists pay a
modest rent for on-demand access to large quantities of Cloud computing re-
sources.

Although doing science in the Cloud has appeal, moving science into the
Cloud may have hidden costs. For example, scientists may have to recode
applications to take advantage of Cloud functionality and/or add new code
if some features are not present in the Cloud.

Science in the Cloud offers much more than a compute infrastructure. A
recent trend is that scientific contributions require the publication of large
datasets. Some examples are the Allen Institute’s Brain Atlas and the Na-
tional Center for Biotechnology Information (NCBI) genome database. Both
are repositories that are widely used by researchers to do computation-intensive
analysis of data collected by others. Hosting these datasets in public Clouds is

Submitted to IEEE Internet Computing



REFERENCES REFERENCES

much easier than requiring individual scientists (or even universities) to build
their own data hosting systems.

There is much more to come. The use of the Cloud for computation and
data storage will facilitate scientists sharing both data and computational tools.
Indeed, there are already substantial efforts in this direction, such as the idea
of a “Data Commons" that is promoted by Sage Bionetworks. Sharing data and
code will allow scientists to more rapidly build on the results of their peers.
Longer term, the big appeal of science in the Cloud is promoting planetary scale
collaborations that power scientific discovery in the 21st century.

References
[1] Tony Hey, Stewart Tansley, and Kristin Tolle, editors. The Fourth Paradigm:

Data-Intensive Scientific Discovery. Microsoft Research, Redmond, Wash-
ington, 2009.

[2] Michael Schatz, Ben Langmead, and Steven Salzberg. Cloud computing and
the DNA data race. Nature Biotechnology, 28, 2010.

[3] Andrea Held. Exacycle visiting faculty grant program. http://research.
google.com/university/exacycleprogram.html.

[4] Michael Shirts and Vijay Pande. Screen savers of the world unite! Science,
290(5498):1903, 2000.

[5] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Mat Tolton, and Theo Vassilakis. Dremel: interactive anal-
ysis of web-scale datasets. Proceedings of the Conference on Very Large
Databases, Vol. 3, September, 2010, pp. 330-339.

Submitted to IEEE Internet Computing


