
Distributed forensics and incident response in the enterprise

M.I. Cohen*, D. Bilby, G. Caronni

Google Inc, Switzerland

Keywords:

Remote forensics

Live forensics

Digital forensics

Incident response

Information security

Malware

Memory forensics

Distributed computing

a b s t r a c t

Remote live forensics has recently been increasingly used in order to facilitate rapid

remote access to enterprise machines. We present the GRR Rapid Response Framework

(GRR), a new multi-platform, open source tool for enterprise forensic investigations

enabling remote raw disk and memory access. GRR is designed to be scalable, opening the

door for continuous enterprise wide forensic analysis. This paper describes the archi-

tecture used by GRR and illustrates how it is used routinely to expedite enterprise forensic

investigations.

ª 2011 Cohen, Bilby & Caronni. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Digital forensics is an established field in civil and criminal

investigations. In the enterprise, digital investigations are

often associated with incident response e the detection and

investigation of system compromises and targeted attacks.

Within the corporate sphere, investigations typically focus on

timely response and damage assessment, in addition to

maintaining evidentiary standards. The typical enterprise

owns and deploys many machines serving a multitude of

roles e for example, workstations, laptops and servers. All

these machines can be used as launch points for internal

attacks and may become involved in forensic investigations.

Digital readiness has been previously defined as “the ability of

an organization to maximize its potential to use digital

evidence whilst minimizing the costs of an investigation”

(Rowlingson, 2004). A distributed forensic investigation plat-

form therefore serves to increase digital readiness by lowering

the investigative cost and increasing the quality of digital

evidence obtainable.

Traditional forensic acquisition consists of shutting the

target system down, removing its disk and acquiring a bit for

bit copy of the drive, followed by a manual analysis of the

drive image. Forensically sound write blocker hardware is

often employed during the acquisition step e often requiring

the physical removal of the system’s hard disk (Carrier and

Spafford, 2003). Advantages of this technique include the

preservation of digital evidence, and court validated proce-

dures potentially enhancing the admissibility of evidence

(Scientific Working Group on Digital Evidence, 2006).

This process is time consuming, requiring a trained

forensic investigator to be physically present for the acquisi-

tion. This increases the cost of imaging and response time and

reduces the number of machines that can be imaged in an

investigation. Shutting down a running system may also lead

to the loss of important volatile evidence (Walters et al., 2007).

Additionally, without knowledge of all assets involved in an

incident, even the best evidence preservation techniques fail

to give an accurate picture. Timeliness of response becomes

more significant to preservation of evidence, than the poten-

tial admissibility of the evidence.

Live response has been used as a critical part of the

investigative process in order to capture and document vola-

tile system state prior to hard disk imaging (Walters et al.,

2007). A number of toolkits are available for automating live

evidence capture prior to the seizing of computers (e.g.,

Microsoft COFFEE e a law enforcement only tool (Microsoft

Corporation, 2011)). Volatile evidence can be used after

* Corresponding author.
E-mail address: scudette@google.com (M.I. Cohen).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ier . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0

1742-2876/$ e see front matter ª 2011 Cohen, Bilby & Caronni. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.05.012

acquisition to support the investigation in addition to a disk

image. Arguably, the complete acquisition of physical

memory is sufficient to enablemost volatile system state to be

subsequently deduced (Suiche, 2011; MANDIANT, 2011).

Triaging has been proposed as way of reducing the time

required to image many systems (Garfinkel, 2010). The goal is

to both identify relevant evidence quickly and guide the

investigative process by directing human resources to reduce

the overall response time (Rogers et al., 2006). Triaging often

employs less thorough forensic techniques. For example,

rather than analyzing the disk by keyword searching across all

files, undeleting files, or unpacking container files, an inves-

tigator might choose to only search for keywords in docu-

ments located in a certain directory. This might be considered

a quick way of determining the relevance of this specific disk

to the case. Similarly rather than a bit for bit image of the

target media, an investigator may selectively image only the

data which is likely to be evidentiarily relevant (Termed

selective imaging (Turner, 2006)).

Remote live forensic analysis has been proposed as

a solution to reducing the time required for response. Some

simple tasks can be performed using inbuilt operating system

facilities, e.g., examining files via domain file sharing or

standard remote administration tools. Typically however,

remote system level access to deployed systems is provided

via a pre-installed agent servlet. The remote agent allows an

investigator to directly connect to the system, and perform

rapid analysis or triage the system for subsequent acquisition

(Guidance Software Inc., 2011; Various, 2011a). Care must be

taken in order to protect the communications between the

agent and the management console, typically this communi-

cation is encrypted and secured using sophisticated protocols

(Mccreight et al., September 2004; Various, 2011a).

