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Abstract

Recent advances in deep learning have made the use of large, deep neural net-
works with tens of millions of parameters suitable for a number of applications
that require real-time processing. The sheer size of these networks can represent a
challenging computational burden, even for modern CPUs. For this reason, GPUs
are routinely used instead to train and run such networks. This paper is a tutorial
for students and researchers on some of the techniques that can be used to reduce
this computational cost considerably on modern x86 CPUs. We emphasize data
layout, batching of the computation, the use of SSE2 instructions, and particularly
leverage SSSE3 and SSE4 fixed-point instructions which provide a 3× improve-
ment over an optimized floating-point baseline. We use speech recognition as an
example task, and show that a real-time hybrid hidden Markov model / neural
network (HMM/NN) large vocabulary system can be built with a 10× speedup
over an unoptimized baseline and a 4× speedup over an aggressively optimized
floating-point baseline at no cost in accuracy. The techniques described extend
readily to neural network training and provide an effective alternative to the use
of specialized hardware.

1 Introduction

The recent resurgence of interest in neural networks owes a certain debt to the availability of af-
fordable, powerful GPUs which routinely speed up common operations such as large matrix com-
putations by factors from 5× to 50× [1-3]. These enabled researchers to tackle much larger, more
difficult machine learning tasks using neural networks, auto-encoders or deep belief networks [4-
6]. Due to a variety of factors, including cost, component reliability and programming complexity,
GPUs are still however the exception rather than the norm in computing clusters. The question then
becomes whether to invest in GPU resources, or whether traditional CPUs can be made to perform
fast enough that, using distributed computing, they will yield similar or superior scalability and
performance. The purpose of this paper is not to settle this debate, but rather to introduce to neural
network researchers some tools which can significantly improve the performance of neural networks
on Intel and AMD CPUs in accessible form. Some of these might not be novel to researchers well
versed in high-performance computing, but they lay the foundation for improvements going beyond
what one might obtain using existing optimized BLAS packages. We will show in particular how
one can outperform optimized BLAS packages by a factor of 3 using fixed point arithmetic and
SSSE3 / SSE4 instructions.
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To illustrate the argument, we will use a neural network achieving state-of-the-art performance on
the task of speech recognition for mobile voice input. The basic benchmark setup is described in
detail in Section 2, while the full speech recognition evaluation system is described in 6. Section
3 will cover the basics of data layout and floating-point SIMD operations. Section 4 describes the
fixed-point implementation of some of the matrix operations. Section 5 introduces further enhance-
ments that are more specifically applicable to the speech recognition task. We’ll conclude in Section
6 with performance results on the end-to-end system.

2 Benchmark setup

In the following, we will use as a benchmark a neural network with 5 layers. The input layer has
440 inputs consisting of 11 consecutive, overlapping 25 ms frames of speech, sampled every 10
ms. Each frame consists of 40 log-energies extracted from filterbanks on a Mel frequency scale.
Each layer but the last uses a sigmoid as non-linearity. Each intermediate layer consists of 2000
nodes, and the final softmax layer has 7969 outputs which correspond to log-posteriors for context-
dependent acoustic states of a HMM/NN speech recognizer. During decoding the softmax output is
not normalized. Details of the HMM/NN system can be found in [7] and in Section 6.

The evaluation setup consists of running 100 frames of data through the network on a single CPU
on an Intel Xeon DP Quad Core E5640 machine with Ubuntu OS. CPU scaling was disabled and
each run was performed a minimum of 5 times and averaged. A summary of the results is presented
in Table 1. For results relating to lazy evaluation (†), Table 1 reports performance assuming 30% of
the neural network outputs actually need to be computed (see Section 5 for details).

Table 1: Summary of the results

Section Time to process 1s of speech Incremental speed-up
Floating-point baseline 2 3.89 s
Hand-tuned floating-point 3.2 3.09 s 26%
Floating-point SSE2 3.5 1.36 s 127%
Floating-point GPU 3.7 0.02 to 0.49 s
8-bit quantization 4.1 1.52 s -12%
Integer SSSE3 4.2 0.51 s 198%
Integer SSE4 4.3 0.47 s 9%
Batching 5.1 0.36 s 30%
Lazy evaluation † 5.2 0̃.26 s 27%
Batched lazy evaluation † 5.3 0̃.21 s 19%

3 Floating-point implementation

3.1 Memory locality

The most basic tenet of high-performance computing is that once you touch a given memory address,
nearby memory past this address gets loaded into the various caches that live on the processor die.
This makes the nearby data available to the CPU much faster than it would be if it had to fetch it from
memory. The most immediate consequence is that one should strive to have the innermost loops of
any numerical computation walk contiguous memory. As an example, consider the multiplication
of matrix A = [ai,j ] and B = [bk,l]. Each entry of matrix C = AB = [ci,l] is:

ci,l =
∑
m

ai,mbm,l (1)

Since the loop variable m walks the columns of A and rows of B, A is best stored in row-major
order, while B is best stored in column-major order. This is even more important when taking Single
Instruction, Multiple Data (SIMD) instructions into account.
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3.2 Loop unrolling and parallel accumulators

There are several well-known ways to improve over a naive implementation of matrix multipli-
cation. The innermost loop of the matrix multiply operation is a multiply-and-add operation:
c += a[i]*b[i]. To reduce the overhead of checking for loop termination, one can partially
unroll the computation by accumulating multiple elements at a time:

c += a[i]*b[i] + a[i+1]*b[i+1] + a[i+2]*b[i+2] + a[i+3]*b[i+3]

A second technique is to use multiple accumulators in parallel, which gives the compiler more
freedom in pipelining operations and distributing them across floating-point units:

c0 += a[i]*b[i];
c1 += a[i+1]*b[i+1];
c2 += a[i+2]*b[i+2];
c3 += a[i+3]*b[i+3];
c = c0 + c1 + c2 + c3;

On our example benchmark (Table 1), unrolling loops in blocks of 8 and using 4 accumulators in
parallel yields a 26% speed improvement.

3.3 SIMD

SIMD instructions are the fundamental building blocks of low-level parallelization on CPUs. These
instructions perform multiple operations in parallel on contiguous data, making the issues of data
locality even more critical. On Intel and AMD CPUs of the x86 family, they typically operate on 16
bytes worth of data at a time: 2 doubles, 4 floats, 8 shorts or 16 bytes at a time. Various datatypes
are defined to represent these, __m128i, __m128 and __m128d:

__m128i . . . 128 bits / 16 chars . . .
__m128i short short short short short short short short
__m128i int int int int
__m128 float float float float
__m128d double double

Fundamental operations on these datatypes use assembly instructions, but are more easily in-
corporated into C and C++ using thin wrapper functions called intrinsics [8], available for the
most popular C and C++ compilers. As an example, if you have two vectors of 4 floats stored
in two variables a = [a1, a2, a3, a4] and b = [b1, b2, b3, b4] of type __m128, you can obtain
c = [a1 + b1, a2 + b2, a3 + b3, a4 + b4] by writing in C:

#include <mmintrin.h>
__m128 c = _mm_add_ps(a, b);

3.4 Data layout optimization for SIMD

There are 2 main difficulties in laying out data optimally to leverage SIMD instructions.

First, SIMD instructions generally operate faster on 16 byte blocks that are 16-byte aligned in mem-
ory. Being ‘16-byte aligned’ means that the memory address of the first byte is a multiple of 16.
As a consequence, if an array of data to be processed is not aligned to 16 bytes, performance will
suffer greatly. Forcing 16-byte alignment of a memory block can be achieved in C by replacing calls
to malloc() with posix_memalign(), or by using custom allocators if using the Standard
Template Library.

Second, since every instruction operates on a block of 16 bytes, if a data vector is not a multiple of
16 bytes in size, one will have to deal with edge effects. The simplest solution is zero-padding: treat
every vector of size N as a vector of size ((N +15)/16) ∗ 16 (integer arithmetic), with added zeros
at the end. For most linear operations, such as scalar product, sum, matrix multiply, the embedding
into such larger vector space is invariant and does not affect the results.
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In the following, we’ll assume every vector and row (resp. column) in row-major (resp. column-
major) matrix is aligned and zero-padded.