Since the system under investigation itself is used for

running the remote agent, data obtained from the live system

might be subject to subversion by locally activemalware, or an

attacker. Although case law is rare in this area, legal analysis

suggests that authenticity challenges could be successfully

defended by thorough tool testing (Kenneally, 2005), although

some additional legal risk is afforded by remote live forensics

(Kenneally and Brown, 2005).

1.1. Privacy

Having a remotely accessible and often silent enterprise

management agent installed can pose serious concerns for

privacy of the users. Many enterprise management tools give

the investigator complete access to the underlying filesystem

and memory. This power can be abused to seriously

compromise a user’s privacy since personally identifiable

information (such as credit card numbers, credentials or

encryption keys) can be gleaned from memory images and

browser cache objects (Kornblum, 2009).

With tighter regulations regarding privacy it is becoming

imperative to protect the user’s information (Lasprogata

et al., 2004; Kim, 2006). This requirement is in direct

competition with the need for expedited and thorough

analysis for locating compromises (Kim, 2006). Typically in

a large organization, routine investigative tasks (e.g., mal-

ware infections) must be delegated quickly to a large number

of operators, while sensitive investigations which might

require access to private information must be legally

managed within a small number of operators (e.g., those

granted access under a legal warrant).

Unfortunately, current products do not provide fine

grained access controls or the auditing flexibility to tailor

access to user data (Casey and Stanley, 2004). Due to the

interactive nature of most tools, any user granted access to its

management console, automatically provides that user with

complete access to all files on the remote system. Further-

more, auditing the files that the user accessed is not usually

implemented. This may give the investigator complete,

unfettered and unaudited access to all files.

On the other hand, by automating pre-devised analysis

tasks, our system allows only specific, audited tasks to be

initiated on the remote system. For example, searching

for files matching a particular keyword can be initiated

automatically without the investigator seeing what files

actually exist in the user’s home directory. These files may

then be quarantined for subsequent review by an authorized

person.

1.2. Correlation

Deployed systems have a variety of software installed (often

by users) presenting different kinds of risks for the security of

the system and the network. When investigations are con-

ducted on an enterprise scale, the ability to query the entire

fleet of deployed systems can in itself provide useful signals

for compromise. For example, if a new vulnerability is

discovered in a particular version of a product, up to date

statistics of all systems in inventory running the vulnerable

version can be used to rapidly determine risk exposure and

formulate a response plan. This can occur even when the

vulnerable software is not part of the standard build envi-

ronment, but was installed by a user.

As malware is developed to appear more innocuous, it

attempts to blend in with other system artifacts (Peron

and Legary, 2005). For example, malware commonly uses

the same process name as common system processes or use

similar registry keys or files as legitimately installed software.

Detection of the malware is thus more difficult when

analyzing the system in isolation. However, when consid-

ering the correlation of artifacts across a large fleet of

machines, many running the same install base, indicators of

compromise are easily seen. For example, if a commonly

installed executable has a particular hash value on most

systems, but a different hash value on a few systems in the

fleet e this might indicate that this binary was maliciously

replaced.

In addition, correlating information across time may also

provide valuable indication of compromise e as in the case of

new and unusual artifacts suddenly appearing. For example,

assume a series of snapshots in time of autorun processes

(processes which start when the system is booted) is available

for each system. If subsequently a malware is detected on

a particular system, inspecting these snapshots allows us to

establish a timeline of compromise more reliably (e.g.,

without relying on potentially manipulated timestamps on

the compromised system).

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0S102

1.3. Current state of the art

The task of forensically analyzing enterprise systems is

challenging on many levels. Primarily the enterprise posses

a large number of often geographically distributed machines.

Scalability may be expressed on a number of dimensions:

� Number of monitored assets

� Number of operators that can simultaneously investigate

a single system.

� Number of objects (files, processes) that can be tracked.

� Average time required to respond. Particularly in

geographically remote locations deploying of trained

investigators requires long lead times.

� Average time to search all assets for indications of

compromise.

� Variety and types of investigative operations that can be

performed (e.g., keyword search, memory imaging, process

enumeration).

The Integrated Digital Investigative Process (IDIP) (Carrier

and Spafford, 2003) initiates the investigation during the

Notification phase. In the enterprise, notificationmechanisms

include many indicators of compromise, such as Network

IDSs, Host IDS and automatic log analysis systems. Once an

indicator of compromise is identified, the IDIP calls for the

preservation, survey and search for evidence.

Existing remote live forensic approaches consist of

a management console which can connect to a remote agent.

For example, over secure shell (Various, 2011a). This approach

may not work in every case, especially if the target system is

connecting to the Internet over a Network Address Trans-

lation device, or behind a firewall.

In addition, typically the number of simultaneous agent

connections might be limited, either by license restrictions or

by technical limitations. It is therefore not typically possible to

contact every asset in an organization to follow up on poten-

tial notification. Due to this limitation, investigators are often

faced with the need to narrow down searches to a small

number of machines very early in an investigation, often

causing them to miss potential leads.

2. The GRR rapid response framework

GRR (GRR Rapid Response) was born out of our desire to

implement an open source tool which can scale to many

thousands of machines, be managed collaboratively through

a web interface, and support all major platforms.1

GRR advances the field of remote live forensics, by tackling

auditing, privacy issues, and being scalable. It provides

a secure and scalable platform to facilitate a rich set of

forensic analysis solutions. The scalability which the frame-

work provides allows deviation from the traditional “one

system at a time” approach into “continuous forensic anal-

ysis” model, applicable to the entire asset fleet. Automated

analysis can be rapidly developed and dynamically dispatched

to all assets simultaneously with minimal response time and

maximal reach.

Typically the GRR client agent is distributed pre-installed in

the corporate SystemOperating Environment (SOE), or pushed

to clients via standard enterprise software distribution

mechanisms. In the following discussion we describe how the

GRRarchitecture achieves its security and scalability goals.We

then proceed to describe how it is used in practice to assist in

typical scenarios requiring corporate-wide forensic analysis.

2.1. Communications

As described previously, communication between the client

agent and the server is critical for the security and reliability of

the system. The GRR Server communicates with the clients

(agents running on managed assets) via Messages. We term

themessages sent from the server to the client “Requests” and

the messages sent from the client to the server as

“Responses”. Generally a single request may elicit multiple

responses. Fig. 1 gives an overview of how messages are

relayed. The precise network architecture of the GRR system is

described later, in Section 6.

The client communicates with the server using the HTTP

protocol, receiving batched requests and sending batched

responses over periodic HTTP POST requests. Each client has

its ownmessage queue (based on the client’s CommonName),

from which requests directed to that client are drawn.

Workers are specialized processes which handle responses by

drawing them from specified queues. Clients can only receive

requests intended for them, but can send responses to any

worker queue.

All communications between the server and client are

always encrypted using AES256 with a random session key

and Initialization Vector (IV), including the initial Certificate

Signing Request exchange. The session key is in turn

encrypted using the RSA public key of the remote end, while

messages are also signed using the private key of the sender.

Should the server certificate (using an internal Certification

Authority whose public key is hardcoded on all clients) get

compromised for any reason, a new one can be rapidly

deployed. Each client periodically checks for a “latest server

Fig. 1 e An overview of communications paths in the GRR

architecture.

1 The tool is available at http://code.google.com/p/grr/ under an
open source license.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0 S103

certificate” over the network, and upgrades its locally stored

copy if needed.

Each request message issued causes the client to execute

a client action - a specific routine that performs a single

primitive action. For example, the client has a ReadBuffer

(path, offset, length) primitive which reads up to a given

amount of data from a file at a specified offset. These simple

primitives are combined into arbitrarily complex operations

by the server.

Replay attacks can be problematic in a remote forensic

system. If an attacker is able to capture client responses to

a routine request and replay them, the servermight record old

or out of date data about this client e potentially displacing

recent data. In the GRR framework however, replaying POST

messages is ineffective since each response is sequenced e

hence the system will simply drop replayed messages as

retransmissions. In addition, the server timestamp of

a request is included within the encrypted and signed payload

of each POST response. The client requires an incrementing

timestamp between POST requests. If timestamps do not

agree, the server requests are simply ignored.

2.2. Client enrolment

The GRR client agent is typically distributed via standard

enterprise softwaremanagementmechanisms. Since all client

communication is encrypted, clients must obtain their own

X.509 certificate prior to the initial server communication. In

an enterprise environment, central certificate management is

avoided, else SOEs need to be customized for eachmachine. It

is more desirable to allow automatic client enrollment, where

a client can obtain its own certificate upon first invocation. In

the GRR framework, clients enroll by automatically creating

a Certificate Signing Request (CSR) with a unique client

Common Name (CN). The CSR is then encrypted with the

server public key, and sent to the server for signing. The server

signs this CSR and returns an X.509 certificate for the client.

When the server generates a certificate for a client, it also

stores it in the database. All future communications with this

client will utilize this stored certificate. To revoke a client, this

key simply gets deleted from the database.

The key enrollment process must be robust to client

impersonation. For example, the Encase Enterprise remote

collection agent, despite using a complex cryptographic

protocol, did not authenticate the client agent, other than by

its IP address. This potentially allowed rogue agents to

impersonate another system using standard network attack

tools (Newsham et al., 2007). In GRR, since the client creates

the CSR and chooses the CN, it would be possible for a rogue

client to impersonate any other client by simply creating

a new CSR containing the other clients CN, and communi-

cating with the server using this new cert. This would allow

for impersonation attacks, and potentially compromise the

integrity of forensic evidence.