3.5 Floating-point SIMD and Intel SSE2

Intel and AMD processors that support SSE2 provide the basic instructions to perform the multiply-
and-add step using floating-point SIMD arithmetic: _mm_add_ps() and _mm_mul_ps(). Here
is a simplified example accumulating the scalar product of __m128 *a and __m128 *b to
__m128 sum:

// c[0] = a[0]*b[0], ... , c[3] = a[3]*b[3]
__m128 c = _mm_mul_ps(*a, *b);
// sum[0] += c[0], ..., sum[3] += c[3]
sum = _mm_add_ps(c, sum);

sum now contains 4 partial sums which have to be added horizontally to yield the final re-
sult using a mechanism such as shuffle instructions available with SSE2, or horizontal sums
(_mm_hadd_ps()) available with SSE3. Most modern compilers are able to leverage SIMD in-
structions automatically to some extent. However, it is our experience that automatic vectorization
does not come close to realizing the performance gains one can achieve by writing code that lever-
ages them explicitly.

3.6 Comparison to optimized BLAS package

As an illustration of how these simple techniques fare in comparison to off-the-shelf fast matrix
libraries, we compared the matrix multiplications in our benchmark with Eigen [9]. Eigen is a very
fast library which pays particular attention to cache optimization.

Table 2: Comparison with Eigen

Matrix A Matrix B A×B (Eigen 2.0) A×B (Eigen 3.0) A×B (Custom)

2000× 2000

2000× 1 6.0 ms 5.6 ms 1.2 ms
2000× 2 5.8 ms 6.5 ms 2.4 ms
2000× 4 5.1 ms 6.1 ms 4.6 ms
2000× 8 5.0 ms 7.7 ms 9.4 ms
2000× 16 8.7 ms 10.7 ms 19.0 ms

Table 2 shows that our implementation is comparable with Eigen in this specific scenario. Eigen is a
much more general library however, so these figures should not be construed as a general statement
about Eigen’s performance. In this particular context, our implementation appears faster for thin B
matrices, but doesn’t scale as well for larger ones. The nonlinearity of Eigen’s scaling as the data
size increases suggests that the library uses block heuristics to optimize its cache behavior.

3.7 Comparison to an optimized GPU implementation

We compared our end-to-end neural network implementation described in Section 2 to one based on
CUDAMat [3]. The GPU experiment was run on a NVIDIA Tesla C2070 GPU board mounted on
the same machine as used for the other benchmarks.

Because of their massive parallelism, GPUs are very well suited to processing data in batches. Table
3 shows that from a 2.8× performance gain without batching, the GPU throughput scales almost
linearly with the batch size for small batches. As we will see in Section 5.1, on a CPU batching only
improves a comparable benchmark by a small fraction.
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Table 3: GPU Implementation

Batch size Processing 1s
of speech

CPU 1 1360 ms

GPU

1 490 ms
2 250 ms
4 125 ms
8 66 ms

128 20 ms

4 Fixed-point implementation

There are several properties of neural networks that make them prime candidates for a fixed-point
implementation. First, activations are probabilities in the [0, 1] interval, which means that they
can be represented as unsigned integers without much concern for scaling. Second, inputs of all
the intermediate layers are activations, whose outputs are compressed through a sigmoid. This
causes the dynamic range of the weights to remain bounded, making those good candidates for a
signed integer representation. Third, because of the linear nature of the operations and the dynamic
range compression of the sigmoid, quantization errors tend to propagate sub-linearly and not cause
numerical instability.

4.1 Linear quantization

For reasons that will become clear shortly, we used 8-bit quantization to convert activations into
unsigned char, intermediate layer weights into signed char, with the exception of biases
that are encoded as 32-bit int. One exception is the input layer, which remains floating-point, to
better accommodate the potentially larger dynamic ranges of inputs that are not probabilities. In
our particular use-case, the input layer is much smaller (440x2000) than any subsequent layer and
doesn’t weigh strongly on the overall speed. One of the important benefits of quantizing the majority
of the network down to 8 bits is that the total memory footprint of the network consequently shrinks
by between 3× and 4×.

Weights are scaled by taking their maximum magnitude in each layer and normalizing them to fall
in the [−128, 127] range. Biases are scaled by the same amount and linearly quantized to 32 bits.
The matrix multiplication at each layer produces a 32-bit integer, which a fast, approximate sigmoid
implementation then maps to an 8-bit probability.

Note that a reasonably tuned implementation of this fixed-point network, while outperforming by 2×
an equivalent floating-point implementation, is still slower than the SSE2 optimized system (Table
1). It has been observed in many other scenarios that fixed-point implementations don’t necessarily
compete well with floating-point equivalents on modern CPUs. We will see below how to regain a
significant edge.