We address this threat in GRR by enforcing the CN to be

dependent on the hash of the certificate public key. This in

turn ties the CN to the private key, preventing impersonation

attacks. A rogue client can not create a valid CSR having

a predetermined CN of another client, with a meaningful key

pair, without also knowing the other client’s RSA private key.

The enrollment process is illustrated in Fig. 2. After

enrollment, the server initiates a discovery flow, querying the

client for common identifying attributes. The client IDs are

uniquely associated with a knowledge base about the client

(e.g., host name, IP address, MAC address etc).

Although we can not make guarantees about the authen-

ticity of the information the client returns during the

discovery phase, the GRR framework guarantees that a rogue

agent can not impersonate another agent. The integrity of

each client is therefore independent. GRR uses the client CN as

a unique ID in all information kept about the client.

2.3. Flows

GRR Supports simultaneous deployment on many thousands

of machines, only a fraction of them may be accessible at any

given moment. The traditional model has a management

console gaining interactive control of the client (e.g., Secure

Shell). This requires the investigator to be present when the

target system is available. This is less than ideal in a global

enterprise where the investigator may not even share the

same timezone as the target system. It is also infeasible to

have many thousands of administrative console processes

waiting for connections to remote systems which may only

become accessible after weeks or months.

Automated analysis may require executing many sequen-

tial steps. For example, listing a directory, identifying the

executables, then calculating each file’s hash. Current solu-

tions create a dedicated console process that waits for the

client to complete each step before issuing the next step. This

limits scalability as the server needs to allocate resources for

each client and wait for potentially a long period until the

entire analysis is complete.

The key to our solution is the use of state serialization to

suspend execution for analysis processes for each client.

These serialized forms are then stored dormant on disk until

the client responds, posing no resource drain on servers. We

term these constructions a Flow. Flows are simply state

Fig. 2 e Enrollment process for a new client. The client

prepares a CSR with a CN composed of its public key, and

requests it to be signed by the server. The server issues the

new certificate and then initiates an Interrogation Flow, to

retrieve more information about the client. The more

information the client reveals about itself, the more

confident we can be of the identity of the client.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0S104

machines with well defined serialization points, where it is

possible to suspend their execution. We implement our flows

using the Python programming language (Various, 2011b), and

serialize them using the standard Pickle facility.

Fig. 3 illustrates a typical flow designed to copy a large file.

We begin by issuing a message to the client, requesting the

hash of a particular file. After sending this request, the flow is

suspended and serialized to disk. When the client becomes

available, the request is issued and the responses are returned

to the server. The server can then resume the flow and push

the responses to thenext state. If the hash already exists in our

file corpus, there is noneed to fetch it, and the flow terminates.

The file may be very large (e.g., an ISO image), so it must be

read in blocks, each block read with a distinct request. We

issue the request for the first block and suspend. A while later,

the client will return data for these requests, which we pass

into the WriteBlock state. As long as the file download is not

completed, we issue another request to read the next block

from the client, until the entire file is transferred. Down-

loading a large file from a live system might lead to an inco-

herent file if the file is simultaneously modified. The GRR

GetFile flow requests the client to calculate a hash of the file

prior to downloading, and then compares the hash once the

file has completed to ensure a successful transfer.

Note that the flow object is only present in memory during

the state execution, where it receives responses as parame-

ters. During this execution the flow may issue new requests,

their responses targeting a different state. While the requests

are pending for the client, the flow is serialized to disk and no

memory is used. The client can disappear partway through

copying the file and the copy will resume at a later time when

the client returns.2

Flows essentially maintain context state for a particular

interaction with the client. This is analogous to web applica-

tions maintaining context using a session abstraction. Simi-

larly, flows are identified using a randomly selected session

ID. All responses from the client are addressed to a specific

flow using this random session ID.

2.4. Transmission of messages

Responses to a request are all destined to a particular state in

the corresponding Flow object. For example a request might

be ListDirectory, which may elicit many Responses, one for

each file in the directory. These responses are all passed to the

flow at a particular state.

In order to indicate when all responses have been sent to

a particular request, the client sends a STATUS message with

a return code for the executed action. This message contains

details of the error in the event that the Client Action failed to

run, or an OK status if all is well.

This general pattern is shown in the Fig. 4. Note that in

practice requests from multiple concurrent flows are batched

together without waiting for responses (i.e. in the example

below request 1 and 2 would be sent together, then all the

responses might arrive back in any order).

Because the client may disappear at any time (e.g., due to

a reboot), the framework must be capable of resuming the

execution of the flow at a later time, when the client returns.

GRR implements automatic message queuing and retrans-

mission in the event that the client reboots part way through

executing a client action. For example, if the ListDirectory

actionwas requested, it might return a partial list of filenames

before the client reboots. Since the client does not maintain

permanent state, the client can not resume the action. When

the client becomes available again, the request is retrans-

mitted and the action is re-executed.

2.5. Processing queues

GRR supports multiple processing queues on the server. This

allows specialized workers to be used for specific tasks,

automatically routing all messages to these workers.

The flow session ID indicates which queue it belongs to.

E.g., “W:ABCDEF” indicates that the message should be routed

to queue “W” and addresses flow “ABCDEF”. Thus a specific

flow is always communicated over a particular queue.

The ability to maintain separate queues for flows allows us

to implement several types of workers, each listening to

different queues. For example, arguably the most security

sensitive operation in the GRR architecture is the signing of

new clients’ CSRs. This requires the worker to have access to

the GRR Certification Authority private keys. The principle of

least privilege requires that the process which has access to

private keys not perform any other task - reducing its attack

surface (Viega, 2002). In the GRR architecture, the CAworker is

a specialized process with access to the CA private keys. It

only listens on a specific CA queue, and is unable to run any

other worker flow. Fig. 5 illustrates several message queues

simultaneously communicating with the client.

Fig. 3 e A flow to copy a file from the client. The flow begins

by asking the client for a hash of the file. If the file does not

exist in our corpus, we ask for the first block, and then the

next block until the entire file is retrieved. Finally we verify

the hash to ensure the file was transferred correctly.

2 However, since there is no permanent state stored on the
client, responses to a single request can not be split across
reboots. For example, a process listing is coherent, but a file copy
might not be, since it consists of multiple requests for consecu-
tive blocks of data.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0 S105

2.6. Network architecture

An important requirement of an enterprise forensics platform

is to be able to scale to many thousands of machines analyzed

concurrently. GRR is designed to be scalable, i.e., deploying

more machines allows us to handle more clients simulta-

neously. In this section we describe the distinct server

components, and illustrate how they can be deployed on

a server cluster. Clearly for smaller installations, all processes

can be run on the same machine.

Fig. 6 illustrates a typical GRR installation. Client POST

requests arrive from the Internet and are distributed through

a load-balancer to a bank of front end servers (FE). The FE’s

task is to decrypt the client responses and queue them until

a final STATUS response is received for each request.When all

responses are received, theworker ismessaged to process this

flow. The FE also checks for pending requests to this client on

the relevant client message queue. Any pending requests for

the client are encrypted and sent back in the same POST

transaction.

Workers periodically check their message queues for

completed requests. When a completed request is received,

the worker retrieves the serialized flow from the database

(after exclusively locking it). The flow’s execution state is then

restored by un-serializing it (using the pickle module). The

responses are then passed into the relevant state method in

the flow. While executing, the flow may issue further

requests, which will be placed on the clients queue in the

database. Once the state method has completed executing,

the flow is re-serialized and placed back on the database. It is

Fig. 4 e Message transmission between client and server. Both client and server maintain a queue of inbound messages

ordered by an incrementing ID. Each request can elicit multiple responses, each referencing the request which generated it.

The final response is a Status message (depicted by a dashed line) indicating the success of the request execution.

Fig. 5 e Processing queues in the GRR architecture

illustrating three distinct types of workers. The general

purpose workers retrieve messages from the general

queue named “W”. A specialized worker responsible for

CA enrollments communicates to the client on the queue

“CA” while an interactive worker has its own queue for the

client. Fig. 6 e GRR backend components.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0S106

important to emphasize that the same flow can run on any

random worker in the worker pool. The flow object contains

all of its state and does not depend on global state.

The database model used in GRR is a Resource Description

Framework (RDF) datastore. RDF stores information triples in

the form (subject, predicate, Object) (Manola et al., 2004). GRR

subject names begin with the common name of the client -

a randomly distributed name (due to the hash properties). This

naturally leads to a scalable database architecture, since the

RDF information space can be easily sharded between subjects

(Bell et al., 2010), allowing dedicated database servers to inde-

pendently manage an even portion of the space. For example,

we could choose to run 4 RDF databases, the first managing

clients with the name C:111111 to C:3333333, the second

C:3333334 to C:666666 etc. While large scale testing has not yet

been undertaken, studying similar systems we believe we can

linearly scale this system to many thousands of active clients.

Finally Fig. 6 shows the Console process interacting with

the database by starting new flows and displaying the result of

completed flows. GRR currently has a command line based

console, and a web based GUI.

2.7. Client agent capabilities

The GRR client agent is implemented on multiple platforms.

On Microsoft Windows� it runs as a system service, while on

Linux� and Mac OSX� it runs as a root level process. GRR also

installs signed kernel drivers to provide access to physical

memory.

The agent is able to satisfy requests from the server by

running various Client Actions - code routines on the client

which receive a request and generate one or more responses.

Client actions can provide access to the operating system’s

APIs, such as reading a file, or listing a directory. This allows

for fast and efficient examination, however this is most

vulnerable to subversion from malware through API hooking

techniques (Peron and Legary, 2005).