4.2 Intel SSSE3

The Intel SSSE3 instruction set [8] introduces the pmaddubsw instruction (with corresponding
intrinsic _mm_maddubs_epi16()) which perfectly matches our quantized neural network com-
putation. The instruction takes 16 unsigned 8-bit integers (the activations), 16 signed 8-bit integers
(the weights), and performs parallel multiply-and-add operations on them to yield 8 16-bit integers.
Note that since 16 bits might not be sufficient to hold the sum-product of 2 signed 8-bits and 2
unsigned 8-bits, the results are saturated to 16 bits, which means that the operation can be an ap-
proximation of the true multiply-and-add. In practice, this is not an issue for neural networks since
large magnitude outputs tend to be compressed via the sigmoid.

On CPUs which can support this instruction, the fixed-point sum-product of __m128i *u and
__m128i *s to be stored in __m128 sum can be written as:

5



// c[0] = saturate(u[0]*s[0] + u[1]*s[1]) ...
// c[7] = saturate(u[14]*s[14] + u[15]*s[15])
__m128i c = _mm_maddubs_epi16(u, s);
// unpack the 4 lowest 16-bit integers into 32 bits.
__m128i lo = _mm_srai_epi32(_mm_unpacklo_epi16(c, c), 16);
// Unpack the 4 highest 16-bit integers into 32 bits.
__m128i hi = _mm_srai_epi32(_mm_unpackhi_epi16(c, c), 16);
// Add them to the 4 32-bit integer accumulators.
sum = _mm_add_epi32(_mm_add_epi32(lo, hi), sum);

This results in a 3× speedup of the computation, bringing our benchmark well within real-time.

4.3 Intel SSE4

The SSE4.1 instruction set [8] introduces one small optimization with a single instruction for 16 to
32-bit conversion:

// c[0] = saturate(u[0]*s[0] + u[1]*s[1]) ...
// c[7] = saturate(u[14]*s[14] + u[15]*s[15])
__m128i c = _mm_maddubs_epi16(u, s);
// unpack the 4 lowest 16-bit integers into 32 bits.
__m128i lo = _mm_cvtepi16_epi32(c)
// Unpack the 4 highest 16-bit integers into 32 bits.
__m128i hi = _mm_cvtepi16_epi32(_mm_shuffle_epi32(c, 0x4e)));
// Add them to the 4 32-bit integer accumulators.
sum = _mm_add_epi32(_mm_add_epi32(lo, hi), sum);

This results in a 9% relative speed improvement over SSSE3 on our benchmark.

5 Further task-specific improvements

All performance numbers in Table 4 pertain to the benchmark described in Section 2: computing
100 frames (1 second) of speech.

Table 4: Effect of batching and lazy evaluation.

Evaluation Section Active
states

Batch size Best
speed-up1 2 4 8

Eager 5.1 ? 472 ms 409 ms 374 ms 356 ms 25%

Lazy 5.2

1% 257 ms 203 ms 180 ms 169 ms 64%
10% 298 ms 243 ms 214 ms 199 ms 58%
30% 371 ms 308 ms 273 ms 255 ms 46%
50% 436 ms 366 ms 326 ms 307 ms 35%

100% † 579 ms 499 ms 458 ms 439 ms 7%

Batched-lazy 5.3

1% 261 ms 201 ms 177 ms 166 ms 65%
10% 299 ms 231 ms 197 ms 181 ms 62%
30% 380 ms 286 ms 233 ms 212 ms 55%
50% 454 ms 337 ms 268 ms 241 ms 49%

100% 617 ms 450 ms 349 ms 311 ms 34%

5.1 Batching

It is interesting to note that with the optimizations from Section 4.3, the CPU implementation slightly
outperforms the GPU implementation described in Section 3.7 in the absence of batching (See Ta-
bles 1 and 3). While for offline applications, GPUs have a very large advantage over CPUs, it
appears that this advantage can become negligible when batch processing is not an option. Batching
can however further improve memory locality and be beneficial on CPUs as well. This benefit is to
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be traded off against a possible increase in latency for real-time applications. In streaming speech
recognition, it is common to incorporate a look-ahead of a few hundred ms, at least in the beginning
of an utterance, to help improve run-time estimates of speech and noise statistics, which makes it
possible to process frames in small batches over tens of ms. To take full advantage of batching,
the batches have to be propagated through the neural network layers in bulk, so that every linear
computation becomes a matrix-matrix multiply which can take advantage of CPU caching of both
weights and activations.