Simple actions, such as reading a buffer from a file, raw

disk or memory, can be combined on the server to produce

more complex forensic analysis. For example, a flow utilizes

the Sleuthkit on the server to issue buffer read requests for the

raw disk, allowing reading of raw filesystem data structures

and recovery of deleted files. Similarly, randomly reading

buffers from raw memory can be combined on the server, to

analyze the live memory image using the Volatility memory

analysis scheme.

Low level remote access to devices is an effective andwidely

utilized technique (Cohen, 2005; Guidance Software Inc., 2011).

The advantage is that the client is very simple, and complex

forensic analysis is done server side. The server can employ

many novel analysis techniques without needing to upgrade

the deployed client (e.g., upgrade the version of the Sleuthkit).

Unfortunately, for remote systems with significant

network latency, exporting the raw device in this way can be

very slow due to the large number of round trip request/

response messages. It is far more efficient to use the Sleuthkit

library on the client itself to read the raw device.

For this reason, the GRR agent itself incorporates a number

of open source capabilities. The Sleuthkit library is incorpo-

rated for access to raw disk filesystem analysis (Carrier, 2011).

The REGFI library (Morgan, 2011) is also incorporated to enable

the agent to forensically analyze registry files on the running

system, with reduced susceptibility to API hooking subver-

sion. Registry files must typically be read using the Sleuthkit

on a running system, because they are normally locked by the

system. GRR also incorporates the Volatility Memory analysis

framework to be able to analyze the raw system memory on

the client if the operating system is supported by Volatility

(Walters et al., 2011).

3. Implementation challenges

In traditional forensic analysis, we collect information about

a system in a frozen state. For example, a directory listing in

an image does not yield different results at different times.

However, when GRR collects information remotely, that

information represents a point-in-time snapshot of system

state. This unique aspect of remote live forensics presents

a paradigm shift in forensic analysis system design, as every

piece of information must have a timestamp of when it was

acquired.

We have adopted AFF4 as the data model for GRR (Cohen

et al., 2009; Schatz and Cohen, 2010). AFF4 defines abstract

objects representing entities uniquely identified by a univer-

sally unique URL. Information is organized into RDF triples,

making statements about the objects.

The traditional AFF4model assumes objects are static, and

has no concept of statement age. For example, the following

statement makes a claim about the hash of a file on the client:

aff4:/34a62f06/boot.ini aff4:sha256 "udajC5.BVi7psU"

This statement assumes the hash for this file is always the

same. However, when GRR retrieves the hash of this file at

different points in time, the hash may be different if the file

has changed. Thus AFF4 statements must be qualified with

the time at which the statementwasmade.We have extended

AFF4 values to have an Age - the timestamp when the attri-

bute was acquired. For example, it is possible to havemultiple

different hashes for the same file at different times.

aff4:/34a62f06/boot.ini aff4:sha256 "uajC5.7Xp ¼¼ @130

3384321"^^<grr:hash>, "cRmYX.kYQ ¼¼ @1303386902"

^^<grr:hash>

The GUI needs to convey and reconcile this paradigm for

the investigator. As can be seen in Fig. 7, the GRR GUI shows

the age of each AFF4 statement and allows the user to specify

a mechanism to refresh this statement, as well as navigate

through older snapshots.

4. GRR case studies

The following section describes some scenarios of how GRR is

currently used in our enterprise to assist with large scale

forensic analysis and incident response. Although GRR is still

in early development phase, it is useful for these scenarios. As

the tool evolves we hope to apply it to more cases. We

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0 S107

currently have two ways of scheduling flows on clients - the

first is to target a specific client, while the second allows us to

target a specific class of clients (e.g., Windows 7 machines

within the EU).

4.1. Investigate leakage of intellectual property

In this scenario, restricted information has been leaked and

the aim of the investigation is to discover people who had

access to this information.

� Flows are started for all corporate assets belonging to users

with a particular level of access, searching for specific

keywords indicative of the information leaked. The search

can be restricted to certain file types or directories in order

to increase efficiency or comply with privacy limitations.

Unallocated and deleted files can optionally be searched.

� As assets come online, they begin to process their flow and

eventually most of the fleet has completed the requested

search. Note that it is possible to queue an unlimited

number of flows for an indefinite length of time with no

resource loading, since flows are simply serialized data

stored on disk on the server.

� Nowwe have a list of machines across the enterprise which

have shown a positive hit. Further investigation can be

made to isolate users of interest. Note that user privacy has

not been compromised since user data was never copied to

the server. Only the fact that a user possessed files con-

taining a keyword is established.

4.2. Isolate targeted malware attack

A piece of malware is detected on a corporate asset and we

wish to know if the attackers have compromised other hosts.

� Flows can be started to look for specific attributes of the

found malware - e.g., an MD5 hash, file type or typical file

name. We can also search for specific registry keys or even

patterns in system memory particular to the running

malware.

Fig. 7 e The GRR Admin GUI browsing a remote Windows� system. The registry and file system are available within the

same Virtual Filesystem (VFS), and are represented using AFF4 Objects. The AFF4 Stats view displays all the attributes

related to the object, each of which has an age. The user may choose through the GUI to update the property - creating a flow

for the target system. Note the/dev/virtual filesystem which provides access to the raw disk of the client, including reading

files using the Sleuthkit.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0S108

� As assets come online, they each begin searching for the

malware infection, reporting to the central sever potential

compromises. This will work for systems on or off the

corporate network as GRR is designed to work across the

Internet and over slow connections.

� For those machines which are determined to be compro-

mised, flows can be scheduled to force a system shutdown,

or pop a message box requesting the user to take their

machine to system support services for a system reinstall.

This rapid response can quickly incapacitate an attacker

who has many systems under their control.

4.3. Comply with discovery requests

In this scenario, a discovery order requests a copy of a specific

user’s machine. However, the machine may be remote and

inaccessible, or the user should not be alerted.

� A flow is scheduled for this user’s machine which remotely

images the drive if network bandwidth is determined to be

sufficient.

� It is possible to use hash based imaging (Cohen and Schatz,

2010) to minimize the volume of data that needs to be

transmitted over the network, or perform automatic

redaction to remove certain files from the image (e.g., those

files containing intellectual property unrelated to the

discovery request).

4.4. Periodic health check snapshots

In this scenario we wish to collect periodic snapshots of

automated analysis of each system’s state. The snapshot

includes the analysis of autorun executables and their hashes

(executables automatically started at system reboot), the

kernel’s SSDT, a list of loaded kernel drivers.

� Flows are scheduled for all systems in the enterprise to run

this snapshot every week.

� Snapshots are stored in the database.

� If a system is found to have been compromised, we can

initiate a search through the snapshots to determine when

the system was compromised.

� As hashes of executables are collected we can check current

and past hashes against current malware databases. This

allows us to determine that a system was previously

compromised in the past, using a previously unknown

malware which is now known - even if the malware has

already been upgraded by the attacker.

5. Conclusions

Real-time live analysis on a large scale opens up many

possible avenues for powerful forensic and incident response

techniques. The ability to run automated analysis over most

corporate assets simultaneously lowers the investigative

effort required permachine extending the investigative reach.

Using these abilities, investigators are able to ask complex

questions about the state of their environment and get the

answers within minutes instead of days.

GRR is an open source, innovative enterprise distributed

forensic and incident response system supporting the major

client platforms. GRR is designed to be scalable and enables

continuous forensic analysis on all corporate assets simulta-

neously. The scalability afforded by the GRR architecture

innovates current enterprise incident response procedures by

enabling wide reaching analysis. This increases forensic

readiness by lowering the cost of response and increasing the

quality of evidence obtained.

At the same time, GRRmaintains users’ privacy by allowing

for non-intrusive automated analysis, with audited access to

retrieved data. GRR strikes a balance between protecting

access to user data andwarranted forensically sound analysis.

Although GRR is still in early stages of development, it is

clear that already the tool is useful for managing large scale

investigations in the enterprise. The field of live forensic

analysis presents new challenges, such as data snapshots and

non-interactive analysis, requiring the development of new

data models and user interface designs.

r e f e r e n c e s

Bell C, Kindahl M, Thalmann L. MySQL High Availability: tools for
robust data Centers. Oreilly & Associates Inc; 2010.

Carrier B, Spafford E. Getting physical with the digital
investigation process. International Journal of Digital Evidence
2003;2(2):1e20, http://citeseerx.ist.psu.edu/viewdoc/
download?doi¼10.1.1.76.757.

Carrier B. The Sleuth Kit, http://www.sleuthkit.org/; 2011.
Casey E, Stanley A. Tool review-remote forensic preservation and

examination tools.Digital Investigation2004;1(4):284e97,http://
citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.83.6733.

Cohen M, Schatz B. Hash based disk imaging using AFF4. Digital
Investigation 2010;7:S121e8.

Cohen M, Garfinkel S, Schatz B. Extending the advanced forensic
format to accommodate multiple data sources, logical
evidence, arbitrary information and forensic workflow. Digital
Investigation 2009;6:S57e68.

Cohen M. Hooking IO calls for multi-format image support, http://
www.sleuthkit.org/informer/sleuthkit-informer-19.txt; 2005.

Garfinkel S. Digital forensics research: the next 10 years. Digital
Investigation 2010;7:S64e73, http://www.dfrws.org/2010/
proceedings/2010-308.pdf.