5.2 Lazy evaluation

The traditional GMM/HMM model of speech recognition has a computational advantage over hybrid
neural network approaches. During decoding, at every frame, only a fraction of the state scores ever
need to be computed. Because every state has its own, small, set of Gaussians, only a fraction of
the total parameter space has to be visited at every point. On a small sample of a large vocabulary
task, we found for example that on average about 25% to 30% of the states were active at any point
in time. Assuming that the GMM system requires roughly the same total number of parameters as
a hybrid system, this is a significant reduction in the number of arithmetic operations and memory
accesses. In addition, there are several well-known Gaussian selection techniques which further help
narrow down the pool of Gaussians that need to be evaluated [10,11]. In the case of dense neural
networks, in principle every parameter has to be visited at every frame. The notable exception is
the last layer, which only needs to be computed for a given state if the state posterior is needed
during decoding. This opens up the possibility of lazy evaluation whereby a state posterior is only
computed when needed by the decoder. In our example benchmark for instance, a large fraction of
the computation is spent evaluating the last layer, which contains a full 55% of all the parameters.

As shown in Table 4 (comparing row ? and row †), evaluating the final layer in a lazy manner
adds inefficiency to the matrix computation and hence introduces a small fixed cost of about 22%
relative. In this instance, it is however beneficial even if as many as 50% of the output scores need
to be computed, leading to a 14% relative improvement over batching alone.

5.3 Batched lazy evaluation

With lazy evaluation we can no longer simply compute batches of output scores for all outputs across
multiple frames, but we can continue to batch the computation of all layers but the last. In addition,
We can exploit the piece-wise stationary nature of speech signals, which means that if a state is
needed by the decoder at frame t, it is very likely to be needed at frame t+1. Computing a batch of
these posteriors for consecutive frames at the same time while the weights are in cache thus provides
a further efficiency, at the cost of sometimes computing a given state posterior for a frame when it
will not be needed. Table 4 shows the effect of this batch size on computing output scores in batches
compared to an equal number of scores computed in random order.

6 Speech recognition evaluation

Table 1 shows that, for the neural network computation, the speed improvements are in the vicinity
of 10× against a naive baseline, and around 4× against our best floating-point system. We now
evaluate our best floating-point and fixed-point systems in the context of a real speech recognition
task, with the overhead of the decoder and the cost of real-task memory access patterns that it entails.

The end-to-end system consists of a hidden Markov model, context-dependent speech recognizer.
The neural network described in Section 2 provides posterior probabilities for each state, which are
then divided by state priors to yield observation likelihoods. The evaluation task consists of 27400
utterances of mobile spoken input such as search queries and short messages, and uses a large N-
gram language model tuned to that combination of tasks. The search is performed using a weighted
finite-state transducer decoder [12]. The evaluation was conducted on a cluster of machines repli-
cating a real production environment, and was tuned to typical production parameters.

Table 5 shows that no performance cost is incurred by quantizing the neural network parameters, but
the end-to-end system runs 3× faster and within real-time constraints. The real-time factor quoted
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Table 5: Speed/accuracy results for large vocabulary speech recognition.

Word Insertions Deletions Substitutions 90th percentile
error rate real-time factor

Floating-point 14.9% 3.0% 2.3% 9.6% 2.91
Fixed-point 14.8% 3.1% 2.1% 9.6% 0.90

is the 90th percentile across all utterances of the ratio of time spent decoding an utterance to the
duration of the utterance.

7 Conclusion

Optimization of the kind of large matrix computations that are needed to evaluate neural networks
on a CPU is a complex topic in an ever-evolving ecosystem of architectures and performance trade-
offs. This paper shows that simple techniques can dramatically enhance the performance of neural
network-based systems. Of particular interest are recently-introduced fixed-point SIMD operations
in x86 processors which once again tilt the balance of performance in favor of fixed-point arithmetic.
We showed that leveraging these faster instructions, a real-time speech recognizer can be built using
a very large hybrid network at no cost in accuracy.
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