Guidance Software, Inc.. EnCase enterprise, http://www.
guidancesoftware.com/computer-forensics-fraud-
investigation-software.htm; 2011.

Kenneally E, Brown C. Risk sensitive digital evidence collection.
Digital Investigation 2005;2(2):101e19.

Kenneally E. Confluence of digital evidence and the law: on the
forensic Soundness of live-remote digital evidence collection.
UCLA Journal of Law and Technology 2005;5, http://www.
lawtechjournal.com/articles/2005/05/_051201/_Kenneally.pdf.

Kim E. The new electronic discovery rules: a place for employee
privacy? The Yale Law Journal 2006;115(6):1481e90.

Kornblum J. Implementing bitlocker drive encryption for forensic
analysis. Journal of Digital Investigation 2009;5(3e4):75e84.

Lasprogata G, King N, Pillay S. Regulation of electronic employee
monitoring: identifying fundamental principles of employee
privacy through a comparative study of data privacy
legislation in the European Union, United States and Canada.
Stanford Technology Law Review 2004;4:24.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0 S109

MANDIANT. MANDIANT Memoryze, http://www.mandiant.com/
products/free_software/memoryze/; 2011.

Manola F, Miller E, McBride B. RDF primer. W3C recommendation
10; 2004.

Mccreight S, Weber D, Garrett M. Patent: Enterprise computer
investigation system, http://www.freepatentsonline.com/
6792545.html; September 2004.

Microsoft Corporation. Computer online forensic evidence
Extractor (COFEE), http://www.microsoft.com/industry/
government/solutions/cofee/default.aspx; 2011.

MorganTD.RegLookup,http://code.google.com/p/reglookup/;2011.
Newsham T, Palmer C, Stamos A, Burns J. Breaking forensics

software: Weaknesses in critical evidence collection. In:
Proceedings of the 2007 Black Hat Conference, https://www.
isecpartners.com/files/iSEC-Breaking/_Forensics/_Software-
Paper.v1/_1.BH2007.pdf; 2007.

Peron C, Legary M. Digital anti-forensics: emerging trends in data
transformation techniques. In: Proceedings of 2005 E-Crime
and computer evidence Conference; 2005.

Rogers M, Goldman J, Mislan R, Wedge T, Debrota S. Computer
forensics field triage process model. In: Proceeding of the
Conference on digital forensics security and law, pp. Citeseer;
2006. p. 27e40.

Rowlingson R. A ten step process for forensic readiness.
International Journal of Digital Evidence 2004;2(3):1e28, http://
citeseerx.ist.psu.edu/viewdoc/download?doi¼10.1.1.65.6706.

Schatz B, Cohen M. Refining evidence containers for Provenance
and accurate data Representation. Advances in Digital
Forensics VI; 2010:227e42.

ScientificWorkingGrouponDigital Evidence.SWGDEbestpractices
forcomputer forensicsv2.1,http://www.swgde.org/documents/
current-documents/2006-07-19%20SWGDE%20Best%
20Practices%20for%20Computer%20Forensics%20v2.1.pdf;
2006.

Suiche M. MoonSols Windows memory Toolkit, http://www.
moonsols.com/windows-memory-toolkit/; 2011.

Turner P. Selective and intelligent imaging using digital evidence
bags. Journal of Digital Investigation 2006;3:59e64, https://
www.dfrws.org/2006/proceedings/8-Turner.pdf.

Various. OpenSSH, http://www.openssh.com/; 2011a.
Various. Python programming language Official Website, http://

www.python.org/; 2011b.
Viega J. Building secure software: how to avoid security

problems the right way. MA: Addison-Wesley Reading;
2002.

Walters A, Petroni Jr N. Volatools: Integrating volatile memory
forensics into the digital investigation process. Black Hat DC
2007, http://www.blackhat.com/presentations/bh-dc-07/
Walters/Paper/bh-dc-07-Walters-WP.pdf; 2007.

Walters A, Dolan-Gavitt B, Various. Volatility - An advanced
memory forensics framework, http://code.google.com/p/
volatility/; 2011.

d i g i t a l i n v e s t i g a t i o n 8 (2 0 1 1) S 1 0 1eS 1 1 0S110

	 Distributed forensics and incident response in the enterprise
	1 Introduction
	1.1 Privacy
	1.2 Correlation
	1.3 Current state of the art

	2 The GRR rapid response framework
	2.1 Communications
	2.2 Client enrolment
	2.3 Flows
	2.4 Transmission of messages
	2.5 Processing queues
	2.6 Network architecture
	2.7 Client agent capabilities

	3 Implementation challenges
	4 GRR case studies
	4.1 Investigate leakage of intellectual property
	4.2 Isolate targeted malware attack
	4.3 Comply with discovery requests
	4.4 Periodic health check snapshots

	5 Conclusions
	 References

